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establishes how changing a single parameter, namely the strength of the connections
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SUMMARY
Action video game play benefits performance in an array of sensory, perceptual and attentional
tasks that go well beyond the specifics of game play [1-9]. That a training regimen may induce
improvements in so many different skills is notable as the majority of studies on training-induced
learning report improvements on the trained task but limited transfer to other, even closely related
tasks [10, but see also 11-13]. Here we ask whether improved probabilistic inference may explain
such broad transfer. Using a visual perceptual decision making task [14,15], the present study
shows for the first time that action video-game experience does indeed improve probabilistic
inference. A neural model of this task [16] establishes how changing a single parameter, namely,
the strength of the connections between the neural layer providing the momentary evidence and
the layer integrating the evidence over time captures improvements in action-gamers behavior.
These results were established in a visual, but also in a novel auditory task, indicating
generalization across modalities. Thus, improved probabilistic inference provides a general
mechanism for why action video game playing enhances performance in a wide variety of tasks. In
addition, this mechanism may serve as a signature of training regimens that are likely to produce
transfer of learning.

Results
Visual Motion Direction Discrimination: Experiment 1

To test the hypothesis that video-game experience leads to improved probabilistic inference,
VGPs and NVGPs were first compared on a standard coherent dot motion direction
discrimination task [14]. In this task, subjects viewed a dynamic random dot motion display
and were asked to indicate the direction of coherent motion (left or right) as quickly and
accurately as possible by means of a key press (Figure 1A).

One of the benefits of this task is that psychometric and chronometric curves are well
captured by diffusion-to-bound models (DDM) or variations thereof [17-27] as well as a
recent neural model of decision making [16], which, unlike the standard DDMs, has a clear
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probabilistic interpretation. This interpretation is based on recent theories in which neural
patterns of activity represent probability distributions over the encoded variables [28-31].
Critically, this allows us to assess whether the changes that arise as a result of video-game
experience meet our standards for improved probabilistic inference. These can be defined
rigorously in the task we chose by considering decision making from a probabilistic
perspective. Before committing to a choice the best a subject can do is to compute the
probability that each choice is correct given all the evidence up to the present time, a
distribution also known as the posterior distribution over choices (which we denote p(c|e)
where c are the choices, and e is the evidence). This computation requires knowledge of p(e|
c), the statistics of the evidence. Indeed, through Bayes rule, p(c|e) is proportional to p(e|c).
In general, subjects do not initially know the statistics of the evidence, which in turn means
that the calculated posterior distribution over choices is not the optimal one. However,
through repeated exposure to a task, subjects have the opportunity to learn these statistics
and, as a result, can make decisions on the basis of a more accurate posterior distribution.
This type of improved inference is what we mean by making better use of the evidence.

The DDM fits to the data provide support for this hypothesis. The results show an overall
decrease in decision bound, no change in non-decision time and crucially a greater
integration rate in the VGP population (Figure 1B and 1C). This latter result indicates
increased sensitivity in VGPs suggesting that VGPs may indeed make better use of the
evidence than NVGPs. Yet to definitively make this point, it is necessary to demonstrate that
VGPs use better posterior distributions over choices than those used by NVGPs. As the
DDM used here does not provide a natural way to compute a posterior distribution
(particularly when the coherence varies over trials), we took advantage of a recent neural
model of probabilistic decision making [16] in which the state of the network encodes the
posterior distribution over choices given the evidence (Figure 2A).

We first used this model to fit the psychometric and chronometric curves of VGPs and
NVGPs using a numerical optimization procedure (Figure 2B; for details see Supplemental
Section 2A). Data from VGPs were well modeled by assuming only an increase in the
strength of the feedforward connectivity between the two layers of the network representing
areas MT and LIP as compared to NVGPs. A change in this single parameter naturally
accounts for the finding that only RTs change whereas accuracy stays constant. Consistent
with this proposal, Law and Gold [32, 33] recently showed that improved performance on a
motion discrimination task following extensive training on the motion task itself is also
captured by a strengthening the connections between the sensory and integration layers.

We then asked whether action video-game experience is indeed associated with a better
posterior distribution for a fixed amount of evidence. In the case of a binary decision task
(i.e. left versus right), the quality of this posterior distribution can be assessed by calculating
the log odds (i.e. the log of the ratio of the probability that the dots move rightward over the
probability that the dots move leftward). Because the log odds in the model reflects the
quality of the evidence available to the decision maker, if action video-game players do
make better use of the evidence, we should find an increase in the absolute value of the log
odds in their model. This is indeed what was observed, with the log odds being 19% higher
on average across all coherences, confirming that, according to the probabilistic population
network, VGPs make better use of the evidence than NVGPs (for details see Supplemental
Section 2A).

