
Synaptic plasticity as Bayesian inference

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s41593-021-00809-5

Supplementary Math Note

Here we provide a complete derivation of the Bayesian and classical learning rules for linear,

cerebellar and reinforcement learning, and derive the simplified learning rules used in Eq. (4)

of the main text (Sec. S1), derive the relationship between variability and firing rate (Sec. S2),

provide details of the simulations (Sec. S3, which includes tables containing the parameters

used in the simulations), discuss how we chose the parameters of our model (Sec. S4), provide

a normative explanation for the Synaptic Sampling hypothesis (Sec. S5), and explore the

robustness of our model (Sec. S6).

S1 Derivation of the learning rules

The learning rules derived in Methods, Eq. (M.29), all depend on the likelihood of the data

given the target weights. Here we compute the likelihood for our three single neuron feedback

signals, and use those to write down the learning rules. The learning rules for the recurrent

neural network were derived in Methods, Sec. M2.3.

S1.1 Single neuron learning rules in terms of the log likelihood

Our starting point is the likelihood given in Methods, Eq. (M.31); the corresponding log

likelihood is

L(λtar,i) = log

∫
dflin P (f |flin)P (flin|xi, wi, λtar,i) (S.1)

where f is either flin, fcb or frl, all of which are deterministic functions of flin (see main text).

The second term inside the integral, P (flin|xi, wi, λtar,i), is given in Methods, Eq. (M.37).

Although that distribution is Gaussian in flin, its mean depends on eλtar,i , so as a function

of λtar,i it is somewhat unwieldy. We thus use statistical linearisation [1] to simplify it: we

approximate ±eλtar,i with a straight line, a(λtar,i −mi) + b, with a and b chosen to minimize

the expected mean squared error between ±eλtar,i and a(λtar,i−mi)+b, where the expectation

is with respect to the posterior on the previous time step, P (λtar,i|D(t− 1)). The solution

is especially simple, a = b = µi, which gives

±eλtar,i ≈ µi (1 + λtar,i −mi) (S.2)

(recall that µi is the expected value of wtar,i; see Methods, Eq. (M.13a)). Inserting this into

Methods, Eq. (M.37), we have

Llin(λtar,i) ≡ logP (flin|xi, wi, λtar,i) (S.3)

= −
(
flin − (µi − wi)xi − µixi (λtar,i −mi)

)2
2σ2

δ

+ const

1

where σ2
δ is given in Methods, Eq. (M.36). Note that equality in this expression (and many

that follow) is shorthand for equality under the assumption that P (flin|xi, wi, λtar,i) is given

by Eq. (S.3). Inserting Eq. (S.3) into the expression for the log likelihood, Eq. (S.1), we

arrive at

L(λtar,i) = log

∫
dflin P (f |flin) eLlin(λtar,i) + const. (S.4)

To write down an explicit expression for σ2
δ – which we will need below – we use the fact

that σ2
i is the variance of eλtar,i . Then, because the synapses are independent, σ2

δ can be

written as combination of the uncertainty about the target weight, wtar,i, and the variability

in the actual weight due to noise,

σ2
δ =

∑
j

(
σ2
j + Var [wj]

)
x2j + σ2

0 (S.5)

where, recall, σ2
0 is the combined variance of the noise in the membrane potential and the

feedback signal (Methods, Eq. (M.33)). What we use for the variance of wj depends on

whether we are sampling (for which Var [wi] = σ2
i), or using a variance proportional to the

mean, (for which Var [wi] = kµi); see Methods, Eq. (M.39).

Derivatives of the log likelihood, L(λtar,i) – the main ingredients in the learning rule,

Methods, Eq. (M.29) – can be expressed as derivatives of Llin; as is straightforward to show,

L′(λtar,i) = Elin [L′lin(λtar,i)] (S.6a)

L′′(λtar,i) = Elin [L′′lin(λtar,i)] + Varlin [L′lin(λtar,i)] (S.6b)

where the expectation and variance are with respect to the distribution

P (flin|f, xi, wi, λtar,i) =
P (f |flin) eLlin(λtar,i)∫
df ′linP (f |f ′lin) eLlin(λtar,i)

. (S.7)

(Recall that Llin(λtar,i) depends on flin; see Eq. (S.3).) Using Eq. (S.3) for Llin(λtar,i) the

derivatives are straightforward; combining those with Methods, Eq. (M.29) (for which we

need to evaluate the derivatives at λtar,i = mi), we have, after a small amount of algebra,

∆mi =

(
s2iµi
σ2
δ

)
xi
(
Elin [flin] + xi (wi − µi)

)
− mi −mprior

τ
(S.8a)

∆s2i = −
(
s4iµ

2
i

σ2
δ

)
x2i

(
σ2
δ − Varlin [flin]

σ2
δ

)
−

2
(
s2i − s2prior

)
τ

. (S.8b)

In the next section, we use these expressions to derive the explicit learning rules for our

three single neuron feedback signals, flin, fcb and frl. Note that because λtar,i is evaluated

at λtar,i = mi, the expression for Llin(λtar,i), Eq. (S.3), simplifies considerably.

