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SUMMARY

Perceptual decisions are often based on multiple
sensory inputs whose reliabilities rapidly vary over
time, yet little is known about how the brain inte-
grates these inputs to optimize behavior. The
optimal solution requires that neurons simply add
their sensory inputs across time and modalities, as
long as these inputs are encoded with an invariant
linear probabilistic population code (ilPPC). While
this theoretical possibility has been raised before,
it has never been tested experimentally. Here, we
report that neural activities in the lateral intraparietal
area (LIP) of macaques performing a vestibular-
visual multisensory decision-making task are indeed
consistent with the ilPPC theory. More specifically,
we found that LIP accumulates momentary evi-
dence proportional to the visual speed and the ab-
solute value of vestibular acceleration, two variables
that are encoded with close approximations to
ilPPCs in sensory areas. Together, these results
provide a remarkably simple and biologically plau-
sible solution to near-optimal multisensory decision
making.

INTRODUCTION

Most perceptual decisions are based on multiple sensory inputs

whose reliabilities vary over time. For instance, a predator can

rely on both auditory and visual information to determine when

and where to strike a prey, but these two sources of information

are not generally equally reliable, nor are their reliabilities con-

stant over time; as the prey gets closer, the quality of the image

and sound typically improves, thus increasing their reliabilities.

Although suchmultisensory decisionmaking happens frequently
in the real world, the underlying neural mechanisms remain

largely unclear.

The so-called drift-diffusion model (DDM) (Ratcliff, 1978;

Ratcliff and Rouder, 1998; Ratcliff and Smith, 2004; Ratcliff

and McKoon, 2008), a widely used model of perceptual decision

making, cannot deal with such decisions optimally in its most

standard form. DDMs have been shown to implement the

optimal policy for decisions involving just one source of sensory

evidence whose reliability is constant over time (Laming, 1968;

Bogacz et al., 2006). Under such conditions, DDMs can imple-

ment the optimal strategy by simply summing evidence over

time until an upper or lower bound, corresponding to the two

possible choices, is hit (Bogacz et al., 2006). This type of model

lends itself to a straightforward neural implementation in which

neurons simply add their sensory inputs until they reach a preset

threshold (Gold and Shadlen, 2007; Ratcliff and McKoon, 2008).

When multiple sensory inputs are involved, the standard

DDMs can accumulate sensory evidence optimally as long as

the reliabilities of the evidence stay constant during a single trial

and across trials. Under this scenario, optimal integration of

evidence over time can be achieved by first taking a weighted

sum of the momentary evidence at each time step, with weights

proportional to the reliability of each sensory stream, followed by

temporal integration (Drugowitsch et al., 2014). However, this

strategy no longer works when the reliabilities change over

time within a single trial. In this case, the momentary evidence

must be linearly combined with weights proportional to the

time-varying reliabilities, which requires that the synaptic

weights change on a very fast timescale, since, in the real life,

reliability can change significantly over tens of milliseconds.

Moreover, when the reliabilities of the sensory inputs are not

known in advance, which is typically the case in real-world

situations, neurons cannot determine how to appropriately

modulate their synaptic weights until after the sensory inputs

have been observed. Therefore, even if it is possible to extend

standard DDMs to time-varying reliability (Drugowitsch et al.,

2014), it is unclear how such a solution could be implemented

biologically.
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In contrast, there exists another class of models that does not

necessarily involve changes in synaptic strength. As long as the

sensory inputs are encoded with what is known as invariant

linear probabilistic population codes (ilPPCs), the neural solution

for optimal multisensory integration is remarkably simple: it only

requires that neurons compute linear combinations of their in-

puts across time or modalities using fixed—reliability-indepen-

dent—synaptic weights (Ma et al., 2006; Beck et al., 2008).

This solution relies on one specific property of ilPPC: the reli-

ability of the neural code is proportional to the amplitude of the

neural responses. As a result, when summing two sensory inputs

with unequal reliability, the sensory input with the lowest reli-

ability contribute less to the sum because of its lower firing

rate. This is formally equivalent to weighting Gaussian samples

with their reliability in an extended DDM, except that there is

no need for actual weight changes with ilPPC (Ma et al., 2006).

Hence, the ilPPC framework is a promising solution to multi-

sensory decision-making tasks, but it lacks physiological sup-

port. The only previous attempt at testing this framework with

time-varying reliabilities was performed by Fetsch et al. (2011),

who recorded from the dorsal medial superior temporal (MSTd)

area in macaques trained to discriminate their heading direction

of self-motion based on multiple sensory inputs: vestibular sig-

nals, visual optic flow, or both. In this experiment, the vestibular

and visual stimuli followed a Gaussian-shape velocity temporal

profile, producing naturally varied cue reliability over time. They

reported that MSTd neurons take linear combination of their sen-

sory input but that the weights change with the reliability of the

input, which is inconsistent with the ilPPC prediction. However,

this analysis ignored correlations among sensory neurons, which

turns out to be critical for the structure of the code. Moreover,

this work focused on the sensory areas and did not suggest

any solution to the problem of temporal integration of sensory

evidence with time varying reliabilities.

Here, we recorded the activity of single neurons in the lateral

intraparietal area (LIP) under a similar task, and report that the

population activity in LIP integrates its sensory inputs acrossmo-

dalities and time in a way consistent with the ilPPC prediction.

We focus on LIP because it is the most extensively studied brain

region where buildup choice-related activity has been found dur-

ing visuomotor decisions in macaques (Shadlen and Newsome,

1996, 2001; Roitman and Shadlen, 2002; Gold and Shadlen,

2007; Huk et al., 2017). In addition, LIP receives abundant

anatomical inputs (Boussaoud et al., 1990) from areas encoding

momentary vestibular and visual self-motion information for

heading discrimination, such as the MSTd area (Gu et al.,

2006, 2008) and the ventral intraparietal area (VIP) (Chen et al.,

2011b, 2013). It is therefore expected that the activity of LIP neu-

rons should carry buildup choice signals germane to the forma-

tion of multisensory decisions. Note that two recent rodent

studies (Raposo et al., 2014; Nikbakht et al., 2018) also have

described multisensory decision signals in rat posterior parietal

cortex, a region analogous to its primate counterpart. However,

these studies did not characterize the computational solution

implemented by these neural circuits, which is precisely the

question we investigate here. Specifically, we explored whether

the response of LIP neurons is consistent with the ilPPC theory in

which neurons take fixed linear combinations of their sensory in-
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puts without any need for complex, time-dependent, modality-

specific reweighting of the sensory inputs during multisensory

decision making. We also reanalyzed MSTd data and found

that it is unlikely to be the primary site of multisensory decision

making.

RESULTS

Optimal Multisensory Decision-Making Behavior on
Macaques
We trained twomacaquemonkeys to perform a vestibular-visual

multisensory decision-making task (Gu et al., 2008) (Figure 1A).

On each trial, the monkeys experienced a 1.5-s fixed-duration

forward motion with a small deviation either to the left or to the

right of the dead ahead. At the end of the trial, the animals

were required to report the perceived heading direction by

making a saccade decision to one of the two choice targets

(Figure 1B). We randomly interleaved three cue conditions over

trials: a vestibular condition and a visual condition in which head-

ing information was solely provided by inertial cues and optic

flow, respectively, and a combined condition consisting of

congruent vestibular and visual cues. Importantly, both the

vestibular and visual stimuli followed a Gaussian-shape velocity

temporal profile, peaking at the middle of the 1.5-s stimulus

duration.

The monkeys’ behavioral performance was quantified by

psychometric functions for each cue condition (Figure 1C).

Consistent with the previous results (Gu et al., 2008), the mon-

keys made more accurate decisions in the combined condition,

as evidenced by a steeper psychometric function and a smaller

psychophysical threshold (Figure 1C). Across all recording

sessions, both monkeys’ psychophysical thresholds of the com-

bined condition were significantly smaller than those of single

cue conditions and close to the prediction from the optimal

cue integration theory (Knill and Richards, 1996) (Figure 1D),

although monkey M was significantly supra-optimal (Raposo

et al., 2012; Nikbakht et al., 2018) (see more detail at the end

of the section entitled ‘‘Network model implementing ilPPC for

multisensory decision making’’). Therefore, the monkeys can

integrate vestibular and visual cues near optimally in our multi-

sensory decision-making task.

Heterogeneous Multisensory Choice Signals in LIP
Next, we set out to explore how these optimal decisions were

formed in the brain. We recorded from 164 single, well-isolated

neurons in LIP of two monkeys while they were performing the

task (Figure S1). As expected, we found buildup-choice-related

signals in LIP neurons under all cue conditions. As shown in peri-

stimulus time histograms (PSTHs) of the example cells (Figures

2A and S1D–S1G), there was generally an increasing divergence

between the neuron’s firing rate on trials in which the monkey

chose the target in the neuron’s response field (IN choices)

and trials in which the opposite target was chosen (OUT

choices). Importantly, in all conditions, the buildup choice sig-

nals tended to be stronger for heading directions more distant

away from straight ahead (Figure S2), suggesting that the

response of LIP neurons reflects the accumulation of visual

and vestibular sensory evidence for heading judgments.
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Figure 1. Optimal Cue Integration in a Vestib-

ular-Visual Multisensory Decision-Making

Task

(A) Schematic drawing of the experimental setup (top

view). Themonkey’s task was to discriminate whether

the heading direction was to the left or the right of the

straight ahead (black dashed line) based on vestibular

inputs (blue), visual optic flow (red), or both (green).

(B) Task timeline. Note that the self-motion speed

followed a Gaussian-shape profile.

(C) Example psychometric functions from one ses-

sion. The proportion of ‘‘rightward’’ choices is plotted

against the headings for three cue conditions,

respectively. Smooth solid curves represent best-

fitting cumulative Gaussian functions. Black dashed

curve represents the optimal prediction.

(D) Average psychophysical thresholds from two

monkeys for three conditions and predicted thresh-

olds calculated from optimal cue integration theory

(black bars).

Error bars indicate SEM; p values are from a paired

t test.
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To quantify the strength of choice-related signals, we used

receiver operating characteristic (ROC) analysis to generate an

index of choice divergence (CD) (Raposo et al., 2014) (Figure 2B).

