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Optimal Sensorimotor Integration in Recurrent Cortical
Networks: A Neural Implementation of Kalman Filters
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Several behavioral experiments suggest that the nervous system uses an internal model of the dynamics of the body to implement a close
approximation to a Kalman filter. This filter can be used to perform a variety of tasks nearly optimally, such as predicting the sensory
consequence of motor action, integrating sensory and body posture signals, and computing motor commands. We propose that the
neural implementation of this Kalman filter involves recurrent basis function networks with attractor dynamics, a kind of architecture
that can be readily mapped onto cortical circuits. In such networks, the tuning curves to variables such as arm velocity are remarkably
noninvariant in the sense that the amplitude and width of the tuning curves of a given neuron can vary greatly depending on other
variables such as the position of the arm or the reliability of the sensory feedback. This property could explain some puzzling properties
of tuning curves in the motor and premotor cortex, and it leads to several new predictions.
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Introduction

Fast and accurate behavior requires the integration of multiple
sources of sensory and motor signals. For example, to hit a tennis
ball, a player must take into account the position and motion of
the ball, as well as his own position and movements. Estimating
these variables in real time is difficult because of the presence of
noise in the sensory receptors, motor effectors (Schmidt et al.,
1979; Slifkin and Newell, 1999; Jones et al., 2002), and cortical
circuits (Tolhurst et al., 1982; Vogels et al., 1989; Shadlen and
Newsome, 1994; Riehle et al., 1997; Lee et al., 1998). This noise
could be filtered out through simple averaging, either over time
or space, but several factors make this averaging difficult.

The first problem comes from the format of the neural code.
Sensory and motor variables in the cortex are often encoded with
population codes, i.e., noisy hills of activity generated by a large
number of neurons with overlapping bell-shaped tuning curves
(Georgopoulos et al., 1982; Lee et al., 1988; Zohary, 1992) (see
Fig. 1). Averaging the neural responses over the entire population
would recover a number unrelated to the direction of motion.
Clearly, the position of the hill on the neuronal array conveys
some information about direction, but, as we will see, more com-
plex decoding techniques are required to recover this
information.

A second problem with averaging, and in particular with tem-
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poral averaging, is that sensory and motor variables tend to
change rapidly over time in realistic situations. For example, hu-
mans move their eyes three to four times per second, limiting the
effective temporal averaging to a maximum of ~250-350 ms
(Ballard et al., 2000). This does not entail that temporal averaging
is impossible. If the amplitude and direction of the eye movement
is known, the image changes in a predictable way. Therefore, it is
possible to average, or integrate, information across saccades, but
this requires an internal model of how sensory inputs are modi-
fied as a result of a motor action. Recent psychophysics experi-
ments strongly suggest that such internal models are used by the
nervous system for estimating sensory variables and for optimal
motor control (Wolpert et al., 1995a; Kawato, 1999; Desmurget
and Grafton, 2000; Mehta and Schaal, 2002; Todorov, 2004;
Saunders and Kanill, 2005), but very little is known about the
neural implementation of these internal models.

When the internal model is linear and the noise is Gaussian,
the optimal strategy for combining sensory inputs and the pre-
dictions of the internal model is known as a Kalman filter. Kal-
man filters can be used for optimal motor control and are also at
the heart of recent models of decision making (Gold and Shadlen,
2003; Dorris and Glimcher, 2004; Sugrue et al., 2004) and classi-
cal conditioning (Dayan and Balleine, 2002). This study shows
how a particular class of neural network, known as recurrent
basis function networks, can implement the internal model and
the Kalman filter. We start by demonstrating the optimality of
our approach on a simple problem: locating the position of an
object while moving the eyes. We then move on to a problem
requiring a complex internal model, namely, locating the posi-
tion of one’s arm. We end by showing that our model behaves in
a way consistent with what has been observed with human sub-
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Figure 1.  Optimal estimation of noisy population codes by recurrent networks. A, Tuning

curves of a model population of medial temporal (MT) neurons to direction of motion. B, Aver-
age activity of MT cells as a function of their preferred direction when presented with a motion
x = 0°. , Population activity (spike counts) on a given trial. Spike counts are drawn from a
Poisson distribution with rates specified by the mean activities shown in B. D, Stable state of a
line-attractor recurrent network when initialized with the activity pattern in C. With appropri-
ate tuning of the lateral connection, the position of the peak activity £ is within 5% of the
maximum-likelihood estimate of motion direction given the noisy neural responses shownin C.

jects engaged in the same “task,” and we discuss experimental
predictions for single-cell recordings.

Materials and Methods

This section is divided into two parts. The first part (Intuitive description
of the approach) contains no equations and describes, in relatively simple
terms, the concepts of Kalman filters and attractor networks. The second
part (Formalization) contains the equations and parameter settings nec-
essary to reproduce our results.

Intuitive description of the approach

For a concrete example, consider the problem of localizing one’s arm
during a movement in complete darkness, i.e., without visual feedback.
The trajectory of the arm can be inferred from two independent sources
of information: the noisy proprioceptive feedback encoding arm posi-
tion and velocity and the prediction generated by the internal model of
arm dynamics. In this case, the internal model is a model that predicts
where the arm should be given the position of the arm at the previous
time step and the motor command issued to the arm at the last time step.

If the internal model is linear and the noise is Gaussian, the optimal
way to combine those signals is to use a Kalman filter (Anderson and
Moore, 1979). A Kalman filter is an optimal integrator in the sense that it
minimizes the mean square error of the estimate, given the full history of
sensory feedback received during the movement. The key property of a
Kalman filter is its ability to combine internally generated estimates with
estimates obtained from sensory feedback.

In our previous work (Deneve et al., 1999, 2001), we showed how to
perform optimal estimation and combination in neural networks using
noisy population codes. Figure 1 D illustrates the solution we had devised
for estimating optimally the value of a variable given a noisy hill of
activity. The basic idea is to use an attractor network in which the popu-
lation activity stabilizes over time onto smooth hills of activity. When
initialized with a noisy hill of activity, the network settles onto a smooth
hill whose position can be interpreted as an estimate of the variable
encoded in the noisy hill. The mean and variance of this estimate can be
computed numerically by repeating the simulation many times, using the
same direction of motion but different instantiation of the noise on each
trial. For Poisson noise, we have shown that the position of the smooth
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hill provides a close approximation to a maximum-likelihood estimate.
The maximum-likelihood estimate is optimal in the sense that it is “un-
biased” and has near-minimal variance. The term unbiased means that
the estimate is equal to the true value of direction on average. If this is the
case, the accuracy of the estimate is controlled by its variance. Given the
noise corrupting the data, the variance is bounded below by what is
known at the Cramer—Rao bound, which is the smallest achievable vari-
ance (Papoulis, 1991). With proper tuning of the weights, we reported
that our network estimate has a variance within 5% of the Cramer—Rao
bound (Deneve et al., 1999).

This example concerns only one population code for one scalar vari-
able, but we have shown that a similar approach can be used to combine
optimally variables encoded in multiple population codes, as long as
these variables are functionally related (Deneve et al., 2001; Pouget et al.,
2002; Deneve, 2004). For instance, we have simulated a network that can
combine optimally a population code for the position on an object in
visual coordinates and another one for the position of the same object in
auditory coordinates. The network is initialized with those two popula-
tion codes and computes a close approximation to the maximum-
likelihood location of the stimulus given these inputs (Deneve et al.,
2001).

