Introduction to multitasking

Multitasking is the art of executing simultaneously several programs, or executing several lines of execution within the same program, which is called multithreading. True multitasking is only possible on computers that have more than one processor. On most home computers there is only one processor, so only one task can run at a time. In such a case, the best substitute for true multitasking is time-sharing, i.e. each task will run for a fraction of a second, then the computer switches to the next task. When switching occurs 50 times per second or so, the human user is under the illusion that tasks run simultaneously (except that of course, each task runs more slowly than if it were the only task on board).

Contents of this package

This multitasking package consists in four schedulers, i.e. programs that distibute execution time among several tasks. One scheduler is to be used with Basic with the Editor/Assembler or the Mini-memory cartridge plugged in, the second with Extended Basic, the third with assembly programs and the last one with GPL. All can perform either preemptive (recommended) or cooperative multitasking. They come with a set of demo programs that are written as a tutorial, and that you should examine in sequence.

To be honest, there are only two different programs: the Basic and Extended Basic schedulers are one and the same. They just have different file formats and minute differences. Similarly, the GPL scheduler is only a thin wrapper around the Assembly one.

Also in the package is the present file, a reference manual that describes each scheduler in all excrutiating details. It may therefore look a bit intimidating. Thus, I would advise you to follow this strategy:

1. Finish reading this intoduction, upto the point marked "enjoy it".

2. Pick either the Basic or the Extended Basic scheduler and run trough the demo programs. They are arranged in sequence as a tutorial, so you should take them in order. List each program and study it till you understand how it works.

3. Read the Extended Basic section of this manual. Go back to the tutorial if needed, and see if now you understand this or that point more clearly.

4. Experiment with writing your own multitasked Basic programs. Keep them simple to start with...

5. Do the same for assembly language. The assembly scheduler is more complex, but gives you a finer control than the Extended Basic one. You may have to move back and forth between the tutorial and the manual (i.e. to multitask yourself!). Make sure you do the exercises before you move to the next demo (don't cheat: if you can't come up with a solution, go through the manual before you look up the answer at the bottom of the demo file).

5. Once you mastered assembly multitasking, read the GPL section of this manual. It will appear very easy for you, since all it does is basically to call the scheduler's assembly routines in a GPL-compatible way. There is only one demo file for GPL that shows how to load the scheduler from GPL and how to call the various assembly routines. A good exercise would then be to translate the assembly demo files into GPL...

General principles

Multitasking is as easy as 1-2-3!

1. Initialise multitasking: load the scheduler, call the INITSK routine.

2. Create tasks: use the FORK routine.

3. End tasks: use the KILL or DIE routines.

Some more sophistication is provided for your convenience:

4. Tasks can be assigned a priority that affects the way they are scheduled.

5. Semaphores can be used to synchronize tasks with respect to each other. Use the GRAB, DROP, WAIT, RAISE, and BARIER routines.

6. Tasks can save the local context (VDP address, GROM address, local memory, etc) when switched off, and retrieve it when switched on.

7. The same routine(s) can be run within several tasks, without each instance interfering with the others.

Cooperative versus preemptive

There are two ways to implement time-sharing: cooperative multitasking or preemptive multitasking. With cooperative multitasking, each task decides when it's time to switch, and does so by returning control to a scheduler, which sets up the next task. Typically, this is done by calling the YIELD routine.

With preemptive multitasking, the scheduler snatches control away from the current task and forces a task switch whenever it wants to. The advantage is that a sloppy task, that never returns control to the scheduler, will not stall the whole system, as it would with cooperative multitasking. Typically, preemptive multitasking is achieved with interrupts. On the TI-99/4A, the VDP interrupt is very convenient for that purpose.

The TI-99/4A has two tasks running in parallel (yeah, it already has multitasking!). One task is the main line of execution: title screen ==> main menu ==> whatever cartridge you select ==> whatever program you run. The other task is called 60 times per second by the VDP interrupt service routine: it can move sprites in auto-motion, play a sound list, test the <quit> key, and time-out the screen.

So is this cooperative or preemptive multitasking? Well, it depends whether interrupts are enabled or not. In assembly language they are generally disabled (TI recommends that you do so). If you want to use the second task, you must briefly enable interrupts with a LIMI 2, LIMI 0 loop. Under these conditions, assembly language is cooperative. By contrast GPL features preemptive multitasking, as the GPL interpreter briefly enables interrupts in between each instruction. And so does any language that is interpreted by a program written in GPL (such as Basic and Extended Basic): interrupts can occur anywhere whithin a statement.