The four cells illustrated in Figure 2 exhibited canonical ramping

choice signals, but their CDs varied greatly across cue condi-

tions. For example, for cell 1, the CDwas largest in the combined

condition, modest in the visual condition, and smallest in the

vestibular condition. By contrast, for cell 4, the CD was largest

in the vestibular condition. This heterogeneity was also manifest

at the population level (Figures 2C and 2D). Approximately half of

LIP neurons exhibited significant CD (p < 0.05, two-sided permu-

tation test) in each condition (vestibular, 52%; visual, 46%; com-

bined, 59%; Figure 2D), but they did not fully overlap (Figure 2C).

Although vestibular and visual CD is significantly correlated

across the population, the correlation was relatively weak (p =

5.2e-17, r2 = 0.35; Figure S3B). In addition, while more than

two-thirds of neurons (76%) had significant CD in any of the three

conditions, only one-third of neurons (30%) had significant CD in

all of the three conditions (Figure 2D).

Apart from the heterogeneous choice signals, LIP also en-

codes heterogeneous sensory modality signals. As shown in

Figure S3A, most LIP neurons carried mixed choice and modal-

ity signals, exhibiting a category-free-like neural representation,

as previously seen in rat posterior parietal cortex (Raposo et al.,

2014). However, although randomly mixed at the single-neuron

level, the choice and modality signals can still be linearly de-

coded from the LIP population, as shown by the results from

demixed principal-component analysis (dPCA) (Kobak et al.,

2016; Rossi-Pool et al., 2017) (Figures S3D–S3F). Therefore,

we ignore the mixed modality signals thereafter, since they
are orthogonal to the decision signals and

are irrelevant to our task.

Another potential difficulty in interpreting

LIP activity arises from the fact that LIP

neurons also multiplex a combination of

temporally overlapping decision- and non-
decision signals (Meister et al., 2013; Park et al., 2014). In partic-

ular, the signal of saccade preparation may interfere with the one

reflecting evidence accumulation (Shadlen and Newsome,

2001). However, this was not likely to be an issue in our study.

In our fixed-duration task, we introduced a 300- to 600-ms delay

between the stimulus offset and the time at which the monkey

was allowed to saccade (STAR Methods). Moreover, the mon-

keys tended to stop integrating evidence �500 ms prior to the

stimulus offset (see Figure 3B and below), further separating in

time the processes of evidence accumulation and saccade

preparation. Therefore, the premotor activity of LIP should not

play a significant role in our analysis of multisensory evidence

accumulation.

LIP Integrates the Visual Speed and Absolute Value of
Vestibular Acceleration
Despite the high degree of heterogeneity among the LIP popula-

tion, the choice signals consistently ramped up earlier in the

vestibular and combined conditions than in the visual condition

(Figure 3). This was evident not only in population analyses,

such as the percentage of cells with significant choice signals

(Figure 3A), the averaged PSTH (Figure 3B), and the demixed

choice components (Figure S3F), but also in the cell-by-cell anal-

ysis (Figure 3C; see also Figure 2C). Specifically, we used diver-

gence time to quantify the onset of choice signals for each

neuron in each cue condition (STAR Methods). It turned out

that while the vestibular and combined divergence times were

similar (p = 0.054, n = 73; two-tailed paired t test), both of

them were significantly shorter than the visual one (vestibular-

visual: p = 8e-16, n = 59; combined-visual: p = 7e-19, n = 67;
Neuron 104, 1–12, December 4, 2019 3
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Figure 2. Heterogeneous Choice Signals in the LIP Population

(A) Peri-stimulus time histograms (PSTHs) of four example cells. Spike trains were aligned to stimulus onset (left subpanels) and saccade onset (right subpanels),

respectively, and grouped by cue condition and monkey’s choice. Vestibular, blue; visual, red; combined, green. Toward the cell’s response field (RF), or IN

choices, solid curves; away from the cell’s RF, or OUT choices, dashed curves. Shaded error bands represent SEM. Horizontal color bars represent time epochs

in which IN and OUT trials have significantly different firing rates (p < 0.05, two-tailed t test), with the color indicating cue condition and the position indicating the

relationship between IN andOUT firings (IN >OUT, top; IN <OUT, bottom). Gray dashed curves represent the actual speed profile measured by an accelerometer

attached to the motion platform.

(B) Choice divergence (CD) of the same four cells (STAR Methods). Horizontal color bars are the same as in (A), except that p values were from permutation test

(n = 1,000).

(C) Timing of significant choice signals (yellow patches; p < 0.05, two-tailed t test) for all LIP neurons (vertical axis) in the three cue conditions (left, middle, and right

panels). Cells were sorted according to their grand CDs (CD computed from all spikes in 0–1,500 ms) under the combined condition. Small colored bars next to

each panel indicate cells with significant grand CDs (p < 0.05, permutation test) under each condition (see D).

(D) Venn diagram showing the distribution of overall choice signals. The number within each colored area indicates the number of neurons that have significant

grand CDs under the corresponding combination of cue conditions.

See also Figures S1–S3.
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Figure 3. LIP Integrates the Visual Speed and

Absolute Value of Vestibular Acceleration

(A) Fraction of cells with significant choice coding as a

function of time (see Figure 2C). Horizontal dashed

line represents the type I error rate of 5%.

(B) Population average of normalized PSTHs from

125 ‘‘any choice’’ cells. Shaded error bands repre-

sent SEM.

(C) Divergence time of cells with significant grand CD

for each condition (STAR Methods). Gray lines con-

nect data from the same cells. p values are from a

two-tailed paired t test; note that the numbers of pairs

were different for each comparison. Data points with

horizontal error bars represent mean ± SEM of the

population divergence time; acceleration and speed

profiles are shown in the background.

(D) Two motion profiles used to isolate contributions

of acceleration and speed to LIP ramping. Note that

by widening the speed profile, we shifted the time of

acceleration peak forward (blue vertical lines) while

keeping the speed peak unchanged (red vertical

lines).

(E) Vestibular and visual CDs under the two motion

profiles.

(F) Comparison of divergence time between narrow

andwide profiles. p values are from a two-tailed t test.
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two-tailed paired t test) (Figure 3C). Notably, the averaged diver-

gence time under the vestibular and combined conditions

aligned well to the acceleration peak of the Gaussian-shape

motion profile, whereas the divergence time under the visual

condition lagged behind and aligned better to the velocity peak

(Figure 3C, dashed curves). This suggests that the physical

quantities being integrated over time are speed for the visual

stimulus and the absolute value of acceleration for the vestibular

stimulus.

An alternative explanation, however, might be that the

apparent �400-ms interval between the vestibular and visual

ramping was caused purely by a difference in their sensory la-

tencies. For example, LIP activity could have been driven by an

ultrafast vestibular signal but a slow visual signal, both of which

followed the velocity of the motion. To test this, we designed

an experiment in which we used two distinct velocity profiles:

a wide one and a narrow one (Figure 3D). These profiles

were designed to have temporally aligned velocity peaks but

misaligned acceleration peaks. If our original physical-quantity

hypothesis was correct, then we would expect the visual ramp-

ing to remain nearly the same, while the vestibular ramping

should start earlier for the wide profile than for the narrow

one. In contrast, if the sensory-latency hypothesis was correct,

then there should be no shift in either the vestibular or visual

ramping across the two profiles. Our data matched the first

prediction (Figures 3E and 3F), which supports the hypothesis

that LIP accumulates different momentary physical quantities

over time. This physiological finding echoes a recent psycho-

physical study showing that at the behavioral level, human

subjects optimally integrate vestibular and visual momentary

evidence with reliability following the amplitude of accelera-

tion and velocity, respectively (Drugowitsch et al., 2014) (see

Discussion).
Network Model Implementing ilPPC for Multisensory
Decision Making
Next, we developed a neural model of multisensory decision

making (refer to asM1 thereafter), which takes as input vestibular

neurons tuned to acceleration and visual neurons tuned to veloc-

ity as observed in vivo (Equations 2 and 3 in STAR Methods;

Figures 4A and 4B, bottom). These inputs converge onto an inte-

grator layer, which takes the sum of the visual and vestibular

inputs and integrates this summed input over time (Figure 4A,

middle). This layer projects in turn to an output layer, labeled

LIP, which sums the integrated visuo-vestibular inputs with the

activity from another input layer encoding the two possible tar-

gets to which the animal can eventually saccade (Figure 4A,

top, and Figure 4B, middle and top). As long as the input layers

encode the sensory inputs with ilPPC, this simple network can

be shown analytically to implement the Bayes optimal solution,

even when the reliability of the sensory inputs varies over

time, as is the case in our experiment (Ma et al., 2006; Beck

et al., 2008).

In an ilPPC, the gain, or amplitude, of the tuning curves of the

neurons should be proportional to the reliability of the encoded

variable. For instance, in the case of vestibular neurons, the

amplitude of the tuning curves to heading should scale with

the absolute value of acceleration. In vivo, however, the re-

sponses of visual neurons are not fully consistent with the

assumption of ilPPC, because while the amplitude does increase

with reliability, in some neurons, the baseline activity decreases

with reliability (Figure S4A; see also Equations 2 and 3 in STAR

Methods). This violation of the ilPPC assumption implies that a

simple sum of activity could incur an information loss. Instead,

one would have to posit a model with time-varying synaptic

weights in order to achieve optimal integration (Fetsch et al.,

2011), which would be less biologically plausible. Fortunately,
Neuron 104, 1–12, December 4, 2019 5
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Figure 4. Neural Network Model with Invariant Linear Probabilistic Population Codes (ilPPCs) for Multisensory Decision Making

(A) Network architecture of model M1. The model consists of three interconnected layers of linear-nonlinear-Poisson units (inset). Units in visual and vestibular

layers have bell-shaped ilPPC-compatible tuning curves for heading direction. The intermediate integrator layer simply sums the incoming spikes from the two

sensory layers over time and transforms the tuning curves for heading direction to that for saccade direction (�90�, leftward choice; +90�, rightward choice). The

LIP layer receives the integrated heading inputs from the integrator layer, together with visual responses triggered by the two saccade targets. Once a decision

boundary is hit, or when the end of the trial is reached (1.5 s), LIP activity is decoded by a linear support vector machine for action selection. Circles indicate

representative patterns of activity for each layer; spike counts from 800 to 1,000 ms; combined condition, 8� heading.
(B) Weight matrices used in the network. Bottom: feedforward connections from the vestibular and visual layers to the integrator layer; middle: feedforward

connections from the integrator layer to the LIP layer; top: LIP recurrent connections. Cyan curve indicates synaptic weights from one representative presynaptic

neuron (cyan arrow) to postsynaptic neural population (horizontal axis) (dashed line, zero).