The problem we are addressing now is similar. Instead of combining
two population codes corresponding to two different sensory modalities,
we want to combine one sensory population code with an internally
generated population code corresponding to the estimate of the internal
model. There are, however, some major differences. First, we are dealing
now with continuous time-varying inputs. Our previous solution dealt
only with static signals. With a continuous time-varying input, the net-
work cannot stabilize onto a static smooth hill of activity because it is
continuously perturbed by new inputs. Second, all of our previous work
assumed independent Poisson noise. This assumption is clearly wrong
for the internal model estimate. This estimate is the result of a computa-
tion. Any computation in a neural network involves an exchange of
information among neurons, which creates correlations.

Despite those differences, we found that the same kind of attractor
network can deal with time varying signals and can implement a close
approximation to a Kalman filter. This new type of attractor network
relies on a layer of sensorimotor units tuned to sensory variables and gain
modulated by motor commands. Recurrent connections within this
layer predict the future sensorimotor state given its current state and the
efferent motor commands. Because sensorimotor tuning curves imple-
ment basis functions for sensory and motor variables, any dynamics over
these variables can be approximated by such a network. In particular,
connections can be set up so that the pattern of activity on the layers shifts
and predicts the response of each unit at time ¢ + df, given the motor
commands and the pattern of activity at time t. Thus, the sensorimotor
units anticipate their future responses after the movement, implement-
ing an internal model of the motor plant. The network connections also
clean up the noise in the sensory inputs, preventing information loss
through saturation while tracking the state of the sensorimotor system
over time.

In addition, the networks can combine these internal estimates with
on-line sensory feedback according to the respective reliabilities of these
two signals. Our simulations demonstrate that these networks can be
tuned to implement optimal Kalman filters and thus compute the most
accurate on-line estimate for sensory and motor variables. These results
are confirmed analytically in Materials and Methods and supplemental
material (available at www.jneurosci.org).

Mathematical formalization

The estimation problem. We consider a state vector of D temporally vary-
ing sensory variables x(t) = {xd(t)}d — 1. p (D=1 for object tracking,
D = 2 for arm tracking) whose trajectories are controlled by a set of C
motor commands c(t) = [¢,(£)];— , - (C =0 for object tracking, C =1
for arm tracking) according to the following dynamical equation (bold-
face indicates vectors or matrices):

x(t + dt) = Mx(t) + Bc(t) + &(t) (1)
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where M and B are matrices describing the sensorimotor dynamics: M =
1, Be(t) = a = 0.003 in the object tracking example, and

M= 1 05 B 0
10 09pP” (1)
in the arm example. &(#) is a white motor noise with a fixed covariance
matrix Z. Z = 0.001 in the object tracking example, and

0001 0
Z=1 "0 0001

for the arm example.
The sensory variables are never observed directly but must be inferred
from noisy sensory feedbacks in the form of D noisy population codes:

SU(t) = £U(t) + NU(t) ford = 1.. .D. (2)

f, is a P-dimensional vector representing the mean activity of a popula-
tion of Pneurons responding to variable x%(£). N“is the neural noise, with
covariance matrix R(¢) = <\'Nd(t)Nd(t)‘). We assume that the noise is
independent between the sensory inputs from different modality, i.e.,
(NY(£)N(t)) = 0 for d # L. The task is to find the most probable state of the
system at time £, given the sensory inputs and the motor commands in the
past:

(1) = arg(n)naxp(x(t)|51(1), o5 8P, .., SN, .. L, SP(,

c(l),...c(r). (3)

Scalar feedback estimates for sensory variables, £/(¢), can be obtained
from the noisy population codes alone using maximum-likelihood esti-
mation, defined as the value of x?(¢) maximizing the probability of ob-
serving the sensory responses at time :

£§(1) = arg max[Pr($"(1)|x'(1))]. (4)
()

For large number of neurons, with Gaussian or Poisson noise, these
estimates are unbiased and are the most accurate given the sensory noise
(Brunel and Nadal, 1998).

For large number of neurons, because of the law of large numbers, the
feedback estimates £, (¢) = Lﬁf(t)}d _ . pfollow Gaussian distributions
with mean x(#) and diagonal covariance matrix Q. The diagonal elements
of this covariance matrix are the Cramer—Rao bounds computed from
the covariance of the neural noise and the shape of the tuning curves:

1

Qid = 5 IRy T5 g7 (5)

where
9 Jf?

is a vector of the partial derivative of the tuning curves with respect to x%,
and R? is the covariance matrix of the neuronal noise (Pouget et al.,
1998).

Kalman filter solution. In a Kalman filter, the maximum a posteriori
estimate is given by the the following recursive equation:

£(t+ 1) = (1 — K(1))[Mx(¢) + Be(t)] + K(t)%5(2), (6)

where K(#) is the Kalman gain matrix. K(¢) is computed iteratively ac-
cording to the following:

S(t+ 1) = M[I - K®)Z@HT - K(®)" + KOQK(HIM™ + Z

K@) =2(0)E@) + QL (7)

3.(t) is the covariance of the Kalman filter estimates, and 2(0) is the
covariance of the prior on the initial state (Anderson and Moore, 1979).
If the initial state is unknown, this variance is infinite.
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We used Equations 6 and 7 to compute the optimal performance as
predicted by a Kalman filter.

Network solution. The network contains D sensory input layers and C
motor input layers connecting a basis function layer of neurons [D = 1,
C = 0 for object tracking; D = 2, C = 1 for arm tracking in one dimension
(ID), and D = 4, C = 2 for arm tracking in two dimensions (2D)]. All
input layers are one-dimensional layers of 20 neurons with bell-shaped
tuning curves to either the sensory or the motor variables. The average
activity of neurons i in sensory layer d with preferred value x¢ in response
to input x*(#) is given by the following;

A1) = 3[exp(2(cos(x'(r) — x) — 1)) + 0.01]. (8)

We considered that the sensory inputs x(f) are periodic to avoid bound-
ary effects and to ensure stability. This can be done without a loss of
generality by assigning orientations close to +180° to extreme sensory
inputs which are never observed. The same equation with the same pa-
rameters was used to specify the tuning curves, f,(#), in the motor input
layer.

The activity of the sensory unit i in layer d at time t, $%(¢) is drawn from
a Poisson distribution:

d(p) Tk o=fi®
(st = = LT ©)

Motor input units are considered noiseless. Their activity is simply set to
fi(r) at all times.

The basis function layer contained interconnected neurons
(P=60,D =1, C= 0 for object tracking; P = 12, D = 2, C = 1 for arm
localization in 1D; P = 6, D = 4, and C = 2 for arm localization in 2D).
The activities of the basis function units are described by a P© * © dimen-
sional vector, A(t). Each unit in this layer is characterized by a set of
preferred sensory and motor states [c;, xf}[ —1...cd=1... p Those pre-
ferred sensory and motor states form a regular grid of P * © units
covering 360° in all C + D dimensions. The activity of the basis function
unit 7 at time ¢ + 1 is updated according to the following:

At + 1) = [RA)] 0 + 2 A0S/ (10)

PC+D

In this equation, and more generally in this section, S(f) refers to the
input unit with preferred sensory state x¢, where x¢ if the preferred sen-
sory state for basis function unit i. The parameters A%(t) are the sensory
gains (see Results for how they are adjusted over time). The motor com-
mand input, f(¢), modulates the gain of the basis function unit. In the
object tracking example there is no motor command, and f(¢) = 1. The
activation function h() implements a form of divisive normalization
(Heeger, 1992a,b):

(2 th))

]

prt+m E(E WZ?Aj(t)>

[h(AM)] = (11)

The parameters w and 7 were set to 0.001 and 0.01 for object tracking,
and 0.001 and 0.005 for arm tracking. The lateral weights within the basis
function layer, w7, are given by the following:

wij = eXP(Kw(E cos([Lx;]' — x) — D)), (12)
d

wherex; = [c, xj”}L —1...cd=1... pisthevector of preferred sensory state
for unit i. L is a matrix describing the combined effect of M and B on the
sensory and motor state vector x;. [Lx,] is the dth component of the
vector Lx;. The width of the weights, K, is computed to satisfy the
condition for optimality described in supplemental material, available at
WWW.jneurosci.org.