Auditory Tone Location Discrimination: Experiment 2
A key question concerns the generalization of this finding to other tasks and domains. To
ask whether the improved probabilistic inference noted in VGPs generalizes to other tasks
and domains, an auditory analog of the motion direction task was developed (Figure 3A, for
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details see Supplemental Section 2B). As in the motion task, performance on the task
requires the accumulation of information over time, and thus the intuitions regarding
sensitivity and decision bound are similar and can be modeled in the same manner. The
results in Experiment 2 mirror those of Experiment 1 quite closely (Figure 3B). In the DDM,
the integration rate parameter was significantly greater in VGPs than in NVGPs confirming
greater sensitivity to the stimulus in VGPs. The decision bound parameter was significantly
smaller in VGPs than in NVGPs and no significant difference was observed in the non-
decision time parameter. The neural model confirmed that the difference between NVGP
and VGP can be captured by changing solely the strength of the feed-forward connections
(by 51%, Supplementary Information, Figure S1A). We further confirmed that VGPs do
indeed make a better use of the evidence in this paradigm, with log odds being 48% higher
on average across all levels of signal to noise ratio in VGPs as compared to NVGPs.

Video Game Training: Experiment 3
While our hypothesis is that extensive video-game experience is at the root of these changes,
it could also be the case that VGPs are individuals who have been born with improved
abilities at performing probabilistic inferences. To establish that video-game experience is
sufficient to drive a better use of the evidence, NVGPs underwent 50 hours of video-game
training on either action video-games or a control video-game. If action video-game
experience does improve probabilistic inferences in neural circuits, larger improvements
should be noted in the action-trained group than in the control group. This prediction was
confirmed as the results of this training study are nearly identical to the results of
Experiments 1 and 2 (Figure S2, for details see Supplemental Section 2C). Critically, better
use of the evidence was noted only in the action group at post-test. The log odds for the
motion task were 16% (respectively 31% for auditory) higher on average across all levels of
coherence (respectively SNR) at post-test as compared to pre-test for the action group (see
Supplementary Information, Figure S3). The results of this experiment therefore confirm the
causal relationship between action video-game experience and improvements in
probabilistic inference.

Ruling out Alternative Accounts - Critical Duration Study: Experiment 4
A remarkable feature of our results is that action video game experience leads to a decrease
in RTs while leaving accuracy unchanged. At first sight, this pattern could be consistent
with a reduction in non-decision time, for instance, through a decrease in motor latencies.
However, a change in non-decision time alone cannot capture the present data because it
predicts a constant difference between VGP and NVGP reaction times as coherence varies,
whereas we report larger reaction times differences at lower than higher signal strengths.
This was confirmed by our fitting procedure, which revealed that the sensitivity and the
bound height must be changed to capture our data, and that non-decision time is in fact not
significantly different across populations. Nonetheless, to confirm our key result, namely,
that the sensitivity to stimuli has increased between NVGPs and VGPs, we ran our motion
and auditory tasks in a condition in which stimuli were presented for fixed durations and the
subjects were instructed to watch/listen to the entire stimulus before reporting their decision.
We then plotted the accuracy of the response as a function of duration. Since this task does
not involve speeded reaction time, non-decision time is irrelevant in accounting for these
data (for details see Supplemental Section 2D).

As predicted by higher sensitivity in VGPs than in NVGPs, we found the rate with which
accuracy increases as a function of duration (the parameter β in Figure 4) to be higher in
VGPs [34,35]. Simulations of the drift diffusion model with fixed duration confirmed that a
change in sensitivity between VGPs and NVGPs is required to account for the data in Figure
4. We first ran a simulation in which the sensitivity for VGPs and NVGPs were set to be
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equal, while the bounds heights were independently adjusted for VGPs and NVGPs to
maximize the fit to the experimental data. This simulation revealed that it is impossible to
capture the faster rise of accuracy for VGPs, particularly for short durations (Supplementary
Information, Figures S4A and S4B). Next, to determine whether the change in sensitivity
estimated from Experiments 1 and 2 can account for the critical duration data, we ran
simulations in which the sensitivity ratios between VGP and NVGP were the same as
estimated from the reaction time experiments (E1 and E2). Under these conditions, the
model captures the results in Figure 4 well thus confirming that sensitivity must be higher in
VGPs compared to NVGPs (Supplementary Information, Figures S4C and S4D).