2

λtar,i(t− 2) λtar,i(t− 1) λtar,i(t) λtar,i(t+ 1)

di(t− 2) di(t− 1) di(t) di(t+ 1)

mi(t− 2)

s2i (t− 2)

mi(t− 1)

s2i (t− 1)

mi(t)

s2i (t)

mi(t+ 1)

s2i (t+ 1)

Figure S.1: The graphical model describing the dependencies in our simulations. The log of

the target weight, λtar,i(t), evolves independently of all other variables, under the Ornstein-

Uhlenbeck (OU) process described in Methods, Eq. (M.11). The data, di(t), which consists of

the presynaptic input, xi(t), the actual weight, wi(t), and a signal that provides information

about the target weights (Methods, Eq. (M.18)), depends on both the target weight, λtar,i(t),

and on past inference, mi(t) and s2i (t). The mean and uncertainty at time t, mi(t) and s2i (t),

depend on the mean and uncertainty at the previous time step, mi(t− 1) and s2i (t− 1), and

also on past data, di(t− 1), through the learning rules (Methods, Eq. (M.29)).

In Fig. S.1 we show a dependency graph which describes how each variable is generated.

This is a graphical model — a compact method for describing dependencies among random

variables. This graphical model has the unusual feature that the results of inference at one

time step influence the data at subsequent time steps.

S1.2 Single neuron learning rules for our three feedback signals

To derive explicit learning rules for our three feedback signals, we just need to compute the

mean and variance of flin, and then insert those into Eq. (S.8). Those calculations, which

are mainly straightforward, follow.

Linear feedback, f = flin

For linear feedback, Elin [flin] = f and Varlin [flin] = 0. Thus, the update rules for the mean

and variance of the log weights, Eq. (S.8), become

∆mi =

(
s2iµi
σ2
δ

)
xi
(
flin + xi

(
wi − µi

))
− 1

τ
(mi −mprior) , (S.9a)

∆s2i = −
(
s4iµ

2
i

σ2
δ

)
x2i −

2

τ

(
s2i − s2prior

)
. (S.9b)

While these rules are easily updated on a digital computer, they are somewhat prob-

lematic for real synapses, since they are non-local: σ2
δ depends on all the synapses (see

3

Eq. (S.5)). To remedy this, we replace σ2
δ with a constant, σ2

δ0, the the average value of

σ2
δ under the prior (see Methods, Eq. (M.38)). In addition, as in Methods (see discussion

following Eq. (M.56)), we drop the term xi(wi − µi) in Eq. (S.9a), as it is small compared

to flin. The resulting learning rules, along with their classical counterparts, are given in

Methods, Eqs. (M.41) and (M.42).

Cerebellar feedback, f = fcb = sign(flin − θ)

For cerebellar feedback, P (fcb|flin) may be written

P (fcb|flin) = fcbΘ(flin − θ) + (1− fcb)Θ(θ − flin) (S.10)

where fcb can take on only the values 0 and 1 and, as usual, Θ is the Heaviside step function.

This expression tells us that if fcb = 1 then flin ≥ θ, and if fcb = 0 then flin < θ. Conse-

quently, P (flin|fcb, xi, wi,mi), Eq. (S.7), is a truncated Gaussian whose mean and variance

can be computed in terms of the cumulative normal function.

To derive the learning rules, it is easiest to compute L(λtar,i) directly from Eq. (S.4) and

then take derivatives with respect to λtar,i, rather than using Eq. (S.8). To this end, we

insert Eq. (S.10) into Eq. (S.4); then, using Eq. (S.3) for Llin(λtar,i), we have

L(λtar,i) = log

[∫
dflin

(
fcbΘ(flin − θ) + (1− fcb)Θ(θ − flin)

)
(S.11)

× exp
(
− (flin − (µi − wi)xi − µixi(λtar,i −mi))

2/2σ2
δ

)]
+ const.

The integral is straightforward, and we arrive at

L(λtar,i) = log

[
Φ

(
(2fcb − 1)

[
(µi − wi)xi + µixi(λtar,i −mi)

σ2
δ

− θ
])]

+ const (S.12)

where Φ is the cumulative normal function, defined in Methods, Eq. (M.44a). Taking the

first and second derivatives with respect to λtar,i and evaluating them at λtar,i = mi gives us

L′(mi) =
µixi
σδ

(2fcb − 1)
N (θ̃cb)

Φ(θ̃cb)
(S.13a)

L′′(mi) = −µ
2
ix

2
i

σ2
δ

N (θ̃cb)

Φ(θ̃cb)

[
θ̃cb +

N (θ̃cb)

Φ(θ̃cb)

]
(S.13b)

where θ̃cb is given by

θ̃cb ≡ (2fcb − 1)
(µi − wi)xi − θ

σδ
(S.14)

4

and N is the standard normal function (Methods, Eq. (M.44b)). Inserting these expressions

into Methods, Eq (M.29), leads to

∆mi =

(
s2iµi
σ2
δ

)
xiσδ(2fcb − 1)

N (θ̃cb)

Φ
(
θ̃cb
) − 1

τ
(mi −mprior) (S.15a)

∆s2i = −
(
s4iµ

2
i

σ2
δ

)
x2i
N (θ̃cb)

Φ
(
θ̃cb
) [θ̃cb +

N
(
θ̃cb
)

Φ
(
θ̃cb
)]− 2

τ
(s2i − s2prior) . (S.15b)

As with linear feedback, to ensure that the learning rule is local, we replace σ2
δ with σ2

δ0.