This bell-shaped pattern of weights is such that unit i is most strongly
connected to the unit with preferred sensory state Lx;. This effectively
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implements the internal model by shifting the internal hill of activity
within the basis function layer as specified by the state equation of the
system (Eq. 1).

To optimize the network performance, that is, to bring the network
performance as close as possible to the optimal performance predicted by
a Kalman filter, the parameter K,, must be adjusted. This parameter
controls the width of the weight pattern, and as a result, the width of the
pattern of activity in the basis function layer. The optimal value can be
inferred from our previous analytical work (Deneve et al., 2001; Latham
et al., 2003). In both object and arm tracking, we obtained optimal per-
formance for K, equal to 3.

Convergence proof. If we set the matrix L to the identity matrix in the
equation that defines the lateral weights in the basis function layer (Eq.
12), the resulting set of equations is identical to the one we used in our
previous work (Deneve et al., 2001). As a result, we know that if we
initialize the network with noisy population codes and iterate the dynam-
ical equations of the network, the activity in the basis function layer
converges to a D-dimensional stable manifold. At this point, the activity
in the basis function layer takes the form of a smooth hill of activity. If the
network meets the condition derived by Latham et al. (2003), the posi-
tion of this hill corresponds to the maximum-likelihood estimate of the
sensory states encoded in the initial noisy sensory inputs. The condition
derived by Latham et al. (2003) can be satisfied by tuning K, the width of
the lateral weights.

If we now reinsert L in Equation 12 and initialize the network with
noisy sensory inputs, the activity converges on a D-dimensional stable
manifold, in the sense that the activity in the basis function layer con-
verges toward a smooth hill. This smooth hill, however, moves over time
with the dynamics specified by L. As a result, the position of the hill after
t iterations reflects the maximum-likelihood estimate of the sensory
states given the initial noisy sensory inputs after titerations of the internal
model. In other words, we obtain the estimate predicted by the internal
model only.

To obtain a full Kalman filter, we need to add a mechanism to integrate
the sensory feedback available at each time step. As shown in Equation 2,
alinear operation is all we need, but the internal estimate and the sensory
feedback must be weighted by the Kalman matrix for optimal perfor-
mance. For how the Kalman gain was implemented, see below, Adjusting
the sensory gain.

When the sensory feedback is added at every step, the activity in the
basis function layer of the network, A(#), never stabilizes on the attractor
(the D-dimensional manifold), which makes it more difficult to deter-
mine the estimate encoded by the network. We note, however, that at
every time step, we know where the activity would stabilize if we were to
stop the sensory feedback, and we were to replace the matrix L by the
identity matrix in the lateral weights. It would stabilize onto a smooth hill
peaking at the maximume-likelihood estimate of the sensory states given
A(t). The position of this smooth hill can be read out with a simple
center-of-mass estimate:

z A(Dx;

i

fN(t) ZW. (13)

Now that we have a network estimate at each time step, £5(t), we can
compare its mean and variance to the mean and variance of the Kalman
filter estimate. In Results, £,,(¢) was obtained through simulations. In the
supplemental material (available at www.jneurosci.org), we show how to
compute this estimate analytically in the limit of low noise. This ap-
proach allows us to determine the conditions under which the network is
perfectly optimal.

Adjusting the sensory gains. We update sensory gains according to the
relative strength of sensory and internal signals, as in the Kalman filter
equation:

>
Aty =22, (14)
qaa
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Figure 2.  Sensory feedback for an object moving on the retina with a constant average
velocity. A, Top, The visual stimulus consists of a small circle moving to the left. The colored
circles indicate the position of the object at four different times. Blue, t = 0; red, t = 2t; green,
t = 4t; magenta, t = 6t; with t = 100 ms. Bottom, Average population activity across a
population of cells with bell-shaped tuning curves to the position of the object. The cells are
ranked according to the position of their receptive field, that is, their preferred position of
the stimulus. The cells are assumed to be tuned to the object position but not to its
velocity. Each curve corresponds to the position with the same color in the top panel. B,
Number of spikes emitted by the population of visual cells during a 100 ms time window.
The spike counts were drawn from a Poisson distribution with means specified by the
curves shown in A. Colors are as in A.

where q,;,,is the variance of the sensory estimates, and X, ; is derived from
the Kalman filter equations. Aslong as sensory gains are adjusted accord-
ingly and the condition for optimality derived by Deneve et al. (1999) and
Latham et al. (2003) is verified, the network approximates the perfor-
mance of a Kalman filter.

Results

A simple example: tracking a moving object

To illustrate our approach, we first consider a simple problem,
namely, locating a static visual stimulus while the eyes are moving
with speed —(a + &)/6t, where a is a constant, and &(t) is assumed
to be white noise, i.e., it is drawn independently at each time step
from a Gaussian distribution with mean (e(#)} = 0 and constant
variance. We assume that the neural circuits have knowledge of
the average eye velocity (for instance, in the form of an efferent
copy) but not of the noisy perturbation &(t).

As aresult of the eye movement, the horizontal position of the
stimulus on the retina, denoted x(t), evolves according to the
following:

x(t+ 8t) = x(t) + a + &(1). (15)
We assume that the sensory feedback is provided by the response
of a retinotopic map of neurons. At any given time, the object
triggers a hill of activity centered at its current location. In the
absence of noise, the hill follows a smooth Gaussian function as
shown in Figure 2A. Neurons, however, are noisy, with noise
following a near Poisson distribution (Vogels et al., 1989). For
simplicity, we assume that the noise follows exactly a Poisson
distribution, whose rate is specified by the smooth function
shown in Figure 2A. On any given trial, the resulting activity over
time takes the form of a succession of noisy hills as shown in
Figure 2 B.

How can we estimate the current position of the object opti-
mally given the sensory inputs and knowledge of the average eye
velocity? The first source of information is the sensory feedback at
time ¢, which takes the form of a noisy hill of activity (Fig. 2B).
The best estimate of position that can be obtained from this hill is
the maximum-likelihood estimate, %(f). It can be computed us-
ing either standard statistical techniques or a recurrent network
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Figure3.  On-line tracking of an object moving on the retina with a constant average veloc-

ity. A, Network behavior when initialized with noisy visual feedback for the object position at
time 0and evolving without additional sensory feedback. Top, Input into the network at time 0.
Bottom, Distribution of activity on the network interconnected layer at different times. The
color legend is the same as in Figure 2 A. A representative set of lateral connections is shown
with the thickness of the lines proportional to the weights. Because of the leftward bias in the
connections, the hill of activity moves over time in the same direction and with the same
average speed as the object, although no visual feedback is provided. B, Network behavior with
sensory feedback at all time steps. Top, Input into the network at different times (same color
legend as in Fig. 2 A). These inputs correspond to the noisy visual population codes gain mod-
ulated by a time-varying sensory gain, which is why the amplitude of the hills decreases over
time. The sensory gain over time is shown in the inset (colored arrows indicate the times for
which the input is plotted). Bottom, Distribution of activity on the network layer at different
times. The output hill corresponds to a compromise between the sensory input and the predic-
tion of the internal model (implemented by the biased lateral connections). €, Object trajectory
(solid lines) and trajectory estimated by the network receiving a continuous sensory input
(dotted lines) on three different trajectories. D, Variance of the position estimate as a function of
time. Blue solid line, Network; red solid line, Kalman filter; dashed line, sensory feedback alone;
dashed— dotted line, internal model alone. The network approximates the Kalman filter very
closely.

like the one shown in Figure 3D. However, £,(¢) is based purely on
the current sensory input, without any memory of past sensory
inputs or any knowledge of the object dynamics. Because 6t is
small, the probability that even the most active visual neurons
will emit a spike between rand t + &t is low. As a consequence, the
visual input and the corresponding sensory feedback estimate are
very unreliable (for a more formal description, see Materials and
Methods).