See also Figures S4 and S7.
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however, this information loss is small for a population of neu-

rons with information limiting correlations (Moreno-Bote et al.,

2014), which are thought to be present in MSTd (Pitkow et al.,

2015; Lakshminarasimhan et al., 2018). Indeed, we found

numerically that the information loss was�5%over a wide range

of parameters values (Fano factor, mean correlation, baseline

changes, and so on) (STAR Methods; Figures S4B–S4E).

Importantly, we also endowed the network with a stopping

mechanism that terminates sensory integration whenever a

function of the LIP population activity reaches a preset threshold

(STAR Methods). Our experiment is not a reaction time experi-

ment and may not require, in principle, such a stopping bound.

However, as can be seen in Figure 3B, LIP population response

saturates at �1 s, suggesting that evidence integration stops

prematurely. This is indeed consistent with the previous results

suggesting that animals and humans use a stopping bound

even in fixed duration experiments (Kiani et al., 2008). This could

also explain the paradoxical supra-optimal behavior in monkey

M (Figure 1D). Specifically, the monkey’s performance can be

better than optimal if the stopping bound in the combined condi-

tion is well above the stopping bound in the visual and vestibular

conditions (Drugowitsch et al., 2014; Drugowitsch et al., 2015). In
6 Neuron 104, 1–12, December 4, 2019
this case, the animal would integrate evidence for a longer time in

the combined condition than in single cue conditions, resulting in

supra-optimal performance (Raposo et al., 2012; but see Nik-

bakht et al., 2018).

LIP Data Are Compatible with the ilPPC Framework
In the first set of simulations onM1, we adjusted the height of the

stopping bounds and found that the model can replicate the an-

imals’ near-optimal performance (Figure 5A).We then plotted the

population activity of neurons in the LIP layer (Figures 5B and

5C). As expected, and also similar to our monkey LIP data (Fig-

ure 3B), the average LIP activity of model M1 (Figure 5C) in the

combined condition follows at first the vestibular condition and

then diverges due to the rise of the visual input. In the second

half of the trial, the activity in all conditions tend to saturate

due to the fact that the population activity has hit the stopping

bound on most trials and therefore stops rising until the end of

the trial.

Neurons inM1 are homogeneous in the sense that they all take

a perfect sum of their vestibular and visual inputs. Importantly,

however, optimal integration does not require such a perfect

sum; it can also be achieved with random linear combinations



A B C Figure 5. Homogeneous ilPPC Model M1 Per-

forms the Task Near Optimally

(A) Model M1 exhibited near-optimal behavior as the

monkey. The psychophysical threshold under the

combined condition (green) was indistinguishable

from the Bayesian optimal prediction (black).

(B) Population firing rate in the LIP layer at five different

time points (the same stimulus as in A, averaged over

100 repetitions). Yellow shaded areas indicate the

range of cells that were used to calculate the averaged

PSTHs in (C).

(C) Average PSTHs across LIP population. Notations

are the same as in Figure 3B.

See also Figure S5.
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of vestibular and visual inputs (Ma et al., 2006). Accordingly, we

simulated a second model, referred to as M2, in which the visual

and vestibular weights of each neuron were drawn from

lognormal distributions (Figures S5A and S5B; STAR Methods).

LikeM1, model M2 can be tuned to reproduce the Bayes optimal

discrimination thresholds (Figures S5C and S5E). However, in

contrast to model M1, the neurons showed a wide range of

response profiles similar to what we observed in vivo (Fig-

ure S5D). In particular, we found that the distribution of visual

and vestibular weights was similar in M2 and LIP data (Fig-

ure S5F; STAR Methods).

Since model M2 is a linear combination away from model M1,

we tested whether the response of M1 neurons (Figure 6A) could

be estimated by linearly combining the response of M2 neurons

(Figure 6B). Multivariate linear regression confirmed that M1

response profiles could indeed be perfectly reproduced by line-

arly combining M2 responses (Figure 6C). Likewise, since LIP

neurons also appear to be computing random linear combina-

tions of visual and vestibular inputs, the same result should

hold for LIP responses. This is indeed what we found; the

response of M1 neurons can be closely approximated by linearly

combining the response of LIP neurons (Figures 6D and S6A).

This last result is key; it suggests that LIP neurons behave

quite similarly to the neurons in M2. The two sets of neurons,

however, differ quite significantly in how they integrate their in-

puts over time. LIP neurons display a wide variety of temporal

profiles (see Figures 2C and S1D–S1G), suggesting that very

few neurons act like perfect temporal integrators, in contrast to

M2 neurons. Nonetheless, the fact that linear combinations of

LIP neurons could reproduce the response of M1 neurons indi-

cates that LIP responses provide a basis set sufficiently varied

to allow perfect integration at the population level, a result

consistent with what has been recently reported in the posterior

parietal cortex of rats engaged in a perceptual decision-making

task (Scott et al., 2017).

In addition to this second model, we simulated a third model

(M3) in which the time constant of the integrator layer was

reduced to 100 ms. Interestingly, we found that it was not

possible to linearly combine the responses of M3 output

neurons to reproduce the traces of the optimal model M1 (Fig-

ures 6E and 6G), thus emphasizing the importance of long

integration time constant for fitting the optimal model. We also

wondered whether M1 could be fitted by the response of

MSTd neurons, which are known to combine visual and vestib-
ular responses and whose time constant are believed to be of

the same order as model M3. We found that the fit to M1 from

MSTd neurons was markedly worse than those obtained from

M2 and LIP but was close to that from M3 (Figures 6F and

6G). Moreover, only a small fraction of cells contributed signifi-

cantly to this fit, in sharp contrast to what we observed in M2

and LIP (Figures 6H and 6I). In fact, the late phase of M1 re-

sponses was captured mostly by MSTd cells with short time

constants that seemed sensitive to deceleration rather than

integrating cells (Figure S6B).

Finally, we computed the shuffled Fisher information over time

for the models and the experimental data (Figure 7). The Fisher

information in a neuronal population is a measure inversely pro-

portional to the square of the discrimination threshold of an ideal

observer (Seung and Sompolinsky, 1993; Beck et al., 2011)

(STAR Methods). Our network simulations revealed that the

shuffled Fisher information should increase over time in all

conditions, reflecting the temporal accumulation of evidence

(Figure 7A). In addition, we observed that this rise in information

starts earlier in the vestibular condition than in the visual one

because of the temporal offset between acceleration and

velocity. In the combined condition, the Fisher information fol-

lows at first the vestibular condition, and then exceeds the

vestibular trace even slightly earlier than the visual information

becomes available. This seemingly nonlinear effect is due to

the higher stopping bound used in the combined condition

(see STAR Methods and Figures S6C–S6G). Remarkably, the

shuffled Fisher information estimated from the LIP responses fol-

lows qualitatively the same trend as the ones observed in the

model (Figure 7B). In contrast to M2 and LIP neurons, shuffled

Fisher information in M3 andMSTd followed the profile expected

for neurons with short time constant; it simply reflected the

velocity profile of the stimulus and did not exhibit the plateau

expected from a decision area (Figures 7C and 7D).

DISCUSSION

Integrating ever-changing sensory inputs from different sources

across time is crucial for animals to optimize their decisions in a

complex environment, yet little is known about the underlying

mechanisms. This study presents, to the best of our knowledge,

the first investigation of the neural basis of optimal multisensory

decision making in non-human primates. We found that LIP neu-

rons in the macaque posterior parietal cortex encode ramping
Neuron 104, 1–12, December 4, 2019 7
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Figure 6. Optimal ilPPC Model M1 Can Be

Linearly Approximated by M2 and LIP, but

Not by M3 or MSTd

(A) Ramping activity of M1 computed as the dif-

ference of PSTHs for IN andOUT trials. SinceM1 is

optimal and homogeneous, we refer to M1’s

activities as ‘‘optimal traces’’ (see the main text).

Notations are the same as before.

(B) Schematic summary of results in (C)–(F).

(C) Optimal traces from M1 (thick shaded bands)

can be linearly reconstructed by population activ-

ities obtained from a heterogenous model M2

(dashed curves). Model M2 had the same network

architecture as M1, except that it relies on random

combinations of ilPPC inputs in the integrator layer.

(D)Optimal tracescan alsobe linearly reconstructed

by heterogenous single neuron activities from the

LIP data.

(E and F) In contrast, the optimal traces cannot be

reconstructed from activities of a suboptimal

model M3 (E) or from the MSTd data (F).

(G) Mean squared error of the fits in (C)–(F). Error

bars and p values are from a subsampling test (n =

50 neurons, 1,000 times; STAR Methods).

(H) Normalized readout weights ordered by

magnitude. Shaded error bands indicate SDs of

the subsampling distributions.

(I) The kurtosis of the distributions of weights.

The black curve in (H) and black bar in (E) were

from random readout weights.

See also Figures S5 and S6.
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decision signals not only for the visual condition, as widely

shown in the literature, but also for the vestibular and combined

conditions, except with distinct temporal dynamics. Importantly,

these data are compatible with an ilPPC framework where

optimal multisensory evidence accumulation is achieved by

simply summing sensory inputs across both modalities and

time, even with mismatched temporal profiles of cue reliabilities

and with heterogeneous sensory-motor representation. There-

fore, our results provide the first neural correlate of near-optimal

multisensory decision making and a crucial test of the ilPPC

framework.