In addition, we drop the contribution of (µi−wi)xi to θ̃cb (Eq. (S.14)). That follows from the

same reasoning we used for the linear feedback: θ is on the order of σδ, which is much larger

than (µi −wi)xi. We thus define θcb to be θ̃cb but without the term (µi −wi)xi and with σδ

replaced with σδ0, The resulting learning rules, along with their classical counterparts, are

given in Methods, Eqs. (M.43) and (M.46).

Reinforcement learning, f = frl = −|flin|

For reinforcement learning,

P (frl|flin) = δ (frl + |flin|) . (S.16)

Combining this with Eq. (S.3) for L(λtar,i) and using Eq. (S.7), we have

P (flin|frl, xi, wi,mi) ∝ δ(frl + |flin|) exp
(
flin(µi − wi)xi/σ2

δ

)
(S.17)

where we evaluated λtar,i at λtar,i = mi and used the fact that, because of the delta-function,

f 2
lin = f 2

rl. Consequently, the expectations needed for the update rule, Eq. (S.8), are

E [flin|frl, xi, wi,mi] = frl tanh
(
(µi − wi)xifrl/σ2

δ

)
(S.18a)

Var [flin|frl, xi, wi,mi] =
f 2
rl

cosh2
(
(µi − wi)xifrl/σ2

δ

) . (S.18b)

Inserting these into Eq. (S.8) yields

∆mi =

(
s2iµi
σ2
δ

)
xi
(
frl tanh

(
(µi − wi)xifrl/σ2

δ

)
− (µi − wi)xi

)
− 1

τ
(mi −mprior) (S.19a)

∆s2i = −
(
s4iµ

2
i

σ2
δ

)
x2i

(
1− f 2

rl/σ
2
δ

cosh2
(
(µi − wi)xifrl/σ2

δ

))− 2

τ
(s2i − s2prior) . (S.19b)

Not surprisingly, for reinforcement learning the synapse must explore: if it sets the weight,

wi, to µi (the mean value of wtar,i), mi will relax to the prior. Sampling in this case is critical.

Because frl and σδ are both large, we can make the approximations tanh z ≈ z and

cosh2 z ≈ 1, yielding simplified learning rules. Those learning rules, along with their clas-

sical counterparts (for which do not make the approximation tanh z ≈ z, as it leads to an

instability), are given in Methods, Eqs. (M.47) and (M.48).

5

S1.3 Simplifying the single neuron learning rules

In our simulations we use the update rules derived above (and given explicitly in Methods,

Sec. M2.2). However, for illustrative purposes, in the main text, Eq. (4), we gave simplified

learning rules relevant to linear feedback, f = flin = δ + ξδ. Here we derive those simplified

rules. The derivation involves rather severe approximations; we make them only to illustrate

the essence of the learning rules in the simplest possible setting.

For this analysis we consider the small noise regime, s2i � 1. In that regime, Methods,

Eq. (M.13b) becomes

σ2
i ≈ µ2

i s
2
i . (S.20)

Combining this with Methods, Eq. (M.13a), we have

∆µi = µi
(
∆mi + 1

2
∆s2i

)
(S.21a)

∆σ2
i = 2µ2

i s
2
i

(
∆mi + 1

2
∆s2i

)
+ µ2

i∆s
2
i . (S.21b)

Because ∆s2i is a factor of s2i smaller than ∆mi (see Eq. (S.9)), our small noise approximation

lets us drop the term proportional to ∆s2i in the first expression and the term proportional

to s2i in the second expression. Consequently, the update rules for µi and σ2
i become

∆µi ≈ µi∆mi (S.22a)

∆σ2
i ≈ µ2

i∆s
2
i . (S.22b)

Inserting these into Eq. (S.9) and using the approximation given in Eq. (S.20), we arrive at

∆µi ≈
σ2
i

σ2
δ

xiflin −
µi
τ

(mi −mprior) (S.23a)

∆σ2
i ≈ −

σ4
i

σ2
δ

x2i −
2µ2

i

τ

(
s2i − s2prior

)
. (S.23b)

As in Methods, we neglected the term xi(wi − µi) because it is small compared to flin (see

comments following Eq. (M.56)).