The second source of information comes from knowledge of
the object dynamics, that is, knowledge that the object is moving
with average velocity a/8t. This is what we call the internal model.

Denéve et al. ® Sensorimotor Integration in Cortical Networks

Given the initial position of the object, x(0), the entire object
trajectory can be predicted iteratively according to the following:

£(0) = x(0)

At + 81) = &(t) + a, (16)

where £(t) denotes the estimate of the object position at time ¢
obtained from this internal model. Note that the noise perturbing
the object motion in Equation 15, which comes from noise in the
eye movement, does not appear in Equation 16. This is because
we are assuming that the noise in the eye movement arises down-
stream from the internal model (e.g., mechanical noise in the
eyeball). Consequently, the internal model estimate differs from
the actual position of the object. Worse still, the difference be-
tween the estimate and the true position grows over time because
these unpredictable errors add up at each iteration, yielding a
large error over time.

As described in Materials and Methods, the most accurate
unbiased estimate of position, £(¢), can be computed iteratively
by combining the internal model estimate, £(¢), with the sensory
feedback estimate, £,(f), according to the following Kalman filter
equations:

£(t 4+ 81) = (1 — k(1)) 2{1) + k() £,(2),

&t + 81) = 2() + a, 17)

where k() is called the Kalman gain. k() depends on the reliabil-
ity of %,(t) and x(¢). If the sensory feedback estimate, %,(t), is
much noisier than the internal model estimate, more weight is
given to the internal prediction, that is, k(¢) is close to 0. However,
if the internal model estimate is less accurate than the sensory
feedback estimate, k() is close to 1. This gain can be computed
iteratively based on the variance of the sensory feedback estimate
(the Cramer—Rao bound) and the variance of the unpredictable
fluctuations &(t) (the motor noise; see Materials and Methods).

Our goal is now to implement a Kalman filter in a recurrent
network. Our model is composed of a retinotopic map of neu-
rons with bell-shaped tuning curves to the retinotopic position of
objects (i.e., bell-shaped receptive fields). The lateral connections
are set up in such a way that a neuron preferring a particular
position x; (that is, a neuron whose receptive field is at position x;
on the retina) connects preferentially neurons with preferred po-
sitions around x; + a. This connectivity pattern effectively trans-
lates the hill of activity with velocity a/6t and implement the
internal model corresponding to Equation 16 (this solution only
works for one velocity, but as we will see in our next example, it is
possible to design more general architectures). This connectivity
could develop through spike timing-dependent plasticity (Ab-
bott and Blum, 1996) and could account for the bias in perceived
location of moving objects (Fu et al., 2004).

Figure 3A illustrates the temporal evolution of network activ-
ities when initialized with a noisy population code for initial po-
sition x(0). In this simulation, visual feedback is provided only
for the initial object position but not during the trajectory. This
implies that the estimate of position can only be based on the
internal model (asin Eq. 16). As expected, the hill of activity shifts
on the retinotopic map with a constant velocity a/dt, reflecting
the internal model estimate of position in a population code
format. In addition, the initial neural noise is filtered out through
the lateral connections, yielding a noise free hill of activity after a
few iterations.

If we repeat this simulation many times by initializing the
network to different noisy hills [for the same initial position
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x(0)], we can compute the mean and variance of the position
estimate after a fixed delay T. If the network behaves as an ideal
observer, the hill should peak on average at the position x, + aT
and should have minimal variance. The smallest achievable vari-
ance in this case is the one corresponding to the variance of a
maximum-likelihood estimate of the original location %_. This
variance does not change over time because the initial estimate is
just translated at each time step by a fixed amount. This is indeed
what we found in our simulation: the hill peaks on average at
position x, + daT, and its variance is within 5% of the minimal
variance. Therefore, we can conclude that the network has con-
verged close to the most reliable unbiased internal model esti-
mate of position based only on the initial sensory input.

To reach this minimal variance, we optimized the network
performance by adjusting the width of the weights, i.e., the rate
with which the strength of the connection from neuron at posi-
tion x; to neuron at position x; decays as x; gets further from x; +
a. This procedure is similar to what was done by Deneve et al.
(1999, 2001). The optimal width can be computed analytically
(see Materials and Methods), and the performance of the net-
work is barely affected by small variations (£10%) around this
optimal width. Other parameters of the network (such as maxi-
mal connection strength) do not affect performance significantly.

Although this internal model estimate is optimal given the
initial sensory input, it is nevertheless very inaccurate with re-
spect to actual position of the object at time #. This is because the
actual trajectory of the eye is perturbed at every time step by the
unpredictable fluctuations &(#). As a result, the internal predic-
tion differs from the true location of the object at ¢ by the sum of
all fluctuations since the beginning of the movement

f e(t)dt|.

[

This problem cannot be fixed unless visual feedback is avail-
able at all time steps, which is the case we considered next. As
shown in Equation 17, this visual feedback must be weighted by a
Kalman gain to be combined optimally with the internal model
estimate. In our model, the Kalman gain is implemented by a
time-varying sensory gain A(t) (see Materials and Methods). This
sensory (i.e., visual) gain is set to the ratio between the variance of
the network estimate at time # and the Cramer—Rao bound of the
sensory feedback. The temporal evolution of A(#) is illustrated in
Figure 3B (top). Because no information about position is avail-
able initially, the network must rely exclusively on the sensory
feedback, resulting in high initial sensory gain (or Kalman gain).
However, as the network accumulates information about posi-
tion, its estimate becomes more reliable than the sensory feed-
back, and the sensory gain decreases until it reaches a constant,
relatively low level.

Because of this on-line noisy input, the hill of activity is never
completely smooth, as was the case in the network with no feed-
back (Fig. 3B). However, we can still read out the position of this
hill with a center-of-mass operator (see Materials and Methods).
The resulting estimate tracks on-line the noisy trajectory of the
object (Fig. 3C, dotted lines). We found that the network estimate
is unbiased, and its variance is very close (within 2%) to the
variance predicted by a Kalman filter (Fig. 3D). In other words,
the network encodes the optimal estimate of position at all times.
In particular, the position error decreases, reflecting an integra-
tion of the sensory inputs over time, but reaches a constant low
level attributable to the unpredictable perturbations, or motor
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noise. We have confirmed this result analytically using lineariza-
tion techniques, as can be seen in the supplemental material
(available at www.jneurosci.org).

This simple model captures most of the elements for our neu-
ral theory of Kalman filters. The critical features of this model are
(1) an implementation of the internal model in a recurrent net-
work, (2) a nonlinear filtering of the noise at each iteration, and
(3) a sensory gain to ensure optimal integration of the sensory
input and internal model estimate. The second feature is partic-
ularly important. If the noise was not filtered at each iteration, it
would accumulate and force the activities to saturate at maxi-
mum or minimal firing rate. This would in turn result in a large
loss of information and suboptimal performance.