Critical sections

In a preemptive multitasking situation, there are cases when you absolutely do not want a task to be interrupted. For instance, if you are performing time-critical operations, such as writing to a disk. A good scheduler lets you define "critical sections" within your program and will never interrupt a task that has entered such a section.

In essence, a critical section is an island of cooperative multitasking in a sea of preemptive multitasking.

Task priority

By assigning a priority to a task, you affect the way it will be selected by the scheduler. When it is time to switch tasks, the scheduler will preferentially select a task with a high priority to run next.

There are two basic strategies to implement priority:

The task with the highest priority is always selected. No task will run as long as another task with a higher priority is able to run (i.e. is not waiting for a semaphore).

The probability that a task is selected depends on its priority. The higher the priority, the more often it runs, but tasks with lower priority also have their chances.

The Basic/Extended Basic scheduler is based on the second strategy with 255 levels of priority: the higher the level, the more likely a task is to be selected for running. The Assembly/GPL scheduler implements both strategies. There are four priority classes, and within each level 64 different priorities. The assembly scheduler only runs the tasks in the currently highest class. It dispenses execution time among them according to their priority withing the class. In other words, classes implement the first stategy and within-class priority implements the second.

Task synchronization

Not all task are completely independent from each other. In fact, it's quite common that you will want a task to wait for another. For instance, a printing task should wait until data is available to print. Conversely, the data-preparing task should not feed them to the printing task faster than they can be printed.

Semaphores are variables that can be used by a task to send a message to another. What's so special about them? Nothing: they are numeric variables like any other. The only trick is that you access them via special routines that are immune to task switches. This is required so a task switch does not change the value of a semaphore between the moment you check it and the moment you modify it.

The simplest kind of semaphore is the "mutex" or mutually exclusive semaphore. You can think of it as a flag that can only be grabbed by one person at a time. Once a task has grabbed the mutex, any other task that wants to grab the same flag will have to wait until the first task has dropped it. The GRAB subroutine is serving this purpose: a task that calls it will be suspended (and control transfered to another task) if the semaphore it wants is not available. Once it finally is, the task will resume and will be the unique owner of this mutex semaphore. Once the task is done, it should release the mutex with the DROP subroutine.

There are other subroutines that let you affect semaphores: WAIT waits for a semaphore to be free, but does not grab it when it is. RAISE is used to mark a semaphore as busy (i.e. to raise the flag), regardless of whether it was free or not. With RAISE, the task will never be suspended, even if the semaphore was already grabbed.

Not all semaphores are simple mutex flags. It is possible to have numeric semaphores, i.e. semaphores that can be grabbed by an arbitrary number of tasks. Once this number is reached, any additional task that tries to GRAB the same semaphore will be suspended. Its execution will resume once one of the current tasks DROPs the semaphore. As you can see, a mutex is just a special case of semaphore for which the maximum count is one.

An example of numeric semaphore would be a sound playing routine. Since the TI-99/4A has three sound generators, there could be upto three tasks that each play a sound. If a fourth task wants to access the sound generator, it will have to wait until one of the other three tasks is done. Several of the demo files that come with the assembly scheduler are based on this example.

A barrier is kind of the opposite of a counting semaphore: it is closed until a predefined number of tasks have reached it (i.e. called the BARIER subroutine), then it opens and releases all the waiting tasks. This may be usefull for instance when exiting your program: you want to make sure that every task has completed its job. Or think of a game in which the player must complete several distinct missions before he can proceed to the next level.

Instances

There are cases when several tasks execute the same portion of your program. Think of a Pacman game for instance: there are three "bad guys" who each follow the same basic strategy and try to catch the human player. They only differ by their colors and current screen location. It seems silly to write three identical routines to handle them. A better solution is to write only one routine, and run it in three different tasks. It is said that you now have three "instances" of this routine.

The main problem with "instanciation" is that, since tasks share the same code, they will affect the same variables (e.g. the screen position, in the Pacman example). That's clearly not acceptable and there should be a way to let each task have its own copy of the variables.

Come to think of it, Basic and Extended Basic both use a value stack in VDP memory, on which they save the return point of a GOSUB subprogram, the parameters of a FOR-NEXT loop, etc. Clearly, this is something that should be private to each task. And in GPL, you may want each task to have its own copy of the current GROM address, of the subroutine stack, etc. Globally, this is known as "context switching".