Distinct Visual and Vestibular Temporal Dynamics in LIP
By comparing the temporal dynamics of LIP population under

different modalities, we found that LIP neurons accumulate the

visual speed and the absolute value of vestibular acceleration,

which serve as momentary evidence for their respective modal-

ities. These findings may seem confusing at first glance, since it

is more intuitive to assume that neural circuits would combine

evidencewith the same temporal dynamics across cues, namely,

either visual and vestibular speed or visual and vestibular

acceleration (Gu et al., 2006; Fetsch et al., 2010; Chen et al.,

2011a; Smith et al., 2017). In support of this idea, although vestib-

ular peripheral organs, such as the otoliths, encode inertialmotion

predominantly by acceleration (Fernández and Goldberg, 1976),
8 Neuron 104, 1–12, December 4, 2019
recent studies have found a transfor-

mation from acceleration-dominated to

speed-dominated vestibular signal along
the subcortical vestibular pathway, i.e., from otolith organs to

theCNS (Laurens et al., 2017), followed by amoderate but notice-

able further transformation along several sensory cortices (Gu

et al., 2006; Fetsch et al., 2010; Chen et al., 2011a; Laurens

et al., 2017). Given that visual motion responses are typically

dominated by speed (Rodman and Albright, 1987; Lisberger and

Movshon, 1999; Gu et al., 2006), one would think that the brain

may deliberately turn the vestibular signal from acceleration- to

speed-sensitive to facilitate thecombinationwith thevisual signal.

However, if the vestibular momentary evidence is proportional

to acceleration corrupted by white noise across time, integrating

this evidence to obtain a velocity signal would not simplify deci-

sionmaking. On the contrary, this step would introduce temporal

correlations (Churchland et al., 2011), in which case, even with

ilPPC, a simple sum of the momentary evidence would no longer

be optimal (Bogacz et al., 2006). Instead, downstream circuits

would have to compute aweighted sum of the sensory evidence,

which would effectively differentiate the momentary evidence

before summing them. In other words, optimal integration would

effectively recover the original acceleration signals. Our results,

along with previous psychophysical results (Drugowitsch et al.,

2014), strongly suggest that the brain does not go through this

extra step but uses the acceleration signals as momentary evi-

dence instead, which makes sense given the nature of vestibular

peripheral sensors (Fernández and Goldberg, 1976).
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Figure 7. Shuffled Fisher Information for the Model and the Experi-

mental Data
(A) Shuffled Fisher information of M2 (STAR Methods). Shaded error bands

represent SEM estimated from bootstrap. Note that the absolute value of

shuffled Fisher information is arbitrary.

(B–D) Same as in (A) but for themonkey LIP data (B), theM3 responses (C), and

the monkey MSTd data (D), respectively. Note that the Fisher information of

MSTd neurons was lower in the vestibular and the combined conditions than in

the visual condition (compare curves in D). This is due to weaker vestibular

responses and the existence of ‘‘opposite neurons’’ inMSTd (see discussion in

STAR Methods).

See also Figure S6.
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It should also be noted that accumulating vestibular evidence

with reliability proportional to the absolute value of acceleration

in decision areas such as LIP is a process fundamentally different

from transforming vestibular acceleration to velocity in sensory

areas such asMSTd and VIP (Laurens et al., 2017). First, LIP neu-

rons do not encode passive vestibular heading information when

the animal is translated without making any decision, in sharp

contrast to neurons in the sensory cortices, including MSTd,

VIP, and visual posterior sylvian area (VPS) (mean direction

discrimination index [DDI] ± SEM: LIP, 0.42 ± 0.01; MSTd,

0.59 ± 0.01; VIP, 0.61 ± 0.01; VPS, 0.69 ± 0.01; DDILIP < DDIMSTd,

VIP, VPS, p < 1e-10, two-tailed t test; Y.G., unpublished data; Gu

et al., 2006; Chen et al., 2011b). Second, LIP appears to integrate

the absolute value of acceleration (not acceleration), because it

provides the momentary evidence for deciding between right-

ward and leftward self-motion.

Multisensory Convergence in the Brain for Heading
Decision
One of the long-standing questions about multisensory integra-

tion is whether integration takes place early or late along the

sensory streams (Bizley et al., 2016). There are clear signs of

multisensory responses in the relatively early or mid-stage of

sensory areas, thus supporting the early theory (Gu, 2018). Our

results are more consistent with the late-convergence theory in
which multisensory momentary evidence are combined across

modalities and time in decision areas such as LIP. However,

this dichotomy between early and late theories does not neces-

sarily make sense given the recurrent nature of the cortical cir-

cuitry. In a highly recurrent network, it is notoriously difficult to

identify a node as a primary site of integration. Thus, integration

might take place simultaneously acrossmultiple sites but in such

a way that the output of the computation is consistent across

sites. For example, Deneve et al. (2001) demonstrated how this

could take place in a large recurrent network performing optimal

multisensory integration, though their work did not consider the

problem of temporal integration.

It might be possible to gain further insight into the distributed

nature of multisensory decision making by combining the previ-

ous models with the one we have presented here. Such an

extended model might explain why vestibular momentary evi-

dence is tuned to velocity by the time they appear in MSTd (Lau-

rens et al., 2017; Gu, 2018) and why this velocity tuned vestibular

input does not appear to be integrated in LIP. It could also shed

light on recent physiological experiments in which electrical

microstimulation and chemical inactivation in MSTd could

dramatically affect heading discrimination based on optic flow

while this effect was largely negligible in the vestibular condition

(Gu et al., 2012). By contrast, and in accord with our finding that

LIP integrates the absolute value of vestibular acceleration, inac-

tivating the vestibular cortex parieto-insular vestibular cortex

(PIVC), where vestibular momentary evidence is dominated by

acceleration (Chen et al., 2011a; Laurens et al., 2017), substan-

tially diminished the macaque’s heading ability based on vestib-

ular cue (Chen et al., 2016). A detailed construction of such a

model will eventually be required for a multi-area theory of multi-

sensory decision making.

The Role of LIP in Multisensory Decision Making
The causal role of macaque LIP in perceptual decision making

remains controversial (Huk et al., 2017). While inactivation of ma-

caque LIP has been found to have no effect on decisions in the

classical random dots task (Katz et al., 2016), a recent study

came to a different conclusion with a modified task design

(Zhou and Freedman, 2019). In addition, causal experiments

on rodent posterior parietal cortex (an area that is supposed to

be analogous to macaque LIP) have also yielded varying results

(Najafi and Churchland, 2018). The apparent role of rodent pos-

terior parietal cortex turns out to depend on confounding factors

such as sensory modality (Guo et al., 2014; Raposo et al., 2014;

Erlich et al., 2015; Hanks et al., 2015; Licata et al., 2017), learning

process (Zhong et al., 2019), and interactions among different

brain regions (Li et al., 2016).

This controversial issue, however, is orthogonal to the conclu-

sions of the current study. As long as LIP responses reflect the

integration process of multisensory evidence, even if the actual

integration takes place somewhere else, we can still use these

responses to test the prediction of our ilPPC model (Pisupati

et al., 2016; O’Connell et al., 2018).

ComputationalModels forMultisensoryDecisionMaking
Our results indicate that, at the population level, LIP implements

a near-optimal solution for multisensory decision making under
Neuron 104, 1–12, December 4, 2019 9
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the assumption that the sensory inputs are encoded with ilPPC.

At first sight, this assumption is not perfectly satisfied in our

model system, but we saw that the deviation from ilPPC intro-

duces only a minor information loss (see Figure S4), as long as

there are strong differential correlations in MSTd and vestibular

areas, which seems to be the case in vivo (Pitkow et al., 2015).

As to the LIP layer, our negative control with model M3 showed

that if LIP neurons responded like the output neurons in model

M3 (the time constant of the integrator layer was 100 ms), we

would not be able to reconstruct linearly the optimal responses

from model M1. This result, again, lends support to the notion

that LIP implements a solution close to ilPPC.

We showed in model M2 that the ilPPC solution for multisen-

sory decision making can be implemented by heterogeneous

population, just like what we found in LIP. In other words, hetero-

geneity is not a problem for optimal integration, and thus there is

no incentive for neural circuits to get rid of it. On the contrary,

there might be some positive reasons for keeping it, such as

causal inference (Körding et al., 2007; Rohe and Noppeney,

2015). To decide whether to fuse or not to fuse sensory inputs

from multiple modalities, the brain must have access to the un-

imodal responses that have been integrated only over time but

not across modalities. Such responses can be retrieved from a

heterogeneous population like M2 or LIP (e.g., vestibular or

visual only neurons), but not from homogeneous population

like M1.

While these results provide the strongest test of the ilPPC

theory to date, it will be important to test in future experiments

other predictions of the ilPPC framework. In particular, the ilPPC

theory predicts that LIP activity encodes a full probability distri-

bution over choices given the evidence so far (Beck et al.,

2008). Testing this prediction thoroughly requires simultaneous

recording of LIP ensemble, manipulating the cue reliability (mo-

tion profile or visual coherence) on a trial-by-trial basis, and pref-

erably engaging the animals in a reaction-time task, all of which

should be addressed in future studies.

There are of course other models of decision making that

could potentially account for the responses we have observed

in LIP (Chandrasekaran, 2017). In particular, it has been argued

that LIP is part of a network of areas implementing point attractor

networks (Wang, 2002; Wong and Wang, 2006). However, it is

not immediately clear how this approach can be generalized to

the type of decision we have considered here. Indeed, as we

have seen, the optimal solution depends critically on the code

that is used to encode the momentary evidence. To the extent

that this code is close to an ilPPC, the optimal solution is to

sum the inputs spikes, in which case one needs a line attractor

network, which is effectively what our network approximates.

Therefore, as long as these previous models of decision making

are fine-tuned to approximate line attractor networks, and as

long as they are fed ilPPCs as inputs, the two classes of models

would be equivalent.