DISCUSSION
Action video-game experience results in more efficient use of sensory evidence.
Importantly, these improvements are not restricted to the visual modality, but appear in the
auditory modality as well. Moreover, 50 hours of action video-game training led to
qualitatively similar results in a group of NVGPs establishing a causative relationship
between action video-game experience and improved probabilistic inference.

To establish the role of improved statistical inference in VGP performance, full
chronometric and psychometric curves were measured. Using DDMs, increased sensitivity
(along with a compensatory decrease in bound) provided the best fit to the data, thus
confirming the hypothesis that video game play results in a more efficient use of the
evidence. That statistical inference is improved in gamers was further confirmed by
establishing enhanced performance in gamers in fixed duration paradigms. Note that these
results were far from being a foregone conclusion. While faster RTs in gamers were
expected, this could have resulted from a speed-accuracy tradeoff through a change in the
decision bound and/or faster motor execution through a change in the non-decision time,
without concomitant changes in sensitivity. In contrast, the six experiments presented
establish the role of increased sensitivity in gamers’ performance.

The neural model framework provides converging evidence for this claim as it captures
VGP behavior by enhancing the connection strength between the layer providing the
momentary sensory evidence and the layer integrating the evidence, leading to a more
efficient use of the evidence. Increasing the connection strength not only increases the
amount of information per unit of time transmitted to the output layer but also induces larger
fluctuations in the membrane potential of neurons, which in turn lead the network to reach
the bound faster. The net effect on accuracy is negligible since the output layer receives
more information per unit of time, but integrates information over shorter durations. As a
result, the percentage of correct responses at the bound remains stable. A novel contribution
from the neural model therefore is that it naturally accounts for one striking regularity of the
data with just one parameter change, and crucially this parameter controls the quality of the
statistical inference. One might wonder why the nervous system does not keep the
feedforward weights set to a maximum value since our results show that increasing the
feedforward weights lead to better performance. This might be in part because of the
metabolic cost of maintaining synapses with high efficacies. But, more importantly, it is not
the case that increasing the feedforward weights always increases performance. We have
found analytically that there is an optimal value of the feedforward weights, beyond which a
further increase worsens performance (Beck, J., Bejjanki, V., & Pouget, A., Fisher
information in stimulus correlated spiking networks, submitted). The optimal value of the
weights depends on the statistics of the spike trains in the sensory layer.

The fact that action gamers perform better probabilistic inference is appealing as it provides
a unified mechanism to explain why action video-game training improves participants’
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performance in seemingly widely different tasks such as contrast detection, visual search,
multiple object tracking, letter recognition with flankers and decision making [1,6,7,9,36].
However, such an improvement may also have much wider implications. Decision making
can be formalized as a probabilistic inference in which subjects must compute the posterior
distribution over choices given the evidence at each time step [37-39]. This iterative process
requires that the posterior distribution at the previous time step be multiplied by the
likelihood of the evidence at the present time step (see equation A1 in Supplementary
Information). To be done optimally (i.e., without loss of information) this process requires
both that the multiplication step be faithfully executed and also that the subjects have perfect
knowledge of the likelihood function, which is to say, perfect knowledge of the statistics of
their sensory input. It is highly unlikely that our subjects came to the task equipped to
perform optimally from the get-go. At the beginning of the experiment, our subjects were
naive to the visual and auditory stimuli. Their lack of knowledge of the statistics of our
particular stimuli would initially result in a poor estimate of the likelihood of the visual or
auditory evidence. Similarly, subjects were initially naïve to the inference task used in our
studies. Consequently, they had to learn the statistics of our particular stimulus set (more
accurate likelihood of the evidence) as well as the appropriate inference for this task
(performing the multiplication that permits the update over time of the posterior
distribution). One possibility is that VGPs perform better in those tasks because they learn a
better model of the stimuli used, and/or perform the inference more accurately [32], which
in turn leads to a better posterior distribution.