To show that the contribution from the prior is approximately the form given in the main

text, Eq. (4a), we use Methods, Eq. (M.13a) to write

µi − µprior = µi

(
1− e−(mi−mprior)−(s2i−s2prior)/2

)
. (S.24)

Taylor expanding the exponent and neglecting both s2i and s2prior, we arrive at

µi − µprior ≈ µi (mi −mprior) . (S.25)

6

0.005 0.01 0.05

norm. variability, 〈σ2
i /µi 〉t

0.001

0.01

n
or

m
.

le
ar

n
.

ra
te

,
〈|∆

µ
i|/
µ

i〉 t
a

Linear

Theory: slope 1
Simulation

0.005 0.01 0.05

norm. variability, 〈σ2
i /µi 〉t

0.001

0.01

b
Cerebellar

0.005 0.01 0.05

norm. variability, 〈σ2
i /µi 〉t

0.001

0.002

0.003

c
RL

Figure S.2: Time average of normalized learning rate in our simulations, 〈|∆µi/µi|〉t, versus

normalized variability, 〈σ2
i /µi〉t. As predicted in Sec. S1.3, |∆µi/µi| ∝ σ2

i /µi, so the slope

is 1 on a log-log plot. a. Linear feedback, flin = δ + ξδ. b. Cerebellar learning, fcb =

Θ (δ + ξδ − θ). c. Reinforcement learning, frl = −|δ+ξδ|. Parameters from Table 1 (Sec. S3);

wi was sampled from the posterior.

Similarly, we use our standard approximation for the variance,

σ2
i − σ2

prior ≈ s2iµ
2
i − s2priorµ2

prior ≈ µ2
i (s

2
i − s2prior) (S.26)

where the last expression follows, approximately, because E [µi] = µprior.

The learning rules given in Eq. (S.23) imply that the change in the mean weight, ∆µi,

is proportional to the variance, σ2
i . Thus, the relative change in the mean weight, ∆µi/µi,

is proportional to the variance divided by the mean, which is the normalized uncertainty.

Under sampling, the latter should be equal to the observed normalized uncertainty. This is

a very general feature: under the approximations given in Eq. (S.22), for all of our learning

rules (Eqs. (M.41), (M.43) and (M.47)), ∆µi/µi ∝ σ2
i /µi. We see this in our simulations; see

Fig. S.2.

7

S2 The relationship between variability and firing rate

To find the relationship between the mean and uncertainty, µi and σ2
i , and the firing rate,

νi, we consider the steady state behavior of Eq. (S.8b), where 〈∆s2i 〉 = 0,

0 ≈ xis
4
iµ

2
i

σ2
δ

σ2
δ − Var [flin]

σ2
δ

+
2

τ

(
s2i − s2prior

)
. (S.27)

Replacing xi by its average, νi∆t, making the definition

χi ≡
σ2
δ − Var [flin]

σ2
δ

, (S.28)

solving for s2i , and then replacing s2i using the approximate expression s2i ≈ σ2
i /µ

2
i (Eq. (S.20)),

we arrive at

σ2
i

µi
≈
(
2µ2

i τνi∆tχis
2
prior/σ

2
δ + 1

)1/2 − 1

µiτνi∆tχi/σ2
δ

. (S.29)

In the limit that the firing rate is sufficiently large,

µ2
i τνi∆tχis

2
prior

σ2
δ

� 1 , (S.30)

Eq. (S.29) simplifies considerably,

σ2
i

µi
≈ σδ√

νi∆t

(
2s2prior
τχi

)1/2

. (S.31)

This last expression tells us that for sufficiently large presynaptic firing rate, the normal-

ized variability scales as ν−1/2. However, for small firing rate there are nontrivial corrections.

Using Eq. (S.29), and noting that µi is independent of the presynaptic firing rate, νi, our

analysis predicts that the normalized variability should depend on presynaptic firing rate as

σ2
i

µi
= a

√
νi/ν0 + 1− 1

νi
. (S.32)

In Fig. S.3 (top row) we plot σ2
i /µi versus firing rate on a log-log plot, along with the

prediction given in Eq. (S.32) (with parameters a and ν0 chosen to minimized the mean

squared error between the data and the prediction). The fit is remarkably good, especially

given the rather gross approximations that we made. Note that the correction to the 1/
√
ν

scaling is most pronounced for reinforcement learning. In hindsight, that’s expected: χ is

the difference between the variance of δ and the variance of flin; for reinforcement learning,

the goal of the learning rule is to make these two quantities as close as possible (see Methods,

Eq. (M.47), and note that f 2
rl = f 2

lin), so χ is small; and small χ implies large ν0, and thus a

large correction.

8

0.001

0.01

0.1

n
or

m
.

va
ri

ab
ili

ty
,
〈σ

2 i
/
µ

i〉 t
a

Linear

Fit
Simulation

0.001

0.01

0.1

b
Cerebellar

0.02

0.05

c
RL

10−1 100 101

input firing rate, νi

0.001

0.01

0.1

n
or

m
.

le
ar

n
.

ra
te

,
〈|∆

µ
i|/
µ

i〉 t

d
Linear

10−1 100 101

input firing rate, νi

0.001

0.01

0.1

e
Cerebellar

10−1 100 101

input firing rate, νi

0.001

0.005

f
RL

Figure S.3: Time average of normalized variability in our simulations, 〈σ2
i /µi〉t (top row),

and normalized learning rate, 〈|∆µi/µi|〉t (bottom row), versus presynaptic firing rate, νi.