Training recurrent neural network (RNNs) on our task (Mante

et al., 2013; Song et al., 2017) provides a third alternative for

modeling multisensory decision making. We also tried this

approach and found that the resulting network was capable of

reproducing the behavioral thresholds of the animal while exhib-

iting a wide variety of single neuron responses similar to what we
10 Neuron 104, 1–12, December 4, 2019
saw in LIP (Figure S7). Nonetheless, this approach has onemajor

drawback: it makes it very difficult to understand how the

network solves the task. We could try to reverse engineer the

network, but given that an analytical solution can be derived

from first principles for our task, and given that this solution is

close to what we observed in LIP, it is unclear what insight could

be gained from the recurrent network. In contrast, our ilPPC

model provides a close approximation to the optimal solution,

consistent with the experimental results, along with a clear un-

derstanding as to why this approach is optimal.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures were approved by the Animal Care Committee of Shanghai Institutes for Biological Sciences, Chinese Acad-

emy of Sciences and have been described previously in detail (Gu et al., 2006, 2008). Briefly, twomale adult rhesusmonkeys,Monkey

P and Monkey M, weighing �8 kg, were chronically implanted with a lightweight plastic ring for head restraint and a scleral coil for

monitoring eye movements (Riverbend Instruments). During experiments, the monkey sat comfortably, with the head restrained, in a

primate chair mounted on top of a custom-built virtual reality system.

METHOD DETAILS

Apparatus
The vestibular-visual virtual reality system consisted of a motion platform (MOOG MB-E-6DOF/12/1000KG) and an LCD screen

(�30 cm of view distance and�90� 3 90� of visual angle; HP LD4201), presenting vestibular and visual motion stimuli to the monkey,

respectively. The stimuli were controlled by customized C++ software and synchronized with the electrophysiological recording

system by TEMPO (Reflective Computing, U.S.A).

To tune the synchronization between vestibular and visual stimuli, we rendered a virtual world-fixed crosshair on the screen while

projected a second crosshair at the same place on the screen using a real world-fixed laser pen. When the platform was moving, we

carefully adjusted a delay parameter in the C++ software (with 1 ms resolution) until the two crosshairs aligned precisely together all

the time, as verified by a high-speed camera (Meizu Pro 5) and/or a pair of back-to-back mounted photodiodes. This synchronization

procedure was repeated occasionally over the whole period of data collection.

Behavioral Tasks
Memory-guided Saccade Task

Weused the standardmemory-guided saccade task (Barash et al., 1991) to characterize and select LIP cells for recording in themain

decision-making experiments. The monkey fixated at a central fixation point for 100 ms and then a saccade target flashed briefly
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(500 ms) in the periphery. The monkey was required to maintain fixation during the delay period (1000 ms) until the fixation point

extinguished and then saccade to the remembered target location within 1000 ms for a liquid reward. For all tasks in the

present study, at any time when there existed a fixation point, trials were aborted immediately if the monkey’s gaze deviated from

a 2� 3 2� electronic window around the fixation point.

Multisensory Heading Discrimination Task

In the main experiments, we trained the monkeys to report their direction of self-motion in a two-alternative forced-choice heading

discrimination task (Gu et al., 2008) (Figure 1). The monkey initiated a trial by fixating on a central, head-fixed fixation point, and two

choice targets then appeared. The locations of the two targets were determined case-by-case for each recording session (see

below). After fixating for a short delay (100 ms), the monkey then began to experience a fixed-duration (1.5 s) forward motion in

the horizontal plane with a small leftward or rightward component relative to straight ahead. The animals were required to maintain

fixation during the presentation of the motion stimuli. At the end of the trial, the motion ended, and the monkey was required to main-

tain fixation for another 300–600ms random delay (uniformly distributed) until the fixation point disappeared, at which point the mon-

key was allowed to make a saccade choice toward one of the two targets to report his perceived heading direction (left or right).

Across trials, nine heading angles (±8�, ± 4�, ± 2�, ± 1�, and 0�) and three cue conditions (vestibular, visual, and combined) were

jointly interleaved, resulting in 27 unique stimulus conditions, each of which was repeated 15±3 (median ± m.a.d.) times per one

session. In a vestibular or a visual trial, heading information was solely provided by inertial motion (real movement of the motion plat-

form) or optic flow (simulated movement through a star field on the display), respectively, whereas in a combined trial, congruent

vestibular and visual cues were provided synchronously. To maximize the behavioral benefit of cue integration, we balanced the

monkey’s performance under the vestibular and the visual conditions by manipulating the motion coherence of the optic flow (the

percentage of dots that moved coherently). The visual coherence was 12% and 8% for monkey P and M, respectively.

To ensure that the reliabilities of sensory cues varied throughout each trial, we used Gaussian-shape, rather than constant,

velocity profiles for all motion stimuli. In the main experiments, the Gaussian profile had a displacement d = 0:2 m and a standard

deviation s= 210 ms (half duration at about 60% of the peak velocity), resulting in a peak velocity vmax = 0:37m=s and a peak accel-

eration amax = 1:1 m=s2. In the experiment where we sought to independently vary the peak times of velocity and acceleration (Fig-

ure 3), two additional sets of motion parameters were used. For the narrow-speed profile, d = 0:10 m, s = 150 ms, vmax = 0:26m=s,

and amax = 1:1 m=s2; for the wide-speed profile, d = 0:25 m, s = 330 ms, vmax = 0:31m=s, and amax = 0:6m=s2.

Electrophysiology
We carried out extracellular single-unit recordings as described previously (Gu et al., 2008) from four hemispheres in two monkeys.

For each hemisphere, reliable area mapping was first achieved through cross-validation between structural MRI data and electro-

physiological properties, including transition patterns of gray/white matter along each penetration, sizes of visual receptive/response

field, strengths of spatial tuning to visual and vestibular heading stimuli, and activities in the memory-guided saccade task. Based on

the mapping results, Area LIP was registered by its spatial relationships with other adjacent areas (VIP, Area 5, MSTd, etc.), its weak

sensory encoding of heading information, and its overall strong saccade-related activity (Figures S1A–S1C). Our recording sites

located in the ventral division of LIP, extending from 7–13mm lateral to the midline and�5 mm (posterior) to +3 mm (anterior) relative

to the interaural plane.

Once we encountered a well-isolated single unit in LIP, we first explored its response field (RF) by hand (using a flashing patch) and

then examined its electrophysiological properties using the memory-guided saccade task. The saccade target in each trial was

randomly positioned at one of the 8 locations 45� apart on a circle centered on the fixation point (5�–25� radius, optimized according

to the cell’s RF location). We calculated online the memory-saccade spatial tuning for three response epochs: (1) visual response

period, 75–400 ms from target onset; (2) delay period, 25–900 ms from target offset; and (3) presaccadic period, 200–50 ms before

the saccade onset (Figures S1D–S1G). The cell’s spatiotemporal tunings were used to refine its RF location (via vector sum) and to

determine its inclusion in the subsequent decision-making task. Since the decision-related activity of LIP neurons cannot be strongly

predicted by the persistent activity during the delay period alone (Meister et al., 2013) (Figure S3C), we adopted a wider cell selection

criterion than conventionally used, in which we included cells that have significant spatial selectivity for any of the three response

epochs (Meister et al., 2013) (one-way ANOVA, p < 0.05, 3–5 repetitions). If the cell met this criterion, then we recorded its deci-

sion-related activity while engaging the monkey in the main multisensory decision-making task, with the two choice targets being

positioned in its RF and 180� opposite to its RF, respectively.

Although we collected data from a relatively broad sample of LIP neurons, we nevertheless had two sampling biases during this

process. First, we were biased toward cells with strong persistent activity so that our multisensory data could be better compared

with previous unisensory data in the decision-making literature, where in most cases only these cells were recorded. Second, we

were biased toward cells with RF close to the horizontal line through the fixation point. Unlike the classical random dot stimuli whose

motion direction on the fronto-parallel plane can be aligned with the cell’s RF (and the choice targets) session by session, our self-

motion stimuli were always on the horizontal plane and thus were not adjustable according to the cell’s RF on the fronto-parallel

plane. As a result, the subjects had to make an additional mapping from their perceived heading directions (always left or right) to

the choice targets (often inclined, and in extreme cases, up or down). Therefore, to make the task more intuitive to the monkeys
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and to minimize the potential influence of this mapping step on neural activity, we discarded a cell if the angle between the horizontal

line and the line connecting the fixation point to its RF exceeded 60�, although we observed little change in monkeys’ behavior even

when this angle approached 80�.

QUANTIFICATION AND STATISTICAL ANALYSIS

Psychophysics
To quantify the behavioral performance for both the monkeys and the model in the multisensory decision-making task, we

constructed psychometric curves by plotting the proportion of ‘‘rightward’’ choices as a function of heading (Figure 1C) and fitted

them with cumulative Gaussian functions (Gu et al., 2008). The psychophysical threshold for each cue condition was defined as

the standard deviation of their respective Gaussian fit. The Bayesian optimal prediction of psychophysical threshold under the

combined condition sprediction was solved from the inverse variance rule (Knill and Richards, 1996)

1

s2
prediction

=
1

s2
vestibular

+
1

s2
visual

where svestibular and svisual represent psychophysical thresholds under the vestibular and visual conditions, respectively.

Choice-related neural activities
We constructed peri-stimulus time histograms (PSTHs) for two epochs of interest in a trial, the decision formation epoch and

the saccade epoch, by aligning raw spike trains to the stimulus onset and the saccade onset, respectively. Firing rates were

computed in non-overlapping 10-ms bins and smoothed over time by convolving with a Gaussian kernel ðs = 50 msÞ. Unless
otherwise noted, only correct trials were used in the following analyses, except for the ambiguous 0� heading where we included

all complete trials.

To illustrate the choice-related activity of a cell, we grouped the trials according to the monkey’s choice, i.e., trials ending up with a

saccade toward the cell’s RF (IN trials) versus trials ending up with a saccade away from the cell’s RF (OUT trials), and computed the

averaged PSTHs of these two groups of trials for each cue condition (Figure 2A).When averaged across cells, each cell’s PSTHswere

normalized such that the cell’s overall firing rate had a dynamic range of [0, 1] (Figure 3B). To quantify the strength of choice

signals and better visualize ramping activities, we calculated choice divergence (Raposo et al., 2014) for each 10-ms time bin and

for each cue condition using receiver operating curve (ROC) analysis (Figure 2B). Choice divergence ranged from �1 to 1 and

was defined as 23 ðAUC � 0:5Þ, where AUC represents the area under the ROC curve derived from PSTHs of IN and OUT trials.