This proposal is closely related to a dominant idea in the field of perceptual learning by
which learning occurs through template matching by reweighing the connectivity between
sensory and decision stages [40-42]. Law and Gold [32,33] have recently documented how
the effective connectivity between MT and LIP changes as monkeys are trained and then
tested with motion stimuli similar to ours. Our results build on this work, but establish that
such a reweighing is not necessarily the product of extensive training with a specific class of
stimuli as is standard in the field of perceptual learning. Indeed, improvements after action
game training are not limited to playing the game itself, but generalize to new tasks.
Gamers, we propose, acquire the ability to dynamically retune the connectivity between the
momentary evidence layer and the layer integrating the evidence based on the statistics of
the very task they are performing.

This type of learning may be a consequence of the nature of action video game training.
Unlike standard learning paradigms, which have a highly specific solution, there is no such
specific solution in action video games as situations are rarely, if ever, repeated. Thus, the
only characteristics that can be learned are how to rapidly and accurately learn the statistics
on the fly and how to accumulate this evidence more efficiently. We can only speculate as to
what might be the neural mechanisms responsible from this remarkable transfer of learning,
as there are several possibilities. First, the neural circuits involved in evidence accumulation
might be shared across modalities, a plausible explanation given that the cortical areas that
have been implicated in evidence accumulation are often multimodal [43]. Second, these
areas are likely to be under the influence of shared fronto-parietal networks, providing a
common source for performance improvements, a view supported by the impact of working
memory training in cognitive improvements [44-46]. Finally, learning might involve the
global release of neuromodulators that improve probabilistic inferences across all circuits, as
has been proposed for instance for noradrenalin [47]. An important issue for future work
will be to determine the relative role of these mechanisms in fostering such a wide transfer
of learning.
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HIGHLIGHTS

• Action video game experience is shown to improve probabilistic inference

• Demonstrated using well-studied motion integration task and recent neural
model

• Generality of effect demonstrated with novel auditory decision making task

• Provides possible mechanism for wide transfer engendered by action game
training

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Visual Motion Direction Discrimination
A. Task. Subjects viewed a dynamic random dot motion display and were asked to indicate
the net direction of motion (left or right, here the correct answer would be right). On every
trial, some proportion of the dots moved coherently (top panel = 50% coherence, middle
panel = 25% coherence, bottom panel = 0% coherence) either to the left or to the right, while
the remaining dots were replotted randomly. By parametrically varying the number of
coherently moving dots from very few to many, full psychometric and chronometric curves
could be obtained.
B. Behavior. While VGPs and NVGPs demonstrated equivalent accuracy - p = .65, p-eta2 = .
01 (top panel), VGPs responded substantially faster than NVGPs - F(1,21) = 18.9, p < .001,
p-eta2 = .47 (bottom panel). Importantly, this factor interacted with motion coherence due to
a greater decrease in RTs at low than high coherence – F(6, 126) = 3.5, p < .001, p-eta2 = .
15.
In this and all other psychometric and chronometric curve figures, error bars correspond to
between-subject standard error.
C. Drift Diffusion Model (DDM). The accumulation of the noisy sensory evidence is
simulated by the diffusion of a particle upward or downward until a decision bound is
reached. DDM models generate psychometric and chronometric curves that are constrained
by three main variables [14]: (1) the rate at which information is accumulated over time, (2)
the height of the decision bound at which the system stops accumulating evidence and a
decision is made and, (3) the non-decision time, an additive amount of time that is common
to all tasks and reflects non-decision processes such as motor planning and execution. To
quantitatively assess the individual contribution of integration rate, decision bound and non-
decision time, RT and accuracy data were simultaneously fit to each subject’s data with the
proportional-rate diffusion model as in Palmer and colleagues[14]. The fits were good and
equivalent in the two groups (r2