The schedulers in this package handle context switching automatically. In addition, they provide support for you to define extra variables that you want to be local to a task. This is done with the LOCAL subroutine in Basic, and by modifying the task control block in assembly.

Using the schedulers

As mentionned above, this package contains several schedulers. Although the mechanisms are the same in (Extended) Basic, in GPL, and in Assembly, the syntax is of course different. So from now on, each scheduler will be discussed separately.

At this point, I would advise you to go ahead and try multitasking in (Extended) Basic. Just go through the demo files in order, their contents are listed hereafter. The demos can be run either in TI-Basic with the Editor/Assembler or Mini-memory cartridge plugged in, or in Extended Basic. Just make sure that you load the proper scheduler: TASKXB/O for Extended Basic and TASKBA/O for TI-Basic (together with MMR/O if you're using the Editor/Assembler cartridge). You should find the corresponding CALL LOAD around line 150 in each demo file. Be aware that Extended Basic is awfully slow at loading assembly...

Enjoy it!

Multitasking TI-Basic and Extended Basic

The following files are provided with the package:

Filename	Type	Contents

TAKSBA/O	DF80	TI-Basic scheduler

MMR/O		DF80	Extra routines for Editor/Assembler

TASKXB/O	DF80	Extended Basic scheduler

TASKDEMO1	Prog	Tutorial: Cooperative multitasking

TASKDEMO2	Prog	Tutorial: Preemptive multitasking

TASKDEMO3	Prog	Tutorial: Critical sections

TASKDEMO4	Prog	Tutorial: Priorities

TASKDEMO5	Prog	Tutorial: Mutex semaphores

TASKDEMO6	Prog	Tutorial: Numeric semaphores

TASKDEMO7	Prog	Tutorial: Barriers

TASKDEMO8	Prog	Tutorial: Local variables (numeric)

TASKDEMO9	Prog	Tutorial: Local variables (strings)

TASKDEMO10	Prog	Tutorial: Local value stack

The scheduler is the same for both languages, however it comes in two different files. TASKXB/O is for use with Extended Basic, TASKBA/O with TI-Basic and either the Editor/Assembler or the Mini-memory cartridge.

This is because Basic and Extended Basic have different error numbers so I had to adapt the error codes in each version of the scheduler. Also, TAKSBA/O comes in a compressed format, which is smaller and faster to load but that Extended Basic cannot handle.

The problem with Editor/Assembler is that it does not provide any routine to read or modify Basic variables, so I had to add these in the MMR/O file (I lifted them directly from the Mini-Memory ROMs, hence the filename). If you are using the Mini-memory, comment out the CALL LOAD("DSK1.MMR/O") lines with a REM in the demo files.

If you are using Extended Basic, delete the line loading MMR/O and replace TASKBA/O with TASKXB/O in the next line.

Loading the scheduler

100 CALL INIT

110 CALL LOAD("DSK1.MMR/O") with Ed/Assm only

120 CALL LOAD("DSK1.TASKBA/O") or CALL LOAD("DSK1.TASKXB/O")

Either scheduler defines the following routines:

INITSK 		Initialize multitasking

FORK		Create a new task

KILL		Kill a task

DIE		Kill the current task

GRAB		Grab a semaphore

DROP		Drop a semaphore

BARIER 	Wait at a barrier

RAISE		Raise a semaphore

WAIT		Wait for a semaphore

SETSEM	Set the value of a semaphore

CRITIC		Enter critical section

ENDCRI	Leave critical section

YIELD		Yield to another task

LOCAL		Reserve local variables

ENDTSK	Terminate multitasking operations

CFGTSK	Modifiy default configuration

Initializing multitasking

120 REM There must be a comment line here

130 CALL LINK("TSKINI")

Calling TSKINI initializes the scheduler for multitasking operations. This must happen before any call to another routine in the scheduler (except for CFGTSK, if present).

The comment line is necessary, because that's where the scheduler jumps to switch tasks. TSKINI will thus be called in between each task, but only the first time does it really initialize the system. The rest of the time, it's just a signal for the task switch to occur.

How it works

The first time INITSK is called, the scheduler installs an interrupt hook. Within the (Extended) Basic interpreter, interrupts are allowed briefly before each keyword is interpreted. If this keyword is interpreted by an assembly routine in ROM, this is the only chance for the scheduler to gain control on this line. Exemples of such keywords include: DATA, DEF, DIM, ELSE, END, IF, GO, GOSUB, GOTO, NEXT, REM, RETURN, ON, OPTION, STOP, and SUB.