To capture the onset of choice signals, we computed a divergence time defined as the time of the first occurrence of a 250-ms

window (25 successive 10-ms bins) in which choice divergence was consistently and significantly larger than 0 (Figures 3C and

3F). Cells that did not have significant choice encoding in certain condition(s) will not contribute to the divergence time analysis under

that condition(s). The statistical significance of choice divergence (p < 0.05, relative to the chance level of 0) was assessed by

two-tailed permutation test (1000 permutations). We also calculated a grand choice divergence (grand CD) which ignored temporal

information and used all the spikes in the decision formation epoch (0–1500 ms from the stimulus onset). The same permutation test

was performed on the grand CD to determine whether a cell had overall significant choice signals for a certain cue condition (for

example, in Figure 2D).

Linear Fitting of Mean Firing Rates
We fitted a linear weighted summation model to predict neural responses under the combined condition with those under the single

cue conditions, using (Gu et al., 2008)

rcombined = wvestibularrvestibular +wvisualrvisual +C

where C is a constant, and rcombined, rvestibular, and rvisual are mean firing rates across a trial (0–1500 ms from stimulus onset) for the

three cue conditions, respectively. The weights for single cue conditions,wvestibular andwvisual, were determined by the least-squares

method and plotted against each other to evaluate the heterogeneity of choice signals in the population for both LIP data and the

model (Figure S5F).

Fisher Information Analysis
To compute Fisher information (Seung and Sompolinsky, 1993), the full covariance matrix of the population responses is needed, but

this requires simultaneously recording from hundreds of neurons, which is not accessible to us yet. Instead, we calculated the

shuffled Fisher information, which corresponds to the information in a population of neurons inwhich correlations have been removed

(typically via shuffling across trials, hence the name). Shuffled Fisher information is given by (Seriès et al., 2004; Gu et al., 2010):

Ishuffled =
XN
i = 1

f
02
i

s2
i

(1)
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where N is the number of neurons in the population; for the ith neuron, f
0
i denotes the derivative of its local tuning curve, and s2i

denotes the averaged variance of its responses around 0� heading. The tuning curve fi was constructed from both correct and wrong

trials grouped by heading angles, using spike counts in 250-ms sliding windows (advancing in 10-ms steps), and its derivative f
0
i was

obtained from the slope of a linear fit of fi against headings. The variance s
2
i was computed for each heading angle and then averaged.

To estimate the standard errors of Ishuffled, we used a bootstrap procedure in which random samples of neurons were drawn from the

population by resampling with replacement (1000 iterations). To compare the experimental data with the model, we repeated all the

above steps on artificial LIP neurons in the model M2 and M3 (see below), with the inter-neuronal noise correlation being ignored as

well (Figure 7).

Some caveats are noteworthy when interpreting the Fisher information results. First, since the slope of tuning curve f
0
is squared in

the right-hand side of Equation 1, the Fisher informationwill always be non-negative regardless of the sign of f
0
. As a result, evenwhen

the motion speed was zero at the beginning of a trial, the population Fisher information already had a positive value because of the

noisy tuning curves during that period. Second, since we ignored inter-neuronal noise correlations, Ishuffled is most likely very different

from the true Fisher information and thus its value is arbitrary (Seriès et al., 2004). Nonetheless, if we assume the noise correlation

structure of LIP population is similar across cue conditions, we can still rely on the qualitative temporal evolution of Ishuffled to

appreciate how multisensory signals are accumulated across time and cues in LIP. Finally, the Fisher information of MSTd neurons

appeared much lower in the vestibular and the combined conditions than in the visual condition (Figure 7D). The lower vestibular

information is because fewer MSTd neurons show spatial tuning in response to vestibular stimuli (Gu et al., 2006). The lower

combined information, however, results from the fact that about half of the multisensory neurons in MSTd have opposite tuning

curves to visual and vestibular inputs (‘‘opposite cells’’) (Gu et al., 2006, 2008). Therefore, the key point of Figure 7D is the temporal

dynamics of Ishuffled, rather than its amplitude.

Network Simulation of ilPPC Framework
The responses of visual and vestibular neurons closely approximate ilPPC

As mentioned previously, an important assumption of ilPPC is that the amplitude of the sensory tuning curves be proportional to the

nuisance parameters (in our case visual speed and the absolute value of vestibular acceleration) (Beck et al., 2008). To checkwhether

this is the case for the visual neurons, we analyzed the spatiotemporal tuning curves of neurons in area MSTd (data from (Gu et al.,

2006)). We noticed that, for some neurons, the average tuning curves are not fully consistent with the ilPPC assumption (Figure S4A).

Briefly, the mean firing rate of an MSTd neuron at time t in response to a visual stimulus with heading q can be well captured by

fðq; tÞ = vðtÞðA exp½Kðcosðq� qiÞ� 1Þ� �CÞ+B (2)

where qi denotes the preferred heading of the neuron i and vðtÞ is the velocity profile; A, K,C, and B correspond to the amplitude, the

width, the null inhibition, and the baseline of its tuning curve, respectively. The ilPPC framework requires the vðtÞ term to be separable,

namely, fðq;tÞ = hðqÞgðvðtÞÞ, where hðqÞ is a pure spatial component and gðvðtÞÞ is a multiplicative gain function (Ma et al., 2006; Beck

et al., 2008). In Equation 2, this requirement is equivalent to C= 0 and B = 0, however, we found that some MSTd neurons often had

non-zero baselines (C> 0 andB> 0). This will be harmful to the optimality of the ilPPC framework because, for example, when vðtÞ= 0

(and thus the sensory reliability is zero), MSTd neurons still tend to generate background spikes, which will bring nothing but noise

into the simply summed population activity of downstream areas in an ilPPC network.

To estimate the information loss due to this deviation, we simulated a population of MSTd neurons with heterogeneous spatiotem-

poral tuning curves similar to what has been found experimentally (Gu et al., 2006). We calculated the information that can be

decoded from the population by a series of optimal decoders Ioptimal and that can be recovered by the ilPPC solution IilPPC. We

assumed that the population responses in MSTd contains differential correlations (Moreno-Bote et al., 2014) such that the discrim-

ination threshold of an ideal observer ofMSTd activity was of the same order as the animal’s performance. Under such conditions, we

found that the information loss ðIoptimal �IilPPCÞ=Ioptimal was around 5%. Detailed calculations of information loss are provided in a later

section. Therefore, the population response of MSTd neurons provide a close approximation to an ilPPC, in the sense that simply

summing the activity of MSTd neurons over time preserves 95% of the information conveyed by these neurons.

We also checked whether the ilPPC assumption holds in the case of vestibular neurons. Equation 2 above still provides a good

approximation to vestibular tuning curves, except that C is close to zero for most neurons (Laurens et al., 2017), in which case

the information loss is even less pronounced.

Network Model Implementing the ilPPC solution (Model M1)

We extended a previous ilPPC networkmodel for unisensory decisionmaking (Beck et al., 2008) to ourmultisensory decision-making

task (Figure 4). Two sensory layers, the vestibular layer and the visual layer, contained 100 linear-nonlinear-Poisson (LNP) neurons

with bell-shape tuning curves to the heading direction (Equation 2). For the ith neuron in the vestibular or visual layer, the probability of

firing a spike at time step ½tn �dt; tn� was given by

p
�
r,i ðtnÞ = 1

�
= ½dtðg,ðtÞðA exp½Kðcosðq� qiÞ � 1Þ� � CÞ+BÞ+ ni�+ (3)
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where ,˛fVEST;VISg, A;K;C;B; q, and qi have the same meanings as in Equation 2, ni is a correlated noise term, and ½,�+ is the

threshold-linear operator: ½x�+ = maxðx; 0Þ. The spatial tuning was gain-modulated by a time-dependent function g,ðtÞ, which

modeled the reliability of the sensory evidence and took the form

gVESTðtÞ = cVESTjbaðtÞ j ; gVISðtÞ= cVISbvðtÞ (4)

in which baðtÞ and bvðtÞ are the same acceleration and velocity profiles as the experiments but with the maximum values normalized

to 1, respectively, whereas cVEST and cVIS are scaling parameters used to control the signal-to-noise ratio of sensory inputs and to

balance the behavior performance between the two cue conditions like in the experiments. The noise ni in Equation 3 was generated

by convolving independent Gaussian noise with a circular Gaussian kernel,

ni =
X
j

Ah expðKhðcosðqi � qjÞ� 1ÞÞhj

where hj � i:i:d:Nð0;1Þ, andAh andKh were set to 10�5 and 2, respectively. Other parameters we usedwere:A = 60 Hz;K = 1:5;C =

10 Hz;B = 20 Hz;cVEST = cVIS = 2:4;dt = 1 ms. Note that in Equation 3, the gain g,ðtÞ cannot be factored out becauseB> 0, which is

the same case as in MSTd (Equation 2). Accordingly, the neural code of M1’s sensory layers is not exact ilPPC (Beck et al., 2008).

However, it is still a close approximation to ilPPC, since we have shown in the previous section that MSTd is 95% ilPPC-compatible.

The two sensory layers then projected to 100 LNP neurons in the integrator layer. The integrator layer summed the sensory re-

sponses across both cues and time,

mINT
i ðtn+ 1Þ = mINT

i ðtnÞ+gstimðtnÞ
 X

j

W INTVEST
ij rVESTj ðtnÞ +

X
j

W INTVIS
ij rVISj ðtnÞ

!
(5)

where mINT
i denotes the membrane potential proxy of neuron i, W INTVEST

ij and W INTVIS
ij are matrices for the feedforward weights from

the vestibular and visual layer to the integrator layer, respectively, and gstim tnð Þ is an attentional gain factor (see below). Note that we

ignored the issue of how neural circuits perform perfect integration and just assumed that they do. We could have simulated one of

the known circuit solutions to this problem (Goldman, 2009), but this would not have affected our results, while making the simulation

considerably more complicated. Also note that separating the integrator layer from the LIP layer is not critical either. We did so to

reflect the fact that current experimental data suggest that LIP may not be the layer performing the integration per se, but may

only reflect the results of this integration (Katz et al., 2016). Nonetheless, whether or not the integration ofmultisensory evidence actu-

ally takes place in LIP, we can still use our empirical LIP data to test against the network model.