VGP = .93, r2
NVGP = .90, p = .36). The rate of integration

was greater in the VGP than the NVGP group (t(21) = 2.6, p = .02, Cohen’s d = 1.13, top
panel), while the opposite result was observed for the decision bound (t(21) = 3.6, p = .002,
Cohen’s d = 1.57, middle panel). No difference was observed between the groups in non-
decision time (p > .7, Cohen’s d = 0.14 bottom panel), eliminating an additive, post-decision
process as a possible source of group differences. Data from individual subjects were fit
separately and error bars correspond to between-subject standard error.
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Figure 2. Neural Model – Motion Direction Discrimination
A. Neural Network Architecture. The network consists of two interconnected layers of
neurons with Gaussian tuning curves. In MT, the sensory layer, the tuning curves are for
direction of motion, while in LIP, the integration layer, the tuning curves are for saccade
direction, as a proxy in our case for a left/right decision. Note that we do not mean to say
that LIP is the only area involved in this process---the label is used mostly for convenience
(the same is true for the MT label in the input layer). The layers differ by their connectivity
and dynamics. The MT neurons send feed-forward connection to the LIP neurons. Each LIP
neuron receives a Gaussian pattern of weight centered on the MT neuron with the same
preferred direction. The LIP neurons also have lateral connections to implement short range
excitation and long range inhibition as well as a long time constant (1s) allowing them to
integrate their input. Each panel indicates a representative pattern of activity in terms of
spike count 200 ms into a trial for the sensory layer (MT, bottom panel) and the integration
layer (LIP, top panel).
B. Neural Model Fit. As with the DDM, the fits were good and equivalent for the two
groups. The neural model captures the change in performance from NVGP to VGP with a
55% increase in the conductance of the feed-forward connections between the sensory (MT)
and the integration (LIP) layers and, in contrast to the DDM, nearly no change in the bound
height (a 1% decrease, which is within the resolution of our numerical maximization
procedure; see Supplemental Section 2A). The conductance controls the amount of
information transmitted from the sensory layer to the integration layer per unit time, or the
strength of the feed-forward connections. It is important to note that this effect is not
analogous to a simple change in sensitivity in DDMs. While increasing the conductance
does increase the amount of information transmitted from the sensory to the integration layer
(which intuitively should increase accuracy), it also induces large fluctuations in the
membrane potential of the neurons. These fluctuations lead the network to reach the bound
faster, thus lowering the percentage of correct responses. These two effects cancel one
another over a wide range of parameters, allowing a single change in feed-forward strength
to alter reaction time while leaving the psychometric curve nearly unchanged. Model fit
corresponds to best fit to the mean data rather than the mean of individual fits.
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Figure 3. Auditory Tone Location Discrimination
A. Task. A pure tone embedded in a white noise mask was presented in one ear, while white
noise alone was presented in the other (both ears being normalized to the same mean
amplitude). The subjects’ task was to indicate with a button press the ear in which the tone
was present as quickly and accurately as possible. In a manner consistent with adjusting the
coherence level of the motion stimulus, the ratio of the amplitude of the target tone to the
white noise mask was manipulated in order to test performance across the range of possible
accuracy levels and reaction times (high amplitude - top panel, low amplitude- bottom
panel).
B. Behavior. As in Experiment 1, VGPs and NVGPs demonstrated equivalent accuracy - p
= .32, p-eta2 = .05 (top panel), VGPs responded substantially faster than the NVGPs -
F(1,21) = 20.6, p < .001, p-eta2 = .50 (bottom panel) and the RT difference between groups
was greater at lower signal-to-noise ratios (SNR) - F(7,147) = 5.2, p < .001, p-eta2 = .2
C. Drift Diffusion Model. The rate of integration was greater in the VGP than the NVGP
group - t(21) = 3.8, p = .001, Cohen’s d = 1.66 (top panel), while the opposite result was
observed for the decision bound - t(21) = 2.6, p = .02, Cohen’s d = 1.13 (middle panel). No
difference was observed between the groups in non-decision time - p > .05, Cohen’s d = .82
(bottom panel). Data from individual subject were fit separately and error bars correspond to
between-subject standard error.
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Figure 4. Critical Duration Experiment Results
Accuracy of the VGPs and NVGPs for two levels of visual coherence (Panel A) and two
levels of auditory SNRs ( Panel B) as a function of presentation duration (see Supplement
Information). Individual subject data were modeled as a simple exponential rise to an
asymptote (VGP = thinner lines; NVGP = thicker lines) using %Correct(t) = λ(1- e−β(t-δ))
+50%, where lambda (λ) is the level of asymptotic performance, beta (β) is the rate at which
accuracy grows as a function of time, and delta (δ) is the intercept or the time at which
accuracy rises above chance levels [35] . In both the DDM and the neural model, faster
accumulation of information predicts greater rate (β) value in the VGPs. This prediction was
confirmed (visual motion: VGP: 8.1 +/− 1.1, NVGP: 4.8 +/− 1.1 - F(1,21) = 4.6, p = .045, p-
eta2 = .19; auditory tone: VGP: 24.5 +/− 3.9, NVGP: 12.9 +/− 3.8 - F(1,21) = 4.5, p = .044,
p-eta2 = .18) demonstrating again a greater rate of sensory integration in VGP.
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