Most other keywords and CALLed subprograms are interpreted by GPL routines in GROMs. This is of course much slower because GPL itself is interpreted by assembly routines. However, interrupts are briefly enabled before almost each GPL instructions, which means that GPL-interpreted keywords offer many opportunities for the scheduler to take control anytime whithin the instruction. Of course, switching tasks before an instruction line is completed is a big no-no, so the scheduler does it in a more subttle way.

When the scheduler gains control through an interrupt, it decides whether it's time to switch tasks. Since GPL-interpreted keywords may be quite slow, the scheduler will not switch tasks before at least two Basic lines have been executed. Otherwise, the system could spend more time switching tasks than actually running them! On the other hand, assembly-interpreted keywords are very fast so it is quite possible that many will be executed before an interrupt occurs.

Once it decides to switch tasks, the scheduler saves the current line number and replaces it with the number of the REM line that's before the call to INITSK. When (Extended) Basic completes the current line and moves to the next, it actually lands on the line with the CALL INIT("INITSK"). Entering INITSK tells the scheduler that tasks can now be switched safely, i.e. that we are not in the middle of an instruction.

However, there are instructions that do not move to the next line (e.g. IF, GOTO, GOSUB, NEXT, etc.) so obviously INITSK will not be called after such an instruction. (Which is good since execution may not necessarily continue with the next line, when the task returns to such an instruction). The scheduler thus keeps changing the line number so as to point at the REM line, until the program finally jumps to it. This complicated mechanism is necessary to ensure that the current line will always terminate before switching, and that the next line will be the one to execute next.

Take-home messages:

Switching always occurs in between two lines. So compound statements in Extended Basic (e.g. I=I+1 :: PRINT I :: PRINT "Test") will never be interrupted.

The minimal "time slice" for a task is two lines (although you can change that with CFGTSK).

Task switching will never occur just after a line that contains a GOTO, a NEXT, a GOSUB, or any instruction that causes a jump.

Note: If you TRACE the program, you may notice that some lines are listed twice (just before and just after a task switch), although they are actually executed only once. This is because the tracing routine outputs the line number before the Basic interpreter figures where the line is in memory, from its line number. Since the tracing routine is written in GPL, it is possible that the line number will be changed after it was placed on screen, but before the line was located and executed. This line will only be executed when the task resumes. In other words, TRACE is outputing the wrong line number, but don't worry: everything happens as it should.

Terminating multitasking

500 CALL LINK("ENDTSK")

Because the scheduler hooks the interrupt routine, we must unhook it when we are done. Note that this should be done automatically when the program terminates, but it's good practice to call ENDTSK anyhow. If you <BREAK> the program, call ENDTSK, then INITSK to restart it.

Changing the default configuration

100 CALL LINK("CFGTSK",TYPE,BUFFER,TASKS, SLICE)

This optional command lets you modify the default configuration of the scheduler. If present, it must be placed at the top of your program, just after the CALL LOAD that loads the scheduler file(s). All parameters are optional, but you cannot leave gaps (e.g. define BUFFER without defining TYPE).

TYPE is the type of multitasking desired: 0 means preemptive, a non-zero value means cooperative. The default is preemptive.

BUFFER is the number of bytes to reserve for the local buffer. This buffer is used to save the Basic value stack and local variables for each task. The default size is 1152 bytes. Passing 0 leaves the current value unchanged.

TASKS is the maximum number of tasks that can be created (including the main program). The default is 16. Zero means no changes.

SLICE is the minimum number of lines that should be executed within a time slice, i.e. before a task switch occurs. The default is two, which I find the most convenient. Passing 0 means no changes.

CFGTSK may cause the following errors:

If any of these value not in the range -32768 to 65535, you will get a "Bad argument" error.

You may get a "number too big", if BUFFER or TASK is obviously crazy. However, the scheduler may miss some subttle points (such as extending the buffer beyond the limit of the low memory expansion).

Cautionary notes:

SLICE represents an offset from the number of the line in which the tasks is entered, not the number of lines actually executed. Which means that, if you have a 3-line FOR-NEXT loop, and you set SLICE as 4, this loop will never be interrupted! Conversely, if the first line executed is a GOTO that lands 50 lines down your program, chances are that a switch will occur, even if SLICE was set at a high value. This is because the scheduler has no way to know how many lines where executed in between two interrupts. It only knows how far down from the original line the program went.