The feedforward connectionsW INT,
ij map the negative and positive heading directions onto the two saccade targets, i.e., neurons

preferring �90� and + 90� in the integrator layer, respectively, by

W INT,
ij = a exp

�
k
�
cos

�
qINTi � bq�� 1

�����sin�q,j � ���
in which a step function bq controls the mapping,

bq =

��p
�
2; if q,j %0

p
�
2; if q,j > 0

(Figure 4B, bottom). We used a= 20 and k = 4 in our simulations. After the linear step, the membrane potential proxy was used to

determine the probability of the ith integrator neuron firing a spike between times tn and tn + dt,

p
�
rINTi ðtnÞ = 1

�
=
	
mINT

i ðtnÞ

+

:

Finally, the LIP layer received excitatory inputs from the integrator layer, together with visual inputs triggered by the two saccade

targets (sent from the target layer). In addition, there were also lateral connections in LIP to prevent saturation. In the linear step,

the membrane potential proxy of the ith LIP neuron followed

mLIP
i ðtn+ 1Þ =

�
1� dt

t

�
mLIP

i ðtnÞ+ 1

t

 X
j

WLIPINT
ij rINTj ðtnÞ +

X
j

WLIPTARG
ij rTARGj ðtnÞ +

X
j

WLIP
ij rLIPj ðtnÞ

!
(6)

where the time constant, t, was set to 100 ms; WLIPINT
ij and WLIPTARG

ij are weight matrices for the feedforward connections from the

integrator layer (Figure 4B, middle) and the target layer to the LIP layer, respectively, andWLIP
ij is the matrix for the recurrent connec-

tions within LIP (Figure 4B, top). We used translation-invariant weights for all these connections,

Wij = a expðkðcosðqi � qjÞ� 1ÞÞ+b:

ForWLIPINT
ij , we used a = 15;k = 10;b = � 3:6; forWLIPTARG

ij , we used a = 8;k = 5;b = 0; and forWLIP
ij , we used a = 5;k = 10;b = � 3.

The term rTARGj ðtnÞ in Equation 6 denotes the visual response of the jth neuron in the target layer induced by the two saccade targets,
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p
�
rTARGj ðtnÞ = 1

�
= stargðtnÞ

X2
m= 1

ptarg exp
�
ktarg

�
cos

�
qTARGj � qm

�
� 1
��

where q1 =�p=2 and q2 = p=2, ptarg = 0:050, and ktarg = 4. The term starg tnð Þmodeled the saliency of the targets: stargðtnÞ= 1 before

stimulus onset and stargðtnÞ= 0:6 afterward.

After the linear step done in Equation 6, the probability of observing a spike from the ith LIP neuron for the next time step was given

by, again,

p
�
rLIPi ðtn+ 1Þ = 1

�
=
	
mLIP

i ðtn+1Þ

+

: (7)

Decision Bound and Action Selection

To let the model make decisions, we endowed it with a stopping bound such that the evidence integration terminated when the peak

activity in the LIP layer reached a threshold value. This mechanism generates premature decisions in our fixed duration task, which

have been observed in the previous experiments (Kiani et al., 2008) as well as ours (see themain text). Specifically, once the firing rate

of any neuron in the LIP layer (determined fromEquation 7) exceededQ, = 37 Hz for a vestibular or a visual trial andQCOMB = 42 Hz for

a combined trial, we blocked the sensory inputs to the integrator layer by setting the gain factor in Equation 5 to zero:

gstimðtnÞ =
�
1; if tn < tQ
0; if tnRtQ

where tQ denotes the time of bound crossing. The instantaneous population activity at this time point rLIP tQð Þwas then used to deter-

mine the model’s choice, while the network dynamics continued to evolve until the end of the 1.5 s trial.

To read out themodel’s choice, we trained a linear support vector machine (SVM) to classify the heading direction from rLIP tQð Þ. We

ran the network for 100 trials, used rLIP tQð Þ in 30 trials to train the SVM, and then applied the SVM on the remaining 70 trials to make

decisions and generate psychometric functions of the model (with bootstrap 1000 times, Figure 5A and Figure S5C). The SVM acts

like (or even outperforms) a local optimal linear estimator (LOLE) trained by gradient descent (Seriès et al., 2004). Importantly, such

decoders could be implemented with population codes in a biologically realistic point attractor network tuned for optimal action

selection in a discrimination task (Deneve et al., 1999), which could correspond to downstream areas such as the motor layer of

the superior colliculus (Beck et al., 2008).

Heterogeneous ilPPC Network (M2)

In model M2, we generalized the homogeneous ilPPC network described above (model M1) to a heterogeneous one. Instead of

taking perfect sums like in model M1, neurons in the integrator layer of the model computed random linear combinations of

vestibular and visual inputs (see Figure S5B). It is indeed been widely shown that integration weights in vivo are heterogeneous

and are well-captured by ‘‘long-tailed’’ lognormal distributions (see for example (Song et al., 2005)). To simulate this in M2, we

drew each synaptic weight wM2 in M2 from a lognormal distribution

pðwM2 = xÞ = 1ffiffiffiffiffiffi
2p

p
sx

exp

 
� ðlog x � mÞ2

2s2

!
(8)

where m and s were chosen such that the expectation eðwM2Þ and the standard deviation sðwM2Þ of wM2 were both equal to its

counterpart synaptic weight wM1 in model M1:

eðwM2Þ = sðwM2Þ=wM1:

The parameters m and s in Equation 8 were related to e and s through

m= log
�
e2
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 + s2
p �

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðs2�e2 + 1

�q
:

If wM1 < 0, a negative sign was added to the resulting wM2, since lognormal distributions are always non-negative.

Network with Short Integration Time Constant (M3)

We also simulated a sub-optimal model M3 in which the network does not integrate evidence over time. This was done by replacing

Equation 5 with

mINT
i ðtn+ 1Þ =

�
1� dt

t

�
mINT

i ðtnÞ+ 1

t
gstimðtnÞ

 X
j

W INTVEST
ij rVESTj ðtnÞ +

X
j

W INTVIS
ij rVISj ðtnÞ

!

where t = 100 ms and other terms are the same as in Equation 5.

Linear Reproduction of M1 Response

To test whether the responses of the optimal and homogeneousmodelM1 can be linearly reproduced from responses ofM2,M3, and

the experimental data, we first calculated the ‘‘optimal traces’’ from M1 (Figure 6A), using
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DPSTH,
M1 = <PSTH,; +

M1;i > � <PSTH,; �
M1;i >

Where , denotes three cue conditions (vestibular, visual, and combined), PSTH,; +
M1;i and PSTH,; �

M1;i denote averaged PSTH for the ith

LIP unit in the network M1 when the network makes correct choices toward the neuron’s preferred direction and null direction,

respectively, and <,> denotes averaging across cells. To mimic the experimental procedure, only cells whose preferred directions

were close to ± 90� (with deviations less than 20�) were used (yellow shaded areas in Figure 5B). Similarly, we extracted single cell

activities from M2, M3, the LIP data, and the MSTd data (Gu et al., 2006)

DPSTH,
�;i = PSTH,;+

�;i � PSTH,;�
�;i

where �˛fM2;M3;LIP data;MSTd datag. Then we optimized sets of linear weights w� to minimize the cost function

E� =
X
,

X
n

 
DPSTH,

M1ðtnÞ �
X
i

w�;iDPSTH
,
�;iðtnÞ

!2

(9)

where, for example, wLIP;i represents the weight of the neuron i in the LIP data when a downstream area reads out LIP dynamics

linearly to reproduce the optimal traces. To reduce overfitting, we partitioned the data into two subsets along time by randomly

assigning the time bins into two sets, one for fitting ðTfitÞ and the other for validating ðTvalidÞ. During fitting, when the validating error

E�;tn˛Tvalid
started increasing, we stopped the iteration, a procedure known as early stopping. The fitting results are shown in

Figure 6C–F. Note that the DPSTHs in the cost function (Equation 9) grouped all the heading angles together. The results were

qualitatively similar when the cost function included error terms calculated from each heading angle separately, i.e.,

E� =
X
,

X
n

X
jh j

 
DPSTH

,;jh j
M1 ðtnÞ �

X
i

w�;iDPSTH
,;jh j
�;i ðtnÞ

!2

(10)

where jh j denotes the absolute value of heading angle (0�, 1�, 2�, 4�, 8�). The reconstructions of M1 traces with LIP activities using

Equation 10 are shown in Figure S6A.

To assess the robustness of the linear reconstruction, we randomly subsampled the same number of neurons (n = 50, without

replacement) from the four datasets, performed the linear fitting, and repeated this procedure for 1000 times. Themean squared error

and the distribution of readout weights of the fittings are shown in Figure 6G and H. To examine whether only a small fraction of cells

contributed heavily to the fittings or whether themajority of cells did, we compared the distributions of weights from the four datasets

with the distribution of weights from a random linear decoder. To do so, for each subsampling, we also generated a set of random

readout weights from a rectified Gaussian distribution (Figure 6H, black curve) and computed the kurtosis of the distribution of

weights from the random decoder as well as those from the four datasets (Figure 6I). The p values were derived from the empirical

subsampling distributions (two-tailed).

Estimating the Information Loss of ilPPC Solution with MSTd-like Neural Population
As discussed in the main text, a prerequisite of the ilPPC solution being optimal is the spatiotemporal separability of sensory tuning

curves. In practice, this requirement can be loosened by allowing a time-independent baseline to exist in the right-hand side of Equa-

tion 2, i.e., B> 0 but C = 0, since this baseline term can be readily removed without loss of information by, for example, a simple

rectified linear unit (ReLU) layer. A recent study shows that the tuning curves ofmost vestibular neurons fall into this category (Laurens

et al., 2017). However, our analysis of the visual responses of MSTd neurons (n = 195, data from Gu et al., 2006) suggests that this is

not the case in MSTd (Figure S4A, upper panel). The downward shift of firing rates around the non-preferred directions points to a

time-dependent baseline component in the visual tunings, i.e.,B> 0 andC> 0 in Equation 2, which cannot be simply eliminatedwith a

layer of ReLU units. This implies that summing the activity of MSTd neurons over time will necessarily result in an information loss

though the amplitude of this loss is unclear.