Red lines are best fit (minimum mean squared error) to Eq. (S.32). As predicted in that

equation, both have a slope of −1 for sufficiently high firing rate. a and d. Linear feedback,

f = δ + ξδ. b and e. Cerebellar learning, f = Θ (δ + ξδ − θ). c and f. Reinforcement

learning, f = −|δ + ξδ|. Parameters from Table 1 (Sec. S3); wi was sampled from the

posterior.

Because the normalized learning rate, |∆µi/µi|, is proportional to σ2
i /µi (see Fig. S.2),

we expect |∆µi/µi| to also be well fit by Eq. (S.32), with approximately the same values of

a and ν0 as in the top row of Fig. S.3. We do indeed see this in our simulations (Fig. S.3,

bottom row).

9

Parameter Value Basis

mprior -0.669 Matched to data from [2] (Sec. S4.1)

s2prior 0.863 Matched to data from [2] (Sec. S4.1)

n (linear, cerebellar) 1000

Number of synapses; offers a good trade-off be-

tween biological realism [3] and computational

tractability

n (reinforcement) 100
Number of synapses; uses a reduced number be-

cause of the difficulty of the learning problem

τ (linear, cerebellar) 105 corresponds to 1,000 s (Sec. S4.3)

τ (reinforcement) 5× 105 corresponds to 5,000 s (Sec. S4.3)

∆t 10 ms
Time step; set to the typical membrane time con-

stant [4]

σ0 2 mV
Standard deviation of combined membrane poten-

tial and feedback signal noise.

k 0.0877
Normalized variability, matched to data [2]

(Sec. S4.2)

θ -4.2

Used for the cerebellar feedback; chosen so that fcb

is 1 about every 100 time steps, corresponding to

a feedback signal of about 1 Hz.

Table 1: Parameters used in the single neuron simulations (Figs. 2 and 3, main text).

S3 Simulations details

Our simulations were relatively straightforward: either we iterated the single neuron update

rules (Eqs. (M.41), (M.43) or (M.47) for the Bayesian rules and Eqs. (M.42), (M.46) or

(M.48) for the classical ones) or solved the differential equation for the recurrent neural

network (Methods, Eq. (M.60) for the Bayesian rules or the same equation but with ηi set

to a constant, independent of time or synapse, for the classical ones).

For Figs. 2 and 3 (single neuron update rules; see Table 1), we did not sample for the

linear and cerebellar rules, and we used sampling with variance proportional to the mean

for the reinforcement learning rule, as described in Methods, Sec. M1.2. For both figures,

we ran the simulations for 500 OU time constants. In Fig. 2, we plotted the last three OU

time constants. For Fig. 3, we used the first two OU time constants for burn-in and then

computed the mean squared error using the remaining 498 OU time constants.

The parameters of the recurrent neural network (Methods, Eq. (M.49)) are given in Table

2. Those parameters mainly describe the weights and target functions, which were chosen

10

as follows. The recurrent weights were sampled randomly as in [5],

Jij = ξijJ
0
ij (S.33)

where ξij is a Bernoulli random variable with probability p, and J0
ij is Gaussian and inde-

pendent,

ξij ∼ Bernoulli(p) (S.34a)

J0
ij ∼ N

(
0,
g2

pN

)
(S.34b)

(recall that N is the number of neurons in the network). The feedback weights, Ai, were

also random, and chosen to be uniform between −1 and 1. The readout weights, wi, were

initialized to be Gaussian and independent,

wi ∼ N
(

0,
1

N

)
. (S.35)

The inputs, Ii, were transient pulses of 10 ms duration with amplitude sampled from a

uniform distribution between −1 and 1. The initial conditions, xi(0), were obtained by first

running the network with no input (Ii = 0) for 2000 ms. This allowed the network to relax

to a strange attractor determined by its intrinsic dynamics.

The target functions, Vtar(t), were sampled randomly from a Gaussian process with pe-

riodic kernel

k(t, t′) = exp

[
−2 sin2

(
π|t− t′|
τtarget

)]
. (S.36)

This kernel ensures that the sampled functions are periodic with period τtarget.

We sampled 20 random target functions and 20 random recurrent networks as indicated

above. For each network/target pair, we continually trained for 6000 periods of the target

function (we show only the first 1000 in Fig. 4 because the Bayesian learning rules converged

by then). Every 100 periods we stopped training, ran the network for 50 periods under the

current readout weights (without feedback), and computed the mean squared error (MSE)

between the readout and the true target function.

All figures show median MSE over all 400 network/target pairs. Error bars are boot-

strapped confidence intervals for the median, using the percentile bootstrap method. Median

was used rather than mean because there were always a few pairs in which learning failed.

In these cases, the MSE remained very high, thus distorting the mean MSE in a way that

did not allow for an illustrative comparison.