Be aware that changing BUFFER and/or TASKS, changes the amount of memory that must remain available just after the scheduler program. The file TASKBA/O (or TASKXB/O) reserves the default amount, but if you change it you risk overwriting any assembly file that you may load subsequently. So either load the scheduler last, or load a dummy file containing only a BSS statement with the additional size needed, or use CALL LOAD to modify the loader's pointers. Hmmm, I guess the easiest is to load the scheduler last...

Creating a new task

150 CALL LINK("FORK",LINE,PRIOR,NESTING,ID)

This command is used to create a new task. The last 3 parameters are optional.

LINE is the line number where the new task is to start. The parent task will continue normally with the next line.You could also use a constant instead of a variable: CALL LINK("FORK",200) spawns a child task at line 200. Just be carefull when you RESEQUENCE your program: the target line may have changed number...

PRIOR is an optional parameter, that specifies the task priority. This must be a number between 1 and 255. If it is 0, or if it is omited, the priority will be the same as that of the parent task. Here also, a constant could be used. A task priority affects its chances of being selected during a task switch: tasks with higher priority values run more often. The priority of the main program is arbitrarily set as 16.

NESTING is an optional parameter, constant or variable, in the range 0 to 255. It indicates the maximum number of entries to be saved from the value stack when the task is switched off (and restored when it is switched on). If this parameter is not specified the default value will be that of the main program: 9 entries. Stack entries are used by the GOSUB, and FOR-NEXT statements. The number to reserve depends on how many levels down such statements can be nested in a task. For instance, a FOR-NEXT loop inside a subprogram called from a GOSUB located inside another FOR-NEXT requires 3+1+3 = 7 stack entries in Basic and 4+1+4 = 9 in Extended Basic. Each entry occupies 8 bytes in the scheduler's buffer.

ID is yet another optional parameter. Contrarily to the previous ones, it must be a numeric variable, not a constant. This is because it is a pure "output" parameter: FORK will return the ID number of the newly created task in this variable. This number can be used by the parent task to kill the child task, for instance.

FORK may cause the following errors:

"Memory full" if there is not enough room in the scheduler memory to create the new task (e.g. if you are reserving a lot of nesting space), or if you create too many tasks.

"Bad line number" if the line number specifed does not exist.

"Number too big" if PRIOR or NESTING is greater than 255.

Terminating a task

There are two ways to terminate tasks: calling KILL or calling DIE.

Kill

250 CALL LINK("KILL",ID)

ID is the ID number of the task to be terminated (obtained when calling FORK). Zero stands for "current task" and is therefore equivalent to calling DIE.

Die

250 CALL LINK("DIE")

Kills the current task.

KILL and DIE may cause the following errors:

"Number too big" if the ID entered does not correspond to a valid task (KILL only).

"Can't continue" if you killed the only task that could run.

Synchronizing tasks

There are cases when you don't want two tasks to run at the same time: when they both need to access the same resource, for instance. You can cause two (or more) task to become mutually exclusive by using "mutex" semaphores.

The scheduler contains 100 semaphores, which are internal variables used to communicate between tasks. To achieve mutual exclusion, have each task GRAB the same semaphore before it attempts to use the critical resource (e.g. a printer). If the semaphore is free, the task will grab it and continue normally. If the semaphore was already grabbed by another task, the current task will be suspended. It will only resume once the semaphore is freed by calling DROP, generally from the task that had successfully grabbed it.

It is also possible to wait for a semaphore without grabbing it (WAIT), to "grab" it without checking it first (RAISE) or to define its value (SETSEM).

Actually, a mutex is just a special case of semaphore, that can only take two values: raised (1) or dropped (0). But in fact semaphores can have more than two possible states: legal values range from -128 to +127. If the value of a semaphore is positive the task will hang on GRAB or WAIT, if the value is zero or less the task will go through.

Grab

800 CALL LINK("GRAB",SEM)

SEM can be either a constant or a variable. It is the number of the semaphore to grab. The call will not return until the semaphore is free. When it does, the semaphore will be marked as used by the current task (i.e. its value is incremented by one).

GRAB can cause a "Number too big" error if the semaphore number is not between 1 and 100.

Beware of deadlocks: when a task grabs semaphores #1 then #2, and another task grabs semaphores #2 then #1, there is a risk that each task ends up waiting for the semaphore grabbed by the other. Since none of the two tasks ever runs, it is likely that neither semaphore will ever become free! Also make sure a tasks never grabs the same semaphore twice in a row, as it would end up waiting for itself!