This example works only for a scalar variable (the horizontal
position of the object) and one velocity, but our approach is not
limited to this case. As our next example illustrates, we can extend
our results to arbitrary positions and velocities and more gener-
ally to any linear internal model using a basis function architec-
ture. In this more general approach, both sensory feedback and
the motor commands governing the evolution of the sensorimo-
tor state are provided to the network. The recurrent connections
implement an internal model that predicts the future state of the
system given its current state. For example, a network with cells
that are tuned to both position and velocity can track the trajec-
tory of an object with arbitrary velocity (the velocity being con-
sidered in this case as the “motor command”). In the next section,
we concentrate on the more biologically relevant problem of lo-
calizing one’s arm as it moves given proprioceptive feedback and
efferent copies of the motor commands sent to the muscles. This
problem is much more general than the toy example used in this
section because it involves the combination of multiple popula-
tion codes representing sensory and motor variables and a com-
plex internal model.

On-line estimation of arm position
We consider a one-dimensional arm controlled by a muscular
force and whose state follows the following linear dynamical
equation:

x(t + 8t) = Mx(t) + c(t) + (). (18)
x(t) = (x,(t),x(t)) is the state vector containing the position,
x,(t), and velocity, x,(t), of the end point of the arm at time ¢.
c(t) = (0,¢(t)) is the motor command at time ¢ corresponding to
an end-point muscular force, and &(#) is a motor noise term
introducing unpredictable fluctuations in the arm trajectory. We
assume that this motor noise is white (not temporally correlated)
and independent of position and speed, i.e., &(¢) is drawn from a
bivariate Gaussian distribution with 0 mean and diagonal covari-
ance matrix.

Arm dynamics is not linear in general, but Equation 18 is a
common approximation when working in a small workspace
(Wolpert et al., 1995b; Todorov, 2000). To implement these dy-
namical equations, we used a three-dimensional layer of neurons
with bell-shaped tuning curves to speed, position, and force (Fig.
4A). Each neuron is characterized by its preferred position, x;,,
preferred arm velocity, x;, and preferred motor command, ¢'. As
we are about to see, the dynamics of the network is such that the
tuning curves of the units to position, speed, and force are Gauss-
ian curves centered on the values (x),x,c'). Consequently, this
layer can be considered as a three-dimensional radial basis func-
tion map (Girosi et al., 1995) for position, speed, and force.

The neurons are arranged topographically along the axis of
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sensory gains, A,(¢) for position and A,()
for velocity feedback. These sensory gains
are derived from the Kalman filter equa-
tions, as described in Materials and Meth-
ods section. They are plotted on Figure 4C
for two different levels of initial previous
knowledge about the arm state (as dis-
cussed below). When the network equa-
tions are iterated, a three-dimensional Gaussian pattern of activ-
ity builds up on the basis function layer corresponding to a
population code for the network estimates of arm position, ve-
locity, and force (Fig. 5A). This internal representation is updated
on-line by adding the somatosensory input multiplied by the
sensory gains and the motor command to the recurrent activities
(see Materials and Methods).

To test the network, we computed the bias and variance of the
position and velocity estimates measured on many repetitions of
the same task. A task corresponds to an initial arm state together
with a particular sequence of force c(t) applied on the arm. If the
arm dynamical equations were perfectly deterministic, repeti-
tions of the same task would yield identical trajectories. However,
because of the motor noise, each movement (each instantiation
of the same task) results in a different arm trajectory. Without
sensory feedback, the network would not be able to track the state
of the arm properly, because it would not be able to take these
random fluctuations into account. However, thanks to the noisy
population codes encoding arm position and speed at each time
step, the network can correct its internal estimate on-line.

We found that the network estimates were unbiased. In par-
ticular, it can predict exactly the average trajectory of the arm in
response to an arbitrary succession of motor commands ¢(t). We
compared the variance of the network estimate with the corre-
sponding variance of an optimal Kalman filter and found that
they were closely matched (the SD of the network estimate is
<10% worse than the optimal variance). In Figure 5, Band C, we
plotted the SD (mean error) of the Kalman filter estimates, feed-
back estimates (based on sensory feedback alone), internal model
estimates (based on an internal prediction from the initial state
without sensory feedback), and the network estimates. In Figure
5B, we started with a perfect knowledge of the arm state, i.e., we
initialized the network with a noiseless Gaussian pattern of activ-
ity at position x,(0) and speed x,(0). In this condition, the net-
work estimate, the internal model estimate, and the Kalman filter

layers provide the sensory input onto the sensorimotor map (or basis function layer). Each unit in the sensorimotor map (cube)
receives a connection from one input unit from each input layer. As a consequence, each sensorimotor unit is characterized by a
preferred position, a preferred velocity, and a preferred force determined by its input units. B, Interconnections within the
sensorimotor layer: unit with preferred arm state &' = (¢, #) and force connects the unit with preferred states Mx’ + ¢ These
connections implement the internal model of the arm. €, Sensory gains for position (green) and velocity (magenta) feedback, for
two levels of previous knowledge about the initial arm position. Solid lines, Initial state of the arm unknown. Dashed lines, Initial
state of the arm state known with high certainty.
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Figure 5.  Recurrent basis function network estimating arm position on-line: results. 4, Dis-

tribution of activity within the three-dimensional layer, projected on the two-dimensional
position/velocity map (activities of all of the cells with the same position/velocity selectivity but
different force preferences are summed and collapsed on a single pixel). The panels from top to
bottom represent the first, second, fourth, and sixth iterations, respectively, starting from no
initial knowledge of the arm state (null activity at t = 0). The strength of activity is color-coded
from red (maximum) to blue (minimum) with iso-activity contours. The position of the moving
hill gives the network estimate for position and velocity. B, Estimated variance as a function of
time when starting with a perfect knowledge of the arm state. Dashed/double-dotted line,
Kalman filter; solid line, network estimate; dotted line, network estimate with constant sensory
gains; dashed— dotted line, internal model estimate; dashed line, feedback estimate. C, Esti-
mate variance as a function of time when starting with no initial knowledge of the arm state.
The same legend as in B.



Denéve et al. @ Sensorimotor Integration in Cortical Networks

estimate start with a variance equal to zero. During the move-
ment, all variances increase over time because of the accumula-
tion of unpredictable motor errors (Fig. 5B). However, although
the internal estimate keeps getting worse because of the accumu-
lation of prediction errors over time, the others take advantage of
the sensory feedback to correct those prediction errors, allowing
the variance to converge to a finite asymptotic value.

In Figure 5C, we simulated a condition in which we assumed
that the starting position is not known, which we implemented by
initializing all unit activities to 0 at time 0. As a result, the Kalman
filter had to build its estimate over time by integrating the so-
matosensory input. As can be seen in Figure 5C, the variance of
the Kalman filter estimate is initially high but decreases over time
as more somatosensory inputs get integrated. The network esti-
mate follows a similar temporal profile, and after few iterations,
the performance of the network is within 10% of the Kalman
filter performance. Note that, in both cases, the variances of the
network and the Kalman filter converge to a constant level. This
constant level depends on the covariance of the motor noise and
sensory noise but not on the initial knowledge about the arm
state. The internal model fails entirely on this task; without
knowledge of the starting position, the internal model cannot
predict future positions (the performance is not plotted because
the variance of the internal model estimate is infinite at all times).

To obtain the result we have described so far, we had to adjust
the time-varying sensory gains A,(t) and A,(t). These gains de-
pend on the Kalman gains and thus on the initial information
present about the arm state. Thus, they have different temporal
profiles depending on the initial state of knowledge, as plotted in
Figure 4C. When the state of the arm is known initially, the sen-
sory input is at first less reliable than the internal model, and the
gains are small. In contrast, when no initial information is pro-
vided, the sensory input is at first more reliable, and the gains are
high. However, regardless of the initial information, the gains
converge to a stable regimen, like the variance.