To estimate this information loss, we simulated a heterogeneous MSTd population with baseline-changing tuning curves and

computed the proportion of encoded information that can be recovered by the ilPPC solution (i.e., a simple temporal integration).

Specifically, we modeled the mean firing rate of neuron i in response to a stimulus with heading q at time t by

fiðq; tÞ = cvðtÞðAi exp½Kiðcosðq� qpref ;iÞ� 1Þ� � biBiÞ+Bi; i = 1;2;.;N (11)

where c˛½0; 1� represents the motion coherence of the visual stimulus, vðtÞ is the Gaussian velocity profile normalized to ½0;1�, Ai, Ki,

and Bi controls the peak, the width, and the baseline of the tuning curve, respectively, and bi˛½0;1� controls how strong the baseline

varies with time. The preferred headings, qpref ;i, were drawn uniformly from ð� p; p�. To account for the heterogeneous tuning

properties of real MSTd neurons, we sampled Ai, Bi, bi, and the tuning width (full width at the half maximum, or FWHMi) from Gamma

distributions with the following mean and standard deviation values (bi larger than 1 were truncated to 1):
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Mean 50 Hz 20 Hz 125� 0.6
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Then we found Ki by Ki = ðlogð0:5Þ=cosðFWHMi =2 � 1ÞÞ. These tuning parameters were chosen so that both the averaged and the

single cell spatiotemporal tuning curves were similar to the MSTd data at the 100% visual coherence (Figure S4A, lower panel). Note

that we used 10% visual coherence (c= 0:1 in Equation 11) for the following calculations, a value close to what we used in the

present study.

Next, we introduced correlated noise into this heterogeneous population via a stimulus- and time-dependent covariance

matrix S q; tð Þ,

Sijðq; tÞ= cij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðq; tÞfjðq; tÞ

q
+

e

vðtÞ
v

vq
fiðq; tÞ v

vq
fjðq; tÞ: (12)

The first term of the right-hand side is exponentially decaying pairwise correlations with a Fano factor = 1 and correlation coefficients

cij = ð1� rÞdij + r exp½kcðcosðqpref ;i � qpref ;jÞ� 1Þ� (13)

where we used r= 0:1 and kc = 2, and dij is the Kronecker delta; the second term represents correlations proportional to the product

of the derivatives of the tuning curves, referred to as differential correlation (Moreno-Bote et al., 2014). The strength of the differential

correlation is controlled by e, and the factor 1=vðtÞ is used to make the two terms of the right-hand side of Equation 12 have the same

dependence on vðtÞ.
Havingmodeled both the tuning curves f q; tð Þ and the covariancematrixS q; tð Þ, we set out to estimate the information.Without loss

of generality, we considered information around q= 0 and we dropped the term q hereafter for clarity. We focused on two kinds of

information: 1), the amount of total information that can be decoded by a series of locally optimal linear estimators (LOLEs) optimized

for each time t, denoted Ioptimal, and 2), the amount of information that can be recovered by the ilPPC solution, that is, by a single LOLE

acting on the linear summation of spikes over the entire trial, denoted IilPPC. Thus for Ioptimal, by definition,

Ioptimal =

ZT
0

_IoptimalðtÞdt (14)

where T is the trial duration (2 s) and _Ioptimal tð Þ is the optimal information rate at time t. For LOLEs, _Ioptimal tð Þ is equal to the linear Fisher

information (Abbott and Dayan, 1999; Beck et al., 2011; Moreno-Bote et al., 2014),

_IoptimalðtÞ= f0ðtÞTS�1ðtÞf0ðtÞ: (15)

To obtain f0 tð Þ, we first computed the derivatives of tuning curves with respect to q around q= 0 at time t, using Equation 1, and then

multiplied the derivatives by a factor of 2. We did the second step because it has been shown that, in MSTd, the slopes of the local

tuning curves are approximately two times larger than those derived from the global tuning curves (Gu et al., 2010). Note, however,

that this local sharpening of tuning curves will not affect the covariance S, since the mean firing rate at q= 0 does not change. Comb-

ing f0 tð Þ and S tð Þ in Equations 12 and 13, we can thus calculate Ioptimal using Equations 14 and 15.

Similarly, for IilPPC, we have

IilPPC = f
0T
sum S�1

sumf
0
sum; (16)

except that here fsum and Ssum are tuning curves and covariance matrix of another N hypothetical LIP cells that implement the ilPPC

solution via linear summation of spikes from their corresponding N MSTd neurons. Therefore, by definition,

f
0
sum =

v

vq

ZT
0

fðtÞdt =
ZT
0

f0ðtÞdt: (17)

To calculate Ssum, using the property of covariance

Ssum;ij = Cov

0@ZT
0

riðtÞdt;
ZT
0

rjðtÞdt
1A=

ZT
0

ZT
0

dt1 dt2Covðriðt1Þ; rjðt2ÞÞ (18)

and noting that the firing rate of MSTd neurons rðtÞ is assumed to be independent across time (see Discussion in the main text),

namely,
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Covðriðt1Þ; rjðt2ÞÞ = dðt1 � t2ÞCovðriðt1Þ; rjðt1ÞÞ= dðt1 � t2ÞSijðt1Þ; (19)

we have

Ssum =

ZT
0

ZT
0

dðt1 � t2ÞSðt1Þdt1dt2 =
ZT
0

Sðt1Þdt1
ZT
0

dðt1 � t2Þdt2 =
ZT
0

SðtÞdt: (20)

Now we can calculate IilPPC by plugging Equations 17 and 20 into Equation 16. In our simulations, we discretized the time into small

steps of Dt = 50 ms, and the choice of Dt did not influence our results much.

Figure S4B shows Ioptimal and IilPPC as a function of the number of neurons N for two different es. When e = 0, the total optimal in-

formation Ioptimal did not saturate asNwent to infinity, and IilPPC, although smaller than Ioptimal, also scaled almost linearly withN (black

solid and dashed curves). This is because for a heterogenous population, the first part of correlation in Equation 12 alone is not in-

formation-limiting (Shamir and Sompolinsky, 2006; Ecker et al., 2011;Moreno-Bote et al., 2014). This regime however is unrealistic as

it predicts that the information in MSTd would be considerably larger than the information available in the behavior of the animal.

Indeed, single neurons often performs only slightly worse than the animal, suggesting that the information they convey is only slightly

less than the information in the behavior. Since information is proportional to the number of neurons for e = 0, it follows that the in-

formation in a large neuronal population would vastly exceed the information in the behavior. Of course, downstream neurons may

read out MSTd suboptimally, but Pitkow et al. (2015) have shown that choice correlations in MSTd are consistent with near optimal

read out of MSTd activity.

Therefore, we assumed that there are significant information-limiting correlations, or equivalently, differential correlations (Moreno-

Bote et al., 2014) in MSTd. When differential correlations were present ðe = 0:0015Þ, both Ioptimal and IilPPC saturated rapidly with

increasing N (red solid and dashed lines in Figure S4B). The upper limit at which they saturated (blue dashed curves in Figure S4B

and D) were predicted by

Ioptimal;NðeÞ =
ZT
0

_Ioptimal;NðeÞdt =
ZT
0

�
e

vðtÞ
��1

dt =
1

e

ZT
0

vðtÞdt: (21)

Here we used the fact that for any total covariance matrix of the form

S = S0 + ef
0
f
0T (22)

where S0 does not limit information, the information when N goes to infinity will be (Moreno-Bote et al., 2014)

_IN = lim
_I0/N

 
_I0

1+ e _I0

!
=
1

e
; (23)

which depends only on e, where _I0 is the non-saturating information corresponding to e = 0.

To assess how the baseline problem affects the optimality of ilPPC, we calculated the percentage of information preserved by the

ilPPC solution,

Optimality ratio = 1� InformationLoss%=
IilPPC
Ioptimal

3 100%: (24)

As shown in Figure S4C, for e = 0:0015, the optimality ratio of ilPPC solution gradually increased with N and reached 95%when N=

10000 (red curve). In contrast, for biologically implausible value of e = 0, the ilPPC solution is muchmore sensitive to the time-shifting

baseline of MSTd tuning curves (> 40% information lost at N = 10000; black curve).

Obviously, the choice of e is critical to our calculation, and the reason we have chosen e= 0:0015 is illustrated in Figure S4D. We

plotted the optimality and the psychophysical threshold spsy together as a function of e. The threshold spsy is defined as a small

heading deviation around q= 0 that could be discriminated at 84% correct by an ideal observer (Gu et al., 2011), which is directly

comparable with the animal’s psychophysical threshold reported in our experiments (around 4�). Thus, we have

spsy =
ffiffiffi
2

p
sLOLE =

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffi
IilPPC

p ; (25)

where sLOLE is the standard deviation of a LOLE, which is equal to the inverse of the linear Fisher information (Gu et al., 2011; Moreno-

Bote et al., 2014). As predicted, when e decreased, both spsy and the optimality decreased, and we found that for a value around

spsy = 4�, e should be around 0.0015, and corresponding to an information loss around 5%.
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Furthermore, we checked whether our results were sensitive to the distributions of the baselines Bi. As expected, the optimality of

ilPPC decreased gradually from 100% to 84% as the averaged baseline increased from 0 Hz to 40 Hz (Figure S4E). However, the

gradient of the optimality around the biologically realistic regime (red star) was small enough for us to be confident about the stability

of our estimates.

Taken together, we have shown that a moderate deviation from the ilPPC’s prerequisite ðBi = 0;ciÞ will only result in �5% infor-

mation loss for the ilPPC solution.

DATA AND CODE AVAILABILITY

All experimental data and MATLAB code for data analysis have been deposited in the Mendeley Data: https://data.mendeley.com/

datasets/b8ybw4shv3/1. MATLAB code for the networkmodel and the information loss calculation is available at the following public

repository: https://github.com/hanhou/Multisensory-PPC.
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