11

Parameter Value Basis

N 500 Number of neurons in the network

g 1.5
Scale factor for weights; this put the network in a

mildly chaotic regime

p 0.1 Connection probability

τm 10 ms Time constant of the vi

τtarget 500 ms Period of sampled functions

Table 2: Parameters used in the recurrent neural network simulations (Fig. 4)

S4 Choosing parameters

Below we summarize how we chose parameters for the single neuron update rules.

S4.1 Estimate of priors from data

To determine the prior mean and variance of the log weights, mprior and s2prior, we used

connectivity data from Ref. [2] (http://plasticity.muhc.mcgill.ca/DataPage/DataPage.html).

The data is the mean and variance (over trials) of synaptic strength from paired recordings

in rat visual cortex in vitro. To translate these to the mean and variance of the log-normal,

we inverted Methods, Eq. (M.13),

mi = log µi −
1

2
log

(
1 +

σ2
i

µ2
i

)
(S.37)

where µi and σ2
i are the mean and variance of the ith connection strength. The mean and

variance of the prior are then given by the empirical mean and variance of the connections

strengths,

mprior =
1

M

M∑
i=1

mi (S.38a)

s2prior =
1

M

M∑
i=1

(mi −mprior)
2 (S.38b)

where M (=852) is the number of connection strengths in the dataset. We are assuming

that µi and σ2
i are good estimates of the true mean and variance of the log weights, and that

an average over neurons is a good proxy for an average over time.

S4.2 Variance versus mean: computing k

As discussed in Methods, Sec. M1.2, to make comparison with the classical reinforcement

learning rule, we sample from the weights (see Eq. (M.14)). To do that, we assume that

12

0 2 4 6 8 10 12

variance (mV2)

0.0

0.5

1.0

1.5

2.0

2.5

m
ea

n
(m

V
)

Figure S.4: Variance versus mean, using data (blue dots) taken from Ref. [2]. A least squares

fit to the data gives σ2 = kµ with k = 0.0877 (black line).

the variance is linear in the mean, and compute the slope, k, using, as above, data from

Ref. [2] (http://plasticity.muhc.mcgill.ca/DataPage/DataPage.html). A plot of the variance,

σ2, versus the mean, µ, is given in Fig. S.4, along with the best fitting line, σ2 = 0.0877µ.

S4.3 Timescale for weight drift

As shown in Sec. S2, the normalized variability, σ2
i /µi, is related to the timescale for weight

drift, τ . To get a very approximate estimate for τ , we replace all quantities in Eq. (S.31) by

an average over neurons, for which we use an overline. Doing this, and solving that for τ ,

we have

τ ≈ σ2
δ

ν∆t

2s2prior
χ

1(
σ2/µ

)2 . (S.39)

To determine the size of σ2
δ , we use Methods, Eq. (M.38), assume sampling (Eq. (M.39)) and

small νi∆t, and ignore σ2
0; that gives us

σ2
δ ≈ 2nσ2

priorν∆t (S.40)

where, recall, n is the number of presynaptic neurons. For the remaining parameters we use

σ2/µ = k = 0.0877 and σ2
prior = m2

prior[e
s2prior − 1] (Methods, Eq. (M.13)). The latter quantity

is approximately equal to 0.61 (Table 1), so Eq. (S.39) becomes

τ ≈ 270n

χ
. (S.41)

For linear and cerebellar learning, n = 1000 and χ is O(1); consequently, τ should be on the

order of 3 × 105; we used 105 in our simulations. (Recall that τ is measured in timesteps,

13

which are 10 ms, so τ = 105 corresponds to 1000 s.) For reinforcement learning, we reduce

n by a factor of 10, to 100 (because learning is hard). However, as discussed in Sec. S2,

χ is small; we therefore used τ = 5 × 105. While the approximations are somewhat crude,

in simulations (Fig. S.3, top row) the normalized variability is indeed near its experimental

value, 0.0877.

S4.4 Firing rate data used for Fig. 5

To obtain the p-value for Fig. 5, we performed standard linear regression: we regressed

log(variance/mean) against log(firing rate) and log(mean); the former to test our prediction

and the latter to eliminate the PSP amplitude as a possible confound. To estimate the firing

rate, we took the mean of a FOOPSI-based firing rate estimate [6] supplied to us by the

authors of [7]. This estimate is proportional to the true firing rate [8]; because our predicted

relationship was linear on a log-log plot, the constant of proportionality plays no role. Using

this approach, the best fit line was statistically significantly different from zero (p < 0.003,

t-test, n = 135), and its slope, −0.62 was not significantly different from our prediction,

−1/2 (p = 0.57, t-test).