The fact that we have to adjust the sensory gains by hand to
obtain optimal performance might appear to be a strong limita-
tion of our approach. Interestingly, however, we found that ad-
justing the gain over time is not quite as critical as it may seem.
Thus, performance remains close to optimal when we set the
gains to their value in the stable regimen without modulating
them during the trajectory (Fig. 5A, B, dotted line). The main cost
is in the early part of the trajectory; however, in both simulations,
the variance follows the same overall temporal evolution as the
variance of the Kalman filter, and it reaches the same asymptotic
values. Using asymptotic values for the Kalman gains will be ef-
ficient as long as the duration of the transient (set by the level of
sensory and motor noise) is relatively short compared with the
duration of the movement, and as long as the statistics of the
motor noise and sensory feedback is similar across a wide range of
arm velocities and positions. Alternatively, varying Kalman gains
could be approximated by sensory adaptation processes (see
Discussion).

Experimental predictions
Our model makes two predictions. The first prediction concerns
the accuracy with which human subjects can locate their hand in
space while their arm is moving. If human subjects use a neural
equivalent of a Kalman filter, their behavior should mirror the
time evolution of the variance shown in Figure 5, B and C.

Such experiments have been performed with human subjects,
in particular the experiment we have simulated in Figure 5B. This
experiment involved asking subjects to locate their hand while
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moving their arm behind an occluder. Subjects were allowed to
see the position of their hand at the beginning of the trial and, as
aresult, started each trial with a high accuracy estimate (i.e., alow
variance). Once the movement was initiated, the visual feedback
was interrupted, and subjects only received proprioceptive feed-
back. Wolpert et al. (1995b) reported the accuracy with which
subjects located their hand as a function of the time elapsed since
the onset of movement. They found that the variance of the esti-
mate starts at a small value, begins to rise in the early part of the
trial, and then reaches a plateau. This is precisely the result we
report in Figure 5B. Note that our model makes a similar predic-
tion whether we keep the sensory gains constant or adjust them
on-line. Therefore, this experiment suggests that humans use an
internal model, but it does not tell us whether humans adjust
their sensory gains on-line.

Another recent study suggests that the human brain uses a
Kalman filter for on-line control of reaching arm movement
(Saunders and Knill, 2005). In particular, humans are able to
weight two sensory cues differentially (arm movement direction
and distance in their case) according to their relative reliability for
the task. This is also true in our model: position input is more
reliable than velocity input (or, more exactly, the internal esti-
mate of velocity is much more precise and relies less on sensory
feedback than the internal estimate of position). Position input is
more informative for determining the arm state and is thus
weighted more strongly.

The second experimental prediction has to do with the re-
sponse property of single neurons in the motor system. As can be
seen in Figure 5A, the shape of the hill of activity in the basis
function layer is not perfectly circular; it is elongated and tilted.
This translates into a surprising prediction for the tuning curves
to position and velocity. If we plot the tuning curve of a unit to
arm velocity, we find that the gain of the tuning curves (i.e., their
amplitude) is modulated by the position of the arm. Further-
more, the preferred velocity shifts to faster motion for arm posi-
tion that are situated farther in the direction of the movement
(Fig. 6 A). Vice versa, if we plot the tuning curve of the same cell to
arm position for different arm velocity, we find that the tuning
curve to position is gain modulated by velocity and shifted in the
direction of the movement for higher velocities.

To explore these predictions in 2D, we constructed a network
in which the intermediate layer represents six variables instead of
three: two variables for spatial position x,, y,, two for velocity x,,
y,and two for end-point force x,, y, (see Materials and Methods).
The dynamics of the arm in the horizontal (x) and vertical ( y)
dimensions are assumed to be the same. Thus, in addition to
Equation 18 describing the dynamics of x(¢) = (x,(#),x,(1)), the
network implements the following dynamical equation for y(t) =
(p(D3(0):

y(t + 81) = My(1) + '(1) + £'() (19)
c’(t) = (0,c(¢)) is a motor command at time ¢ corresponding to
the end-point muscular force along the y-axis, and £’() is a mo-
tor noise term.

We measured the velocity tuning curves of the sensorimotor
units of a network tracking the arm in 2D for different positions
of the arm (same as Fig. 6 A, but in 2D). In 2D, the orientation of
the velocity vector, v=(x,, y,), defines the movement direction.
We found that the sensorimotor units are broadly tuned to move-
ment direction, with tuning curves approximately cosine shaped
(Fig. 6 B). These tuning curves are modulated in height (or gain)
by arm speed. This modulation is bell shaped but extremely
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broad. As a result, for a large majority of
the units, the gain modulation by speed is
monotonic and almost linear in the natu-
ral range of arm velocity (Fig. 6C, inset).
Note that, as shown in supplemental ma-
terial (available at www.jneurosci.org),
the performance of the network does not
depend on the exact shape of the tuning
curves to speed and position, as long as
these curves form a basis set (i.e., sig-
moids, sines, cosines, rectified linear
curves, and Gaussians are basis functions)
and are similar to the tuning of the sensory
feedback (these constraints are detailed in
the mathematical proof in supplemental
material, available at www.jneurosci.org).

The direction tuning curves also
change with arm position. However, in
contrast to arm speed, which only affects
the gain of the tuning curves, arm position
changes both the gain and the preferred
direction of the cell. This result is illus-
trated in Figure 6, B and C, which shows
the preferred direction of two different
units as a function of arm positions. The
length of the lines in Figure 6 indicates
the response strength of the unit when the
arm moves in its preferred direction at this
location in space. As can be seen on the
figure, the direction and length of the lines
change with arm position, indicating a
change in the preferred direction and the
gain of the neuron as a function of arm
position.

These results are consistent with what
we know of the velocity tuning of neurons
in the motor and premotor cortices. Thus,

Denéve et al. ® Sensorimotor Integration in Cortical Networks

A. B. z\//\ C
—~50 ®
----Arm at Ocm % 4o Cmo,&rm direction “po o ¢ ;0 °
—ArmatZOcm;/?- o6 d oo °¢ é d
- c |e ¢ o oo0o 0é6d doe
E’IO -g 6 @ G O 00 06 d oo
S5 Q%joeqe\&e coceeoo
N\, oo @000 000000
0 100 300 500 50 50 -50 50
Velocity (cm/sec) Position x,, (cm) Position x, (cm)
D E. F.
qd LSS S g0 e d o
E g At By g g o g
2| T A LSS
c|ldddLSS £ clegddd
‘,%o/o/o/o/o/o/g Zloodddo
8 lesoddds lossdss
50 50 0 100 300 500 -50 50

Position x, (cm) Velocity (cm/sec) Position x, (cm)

Figure6.  Experimental predictions from a recurrent basis function network estimating arm position on-line. 4, Tuning curves
of a sensorimotor unit to velocity for two different positions of the arm. B, Preferred direction of a sensorimotor unit as a function
of arm position. Circles represent the arm position in 2D. Lines point away from the circles in the direction of the arm velocity vector
for which the unit is maximally active when the arm is at that particular position. The length of the line is proportional to the
response of the unit when the arm moves at its preferred velocity. The global preferences of this unit are forx(t) = (15cm, 15 cm)
andy'(t) = (0cm.s ~,0cm.s ~ ). However, the preferred velocity vector measured at a particular arm position rotates with the
arm. The inset on the top right of the figure represents the response of this unit as a function of arm movement direction (arm
moving at 150 cm.s ~T)when the armis at position x(t) = (15 cm, 15 cm) (solid line) together with the best-fitting cosine tuning
curve (dashed line). €, Same as in B but for a unit preferring X/(f) = (0.cm, 0.cm), y/(t) = (150 cm.s ~",150 cm.s ~"). D, Direction
of the population vector for a constant arm velocity y'(f) = (150 cm.s ~", 150 cm.s ") for all positions of the arm. E, Same as in
Abut with the motor noise increased by a factor of 10. The somatosensory input is now more reliable than the internal model, and
the tuning curve no longer shifts with arm position. F, Same as in E but with the motor noise increased by a factor of 10. The
preferred direction no longer rotates with arm position.