S5 Synaptic Sampling

Here we provide an expanded normative argument for Synaptic Sampling. The argument

starts with the observation that to select the correct action, knowing the uncertainty in task

relevant quantities is critical [9]. For instance, to decide whether you can jump over a puddle

without getting your feet wet, you need more than just an estimate of mean landing location;

you also need an estimate of uncertainty (Fig. S.5). Uncertainty about the landing location

comes from two sources: uncertainty about the current state of the world and uncertainty

about the target weights (i.e., the weights that would give the best estimate of landing

location). To see how the brain might compute uncertainty in landing location, consider a

simplified scenario in which we use xtar to denote the best possible spike-based representation

of the true state of the external world. The neuron’s estimate of landing location is a function

of the neuron’s output, V , so the optimal estimate of landing location is given by the target

output,

Vtar = wtar · xtar. (S.42)

The assumption that the synapse combines wtar and xtar via a dot product is for simplicity

only; the cell could use any nonlinear relationship and our arguments would hold.

Of course, the brain knows neither the target weights, wtar, nor the true state of the

external world, xtar. The brain could compute a “best guess” of xtar, and the neuron could

14

P(landing location)

P(wet)

P(dry)

Puddle

Figure S.5: A schematic diagram of a stick-person jumping over a puddle. The probability

of landing in the puddle, P (wet), depends not only on the mean estimate, but also on the

uncertainty.

use a “best guess” of wtar, resulting in

Vbest guess = wbest guess · xbest guess . (S.43)

However, this scheme is unable to give an estimate of uncertainty — so offers little guidance

as to whether or not to jump over the puddle.

To get an estimate of uncertainty, it is necessary to account for uncertainty both in the

state of the world, xtar, and in the relationship between the state of the world and jump

distance, parameterized by wtar. As information about xtar comes from sensory data, and in-

formation about wtar comes from training data (e.g., from past jumps), we can represent our

(probabilistic) knowledge about these quantities as two distributions, P (xtar|Sensory Data)

and P (wtar|Training Data). To combine these distributions into a distribution over Vtar, we

need to integrate over all possible settings of xtar and wtar,

P (Vtar|Sensory Data,Training Data) = (S.44)∫
dwtar dxtar P (Vtar|xtar,wtar)P (xtar|Sensory Data)P (wtar|Training Data) .

It is difficult for neurons to compute this integral, as it is high dimensional and rarely

has a closed form expression. However, by combining neural and synaptic sampling, it is

possible for neural circuits to evaluate the integral via sampling; that is, by drawing samples,

V , from the distribution,

V ∼ P (Vtar|Sensory Data,Training Data) . (S.45)

To do that, we simply need to draw neural activity, x, from its distribution given sensory

data,

x ∼ P (xtar|Sensory Data) (S.46)

15

(this is known as the neural sampling hypothesis [10, 11, 12]), and draw synaptic weights,

w, from their distribution given training data,

w ∼ P (wtar|Training Data) (S.47)

(this is our Synaptic Sampling hypothesis). A sample of landing location is given by combin-

ing the sampled neural activity with the sampled weights, which could be done by a single

neuron,

V = w · x . (S.48)

Thus, simply by drawing repeated samples, a single neuron can estimate uncertainty about

V , and thus about landing location.

Our argument appears to assume that the brain uses the output of a single neuron to

make predictions. This is not too implausible — the cerebellum does contain a large number

of Purkinje cells [13] that are believed to use supervised learning to, among other things,

make predictions. However, it is certainly possible that such a computation is performed by

a large multi-layer network. As long as the network is effectively feedforward, we can still,

by the logic described above, estimate its uncertainty by combining synaptic sampling with

neural sampling.

S6 Robustness

Our Bayesian update rules depend on a number of parameters, and in our simulations so

far we set them to their theoretically optimal values. However, the brain can’t do this;

there will always be some model mismatch. Here we explore the robustness of Bayesian

plasticity to this mismatch. For linear, cerebellar and reinforcement learning, there are three

main parameters: σ2
0, the combined noise in the feedback signal and membrane potential, and

mprior and s2prior, the mean and variance that govern the random drift in synaptic weights (see

Eqs. (M.41), (M.43) and (M.47)). For these parameters, we examine performance when they

change by a factor of 2 in either direction relative to their nominal values (with, of course,

the update rules assuming they have not changed). The results are shown in Figs. S.6a-c.

The linear and cerebellar rules were robust with respect to changes in all these parameters.

Sensitivity to mprior was highest, although ±50% changes in that parameter had little effect

on the mean squared error. For the other two parameters, the mean squared error changed

very little over the range tested. The reinforcement learning rule was more sensitive to

parameters, especially σ2
0, where small decreases led to an instability that greatly increased

the mean squared error. However, increases had little effect. Overall, the Bayesian learning

rule is relatively robust. It certainly does not require fine tuning.

16

0.5 1 2

prior mean, mprior/mprior,theory

0.0

0.2

M
S

E

a
mprior,theory = −0.669

Linear
Cerebellar
RL
Theory

0.5 1 2

prior variance, s2
prior/s2

prior,theory

0.00

0.05

M
S

E

b
s2

prior,theory = 0.07448

Linear
Cerebellar
RL
Theory

0.5 1 2

membrane noise, σ0/σ0,theory

0.0

0.1

0.2

M
S

E

c
σ0,theory = 2

Linear
Cerebellar
RL
Theory

OU jump OU jump OU jump

0.00

0.05

M
S

E

d
Robustness: prior dynamics

Linear
Cerebellar
RL

Figure S.6: Robustness with respect to parameters for the single neuron learning rules.