their direction tuning curves are approxi-

mately cosine-tuned to movement direc-

tion (Georgopoulos et al., 1982), and neu-

ral responses are gain modulated by arm posture and arm speed
in these areas (Boussaoud, 1995; Caminiti et al., 1999; Kakei et al.,
2003; Paninski et al., 2004). This gain modulation is usually re-
ported to be monotonically increasing with arm speed, either
using the indirect evidence that the length of the population vec-
tor increases linearly with speed (Ashe et al., 1993; Moran and
Schwartz, 1999) or by measuring position and velocity tuning
curves through spike reverse correlation techniques during track-
ing movements (Paninski et al., 2004). In contrast, we used non-
monotonic (bell-shaped) velocity tuning curves in our model,
just like we did for position. However, as mentioned above, our
Gaussian tuning curves are so broad that most of them appear to
be monotonic over the range of natural arm speeds Moreover, as
shown in the supplemental material (available at www.
jneurosci.org), our conclusions are not restricted to Gaussian
tuning curves but hold for other types of tuning curves such as
sigmoidal or rectified linear functions.

Another result that is consistent with experimental observa-
tion is the rotation of preferred directions with arm position,
which has been reported in motor and premotor cortices (Cam-
initi et al., 1990, 1991). In the motor and premotor cortices, the
rotation of preferred direction with arm position has two impor-
tant properties: (1) the preferred direction vector averaged across

all neurons rotates in the same direction as the arm, and (2)
despite these rotations of the preferred directions of individual
cells, the population vector (Georgopoulos et al., 1982) points in
the direction of the movement. Our model reproduces both of
these effects, as shown in Figure 6 B-D. The preferred direction of
the individual cell rotates in the direction of arm displacement
(Fig. 6B,C), whereas the population vector points in the real
direction of the movement (Fig. 6 D).

The reason for the rotation of preferred directions can be
understood intuitively. The prediction of a future arm state in-
troduces correlations between position and velocity. For exam-
ple, the future arm position is a function of the previous arm
position and velocity. These correlations are reflected by correla-
tions in the population representation of the two variables. The
tilt in the population activity pattern (and thus the noninvariance
of velocity coding to position, and vice versa) is caused by the
predictive lateral connections within the sensorimotor layer.
However, this recurrent prediction is combined on-line with the
sensory input, which is independent for position and velocity.
The resulting neural activation is a trade-off between the corre-
lated predictive representation and the uncorrelated sensory in-
put. If the sensory input is much more reliable than the internal
prediction, the noninvariance and tuning curve shifts disappear.
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The sensorimotor cell appears to be tuned to velocity and gain
modulated by position, or vice versa (Fig. 6E). Similarly, the
sensorimotor cell appears to have a constant (not rotating) veloc-
ity vector in 2D (Fig. 6 F). In other words, the extent to which the
tuning curves are shifted and gain modulated depends on the
respective reliability of the internal estimate and the sensory feed-
back. To our knowledge, this prediction has never been tested.

The fact that the population vector continues to point in the
direction of the movement despite rotation of individual pre-
ferred directions can also be easily explained. This is a conse-
quence of the fact that the network estimates are unbiased: the
pattern of activity on the layer peaks on average at the true posi-
tion and velocity of the arm. As a consequence, the population
vector (as well as the center-of-mass estimator or any other un-
biased estimator used to read the velocity encoded by the popu-
lation of units) will point in the direction of the movement, even
if the preferred direction of each individual unit rotates with the
arm.

Although our model captures all of the essential features of the
data reported in premotor and motor cortex, it does not account
for one result, namely the fact that the rotation in preferred di-
rection with arm position is different in each neuron. This result,
however, would be easy to implement. In the simulation pre-
sented here, we have assumed from the sake of simplicity that all
units gave the same relative confidence to the sensory input and
the input coming from lateral connections. However, in biolog-
ical systems, the reliability of the sensory input is likely to vary
widely in different cells or different cell types, leading to a strong
variability in the extent of the preferred direction rotation.

Our model is not the first one to account for these experimen-
tal observations in premotor and motor cortices. As shown by
Zhang and Sejnowski (1999), cosine direction tuning curves and
gain modulation by speed are to be expected from sensory or
motor cells responding to motion in two-dimensional or three-
dimensional space, regardless of the mechanism involved. The
main contribution of our model is to provide quantitative pre-
dictions for the shifts in the preferred direction of each neuron
with arm position. Several alternative explanations have been
offered to explain the rotation, including the use of a joint-related
coordinate system by motor cells (Tanaka, 1994), spatially uni-
form coding in kinetic coordinates (Ajemian et al., 2001), the fact
that motor cells control groups of muscles that are themselves
tuned to movement direction (Turner et al., 1995), or the conse-
quence of a visuomotor coordinate transform (Burnod et al.,
1992; Salinas and Abbot, 1995). In our model, this noninvariance
of the representation arises naturally from principles of optimal
sensorimotor integration.

Mathematical proof

As shown in the supplemental material (available at www.jneurosci.
org), the two examples we have presented are instances of a general
theory of optimal sensorimotor integration by iterative basis func-
tion (IBF) networks. These models work by projecting neural activ-
ity toward a manifold of noiseless population codes. On this mani-
fold, activities are updated over time to reflect the predictable
temporal evolution for the sensory and motor state (see Materials
and Methods). Near optimality is guaranteed aslong as the following
conditions are met: (1) the sensorimotor dynamical equations are
locally linear. (2) The motor noise is Gaussian, independent for the
different state variables, and white. (3) Sensory gains are adjusted to
the relative reliability of the sensory input compared with the inter-
nal model.
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Discussion

We have shown that IBF networks can integrate optimally time-
varying sensory inputs and efferent motor commands, effectively
implementing Kalman filters with population codes.

Adjusting the sensory and internal model contributions

One of the important features of a Kalman filter is the Kalman
gain, that is, the gain of the sensory input compared with the
internal model. This gain must be modified over time to achieve
optimal temporal integration. In our model, this gain was imple-
mented by adjusting the synaptic weights of the sensory affer-
ences according to the ratio of the noise in the sensory feedback
and the uncertainty in the internal estimate. Such rapid changes
of synaptic efficacy can take place in the cortex through either
short-term synaptic potentiation and depression (Thomson and
Deuchars, 1994) or spike-timing-dependent plasticity (Markram
etal.,, 1997), but it is presently unclear whether these changes are
sufficient to trigger the synaptic changes required by a Kalman
filter. For static variables, Wu et al. (2003) have already shown
that Hebbian learning is sufficient to adjust the gain of a neural
Kalman filter. For time-varying variables, as we have considered
in this study, the problem is significantly more difficult and
would deserve to be explored in future studies.

The temporal evolution of the Kalman gains could also be
implemented by response adaptation within primary sensory ar-
eas, which leads to a gradual decay of neural activity during pro-
longed presentation of sensory stimuli. Interestingly, it was re-
cently suggested that this gradual decay follows a power law (scale
invariant) of the form S, = S,/(t + [)" (P. J. Drew and L. F.
Abbott, unpublished observations). This is an important obser-
vation because the temporal evolution of Kalman gains is also, in
many cases, close to a power law. For example, in cases involving
a single sensory variable (as in our object tracking example), the
sensory gain computed from Kalman equations initially evolves
according to A, = 1/(¢ + 1) before converging to a constant level.