In panels a-c, quantities with a subscript “theory” are the optimal values as predicted by

our theoretical model. a. mprior; mean of the Ornstein-Uhlenbeck (OU) process (Methods,

Eq. (M.11)). b. s2prior; variance of the OU process (Eq. (M.11)). c. σ0; standard devia-

tion of the combined noise in the membrane potential and the feedback signal (Methods,

Eq. (M.33)). d. Effect of using jump, rather than Gaussian, noise in the weight drift. For

“OU”, ξtar,i ∼ N (0, 1); for “jump”, ξtar,i is +1 or −1, with equal probability.

We also looked at the effect of binary, rather than Gaussian, drift. That is, in Methods,

Eq. (M.11), rather than drawing ξtar,i from a Gaussian distribution, we used ξtar,i = ±1, with

+1 and −1 occurring with equal probability. As can be seen in Fig. S.6d, the results were

virtually identical to the Gaussian case. Given the small time step relative to the OU time

17

10−4 10−3 10−2 10−1

initial learning rate, ηi (0)

0.00

0.05

0.10
M

S
E

a

1.00 1.25 1.50 1.75 2.00

recurrent weight strength g

0.001

0.01

0.1

1.0b

Bayes
classical
after 500 training trials
after 1000 training trials

Figure S.7: Robustness with respect to parameters for the recurrent neural network. a. Mean

squared error versus the initial learning rate, ηi(0). The value used in our simulations was

ηi(0) = 10−2. b. Mean squared error of the Bayesian and classical learning rule as a function

of g, the parameter that controls how chaotic the network is (see Eq. (S.34b); we used g = 1.5

in our simulations). In both panels we report median over n = 400 network/target pairs,

and error bars are 95% confidence intervals computed using the percentile bootstrap.

constant, this is not surprising.

For the recurrent neural network, the main parameter in the update rule is the initial

learning rate, ηi(0) (Methods, see Eq. (M.60)). Performance is extremely insensitive to

this parameter: it can change by a factor of 30 without affecting the mean squared error

(Fig. S.7a). We also checked sensitivity to the parameter g, which determines how chaotic

the network is (see Eq. (S.34b)). For values of g that yielded low mean squared errors (1.25

and 1.5; we used 1.5 in our simulations), the Bayesian learning rules remained about an

order of magnitude better than the classical ones (Fig. S.7b). Thus, Bayesian learning in the

recurrent neural network is extremely robust.

18

References

[1] A. Gelb. Applied Optimal Estimation. MIT Press, 1974.

[2] S. Song et al. “Highly nonrandom features of synaptic connectivity in local cortical

circuits”. In: PLoS Biology 3.3 (2005), e68.

[3] T. Binzegger, R. Douglas, and K. Martin. “A quantitative map of the circuit of cat

primary visual cortex”. In: J. Neurosci. 24 (2004), pp. 8441–8453.

[4] S. J. Tripathy et al. “Brain-wide analysis of electrophysiological diversity yields novel

categorization of mammalian neuron types”. In: Journal of Neurophysiology 113.10

(2015), pp. 3474–3489.

[5] B. DePasquale et al. “Full-FORCE: A Target-Based Method for Training Recurrent

Networks”. In: PLoS ONE 13.2 (2018), e0191527.

[6] J. T. Vogelstein et al. “Fast nonnegative deconvolution for spike train inference from

population calcium imaging”. In: Journal of Neurophysiology 104.6 (2010), pp. 3691–

3704.

[7] H. Ko et al. “The emergence of functional microcircuits in visual cortex”. In: Nature

496.7443 (2013), pp. 96–100.

[8] A. M. Packer et al. “Simultaneous all-optical manipulation and recording of neural cir-

cuit activity with cellular resolution in vivo”. In: Nature Methods 12.2 (2015), pp. 140–

146.

[9] M. O. Ernst and M. S. Banks. “Humans integrate visual and haptic information in a

statistically optimal fashion”. In: Nature 415.6870 (2002), pp. 429–433.

[10] P. O. Hoyer and A. Hyvarinen. “Interpreting neural response variability as Monte Carlo

sampling of the posterior”. In: Advances in Neural Information Processing Systems.

2003, pp. 293–300.

[11] J. Fiser et al. “Statistically optimal perception and learning: from behavior to neural

representations”. In: Trends in Cognitive Sciences 14.3 (2010), pp. 119–130.

[12] P. Berkes et al. “Spontaneous Cortical Activity Reveals Hallmarks of an Optimal

Internal Model of the Environment”. In: Science 331.6013 (2011), pp. 83–87.

[13] P. Dean et al. “The cerebellar microcircuit as an adaptive filter: experimental and

computational evidence”. In: Nature Reviews Neuroscience 11.1 (2010), pp. 30–43.

19