Ultimately, however, it is possible that the nervous system
does not adjust its Kalman gain optimally. As we have seen, keep-
ing the gain constant can actually lead to near-optimal behaviors
in many situations (Fig. 5B, C).

Motor control, sensory delays, and inverse models

Although we have applied our approach to sensory problems, IBF
networks could be readily adapted to deal with optimal motor
control. Motor control involves the same set of tools we have
been using thus far (internal models and appropriate weighting
of the sensory feedback) and, indeed, Kalman filters are com-
monly used to model on-line control of reaching movements by
visual/proprioceptive feedback (Desmurget and Grafton, 2000;
Wolpert and Ghahramani, 2000; Saunders and Knill, 2005). The
main difference between optimal sensorimotor integration, as we
have considered in this study, and optimal motor control is the
temporal discrepancy between the arrival of the sensory feedback
and the on-line correction of movement. The sensory input is
necessarily delayed by a few tens or hundreds of milliseconds,
whereas on-line correction of movement trajectories needs to
occur in real time, based on the current (nondelayed) motor
state.

In our models, the current position and velocity of the arm
can be estimated by feeding the activities from the sensorimotor
layer into a similar network performing internal prediction but
not receiving any sensory input. Similarly, IBF networks receiv-
ing sensory inputs with longer delays could predict the activity of
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IBF networks with shorter delays (e.g.,
knowing what the arm state was 100 ms
ago, from the delayed visual feedback, one
can predict were it will be 50 ms later,
when the proprioceptive feedback ar-
rives), effectively integrating all sensory
inputs together (Fig. 7A, solid arrows).

Note that it is also possible to predict
the past state from the current state (e.g.,
where was my arm in space 100 ms ago,
knowing that it is there now?) and to com-
pute what motor command would bring
the arm to a desired future state (e.g.,
knowing where my arm is now, and where
I want it to be 800 ms later, what motor B
command should I use?). Connections go-
ing in the other direction (from sensori-
motor maps to motor areas) could com-
pute the optimal motor command to
reach a desired sensory state (Fig. 7A,
dashed arrows), providing a neural basis L% oo o
for motor learning (Jordan and Rumel-
hart, 1992) and optimal motor control
(Scott and Norman, 2003; Todorov,
2004).

This extended model predicts the exis-
tence of sensorimotor cells tuned to posi-
tion and velocity at various temporal de-
lays compared with the current arm state.
Interestingly, recent data suggest the exis-
tence of such a representation in M1 (Pan-
inski et al., 2004).
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Noninvariant tuning properties arising
from optimality principles in
sensorimotor areas

More generally, our model also has im-
portant implications for neural representations in sensorimotor
areas. We predict in particular that neurons implementing opti-
mal sensorimotor filters should exhibit predictive activity, gener-
ated by the internal model, in addition to the usual sensory and
motor responses. The “visual remapping” activity reported in
lateral intraparietal area (LIP) is the best known example of such
predictive signals: before a saccade, some neurons in LIP respond
to a visual target that will appear in their receptive field after the
saccade (Duhamel et al., 1992). We expect that similar results will
be found in sensorimotor areas, in particular the ones controlling
the arms. For example, sensorimotor neurons should respond
during or immediately before an arm movement in anticipation
of visual, tactile, or proprioceptive feedback occurring at a later
time along the arm trajectory.

Another important prediction concerns the invariance, or
rather the lack of invariance, of the tuning curves. It is common in
neurophysiological experiments to seek the frame of reference in
which a receptive field is invariant. In IBF networks, it is simply
impossible to identify any frame of reference in which the tuning
curves to velocity, position, or force are invariant because those
variables interact with one another. For instance, as illustrated in
Figure 6 A, the position of the tuning curve to arm velocity de-
pends on the position of the arm. Moreover, this dependency
changes with the level of noise corrupting the proprioceptive
feedback (Fig. 6C), and more generally on the Kalman gains. As a
result, the tuning curve to velocity of a unit can change over the

legend as in Fig. 5B).

Combinatorial explosion and modularity. An internal model for the arm dynamics can be implemented by a bimodular network
predicting velocity from velocity and force and position from position and velocity. €, Result of the bimodular network (same

course of a single movement, because the Kalman gains them-
selves change. This strong dependence on the context and the task
implies that tuning curves in the motor cortex are unlikely to stay
invariant across movements and time.

This lack of invariance has been reported in M1 and premotor
cortex, and has led to a fierce debate as to whether M1 neurons
encode cinematic versus dynamic coordinates and extrinsic ver-
sus intrinsic coordinates (Georgopoulos and Ashe, 2000; Moran
and Schwartz, 2000; Scott, 2000; Todorov, 2000). We are suggest-
ing that the lack of invariance may in part be caused by the use of
recurrent basis function maps involved in optimal sensorimotor
transformations.

Combinatorial explosion and modularity

Basis function maps can implement a very large set of nonlinear
transformations (Poggio, 1990; Girosi et al., 1995; Pouget and
Sejnowski, 1997). However, there is a price to pay in terms of
number of units and connections needed: this number grows
exponentially with the number of dimensions or variables
represented.

One solution to this problem is modularity. Instead of one
central map, we can use several interconnected modules repre-
senting subsets of the variables. For example, if we use one map to
represent the position, velocity, and force of the arm, we need in
the order of 10> neurons and 10° connections. Instead, we can
use two maps, one for position and velocity and another one for
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velocity and force. Each map requires 10 neurons for a total of 2
102 neurons, instead of 10°. Moreover, the number of connec-
tions is now of the order of 10* instead of 10°. To connect the two
modules, we can use the velocity/force module to predict the
velocity at the next time step, and we can send this signal to the
velocity/position module whose output is the prediction of the
position at the next time step given the previous position and the
predicted velocity (Fig. 7B).

This modular architecture requires substantially less units and
connections, but there is cost in terms of performance. The mod-
ular network cannot represent the correlations between position
and velocity: in particular, somatosensory feedback about posi-
tion cannot be used to correct the estimate of velocity, and vice
versa. As shown in Figure 7C, this results in suboptimal perfor-
mance. For systems with a large number of degrees of freedom, as
is the case for the human arms, such compromise between accu-
racy and computational cost is difficult to avoid.

Note that the trade-off between the number of neurons and
the accuracy is not as severe as it might seem at first. The accuracy
of the model can still be high with a very small number of neurons
per dimension. In particular, the SD of the network position
estimate is several orders of magnitude smaller than the spacing
between two successive preferred positions in the layer. In fact,
this accuracy depends on the total number of neurons in the layer
receiving uncorrelated sensory inputs tuned to position, not the
number of neurons per dimension. Finally, taking into account
the correlations between two variables contributes significantly
to the accuracy only when they are strongly correlated (i.e., posi-
tion and velocity). For more weakly correlated variables, the loss
in accuracy resulting from separating them into two modules will
often be negligible.

Toward a neural theory of Bayesian inference

Our model provides a significant step toward understanding how
neural circuits implement optimal sensorimotor filters, and in
particular Kalman filters, but it remains limited to Gaussian dis-
tributions. To extend this work to the general case, we first need
to understand how to encode arbitrary probability distributions
with population codes. Several coding schemes have been ex-
plored previously (Zemel et al., 1998; Weiss and Fleet, 2002; Bar-
ber et al., 2003; Mazurek et al., 2003; Sahani and Dayan, 2003; Ma
et al., 2006), and several groups are exploring how to use these
schemes for optimal filtering (Deneve, 2004; Rao, 2004).
Whether any of these schemes is consistent with the response of
cortical neurons remains to be determined, but this topic should
be the target of intense research in the next few years.
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