A simple rule to avoid deadlocks is to grab semaphores in increasing order, i.e make sure a task never grabs a semaphore with a number smaller than (or equal to) the highest it has already grabed.

Wait

800 CALL LINK("WAIT",SEM)

SEM is the semaphore number, just as with GRAB.

WAIT is identical to GRAB except the it does not raise the semaphore once it returns. In other words, it makes sure the semaphore is free, but it does not prevent other tasks from grabbing it later on.

This is a bit dangerous to do, since nothing guarantees than a task switch will not occur just after the call to WAIT, transfering control to another task that may grab the semaphore. When returning to the current task, the semaphore will be in use, even though we went through WAIT! In fact, it is to avoid precisely this kind of situation that semaphores were invented...

Drop

900 CALL LINK("DROP",SEM)

DROP releases a semaphore (i.e. decrements its value by one), whether or not it was previously grabed by the current task. It is very important that a task always releases any semaphore it may have grabbed before it terminates. Other tasks may be waiting for one of these semaphores and if you don't relinquish them the program may get stalled and abort with a "Can't do that" error.

SEM is the semaphore number. If this number is negated, the semaphore will only be decremented if its current value is positive (you can't drop something that's already down, can you?).

Raise

900 CALL LINK("RAISE",SEM)

RAISE increments the semaphore value by one. This will hang any task that tries to GRAB it or to WAIT for it. Contrarily to GRAB, RAISE will never suspend the current task if the semaphore value was already positive.

SEM is the semaphore number. If this number is negative, the semaphore value will not be increased if it is already positive (i.e. you cannot "super-raise" such a semaphore).

Barrier

900 CALL LINK("BARIER",SEM,VAL)

Barriers use semaphores in a way that allows tasks to wait for each other. Each time a task reaches the barrier, the semaphore value is decremented by one. If the result is greater than zero the task will stall. If the result is zero or less, all tasks that were waiting at this barrier are released.

SEM is the number of the semaphore that should control the barrier.

VAL is the new value for the semaphore, in the range -128 to +127. If VAL is omited (recommended), the current semaphore value will be decremented by one. Specifying VAL gives each task a chance to modify the threashold value. A value of 1 or less always opens the barrier (since the current task is already at the barrier, there is at least 1 task there...).

The best way to use barriers is to set the semaphore value with SETSEM and have each task call BARIER without a VAL parameter. In this way, the barrier just counts the tasks and opens when the preset number of tasks has been reached. If you are planning to use the same barrier again, remember to close it by calling SETSEM again.

BARIER can cause the error "number too big" if either SEM or VAL are too high.

Setsem

950 CALL LINK("SETSEM",SEM,VAL)

This subroutine lets you manually assign a value to a semaphore. It's especially usefull to initialize a barrier, for instance.

SEM is the semaphore number. Cf GRAB.

VAL is the value you want this semaphore to take. It should be in the range -128 to +127.

A "bad argument" error is issued if VAL or SEM is not an integer.

A "number too big" error occurs if you pick an illegal number for SEM.

Critical sections and cooperative multitasking

By default, INITSK enters preemptive multitasking. But you can use CRITIC and ENDCRI to bracket sections in your program that should not be interrupted when using preemptive multitasking.

While in a critical section, the only way you can switch task is to call the scheduler. This can be done with routines like GRAB and WAIT, but also with the dedicated YIELD routine. Note that yielding automatically terminates the critical section.

Critic

720 CALL LINK("CRITIC")

Enters a critical section. Interrupts still occur, but the scheduler won't switch tasks any more.

Endcri

880 CALL LINK("ENDCRI")

Leave critical section. Note that CRITIC is not additive: a single ENDCRI enables task switching, no matter how many times CRITIC was called before. And conversely: a single CRITIC defines a critical section, even after several ENDCRI. In other words, it's a on/off mechanism.

Yield

800 CALL LINK("YIELD")

Returns the control to the scheduler. If a task switch can occur, it will. Note that in this case, there is no need for the scheduler to first jump to TSKINI: it can switch directly to wherever the next task is waiting.

With cooperative multitasking, it is imperative that each and every task frequently calls YIELD. If a task does not, it may stall the whole program and multitasking won't be achieved effectively. This is why preemptive multitasking is generally prefered.

With preemptive multitasking, calling YIELD is optional, but recommended any time a task is idle (e.g. waiting for human input). Remember that YIELD automatically terminates any pending critical section.

Instances and local variables

In Basic or Extended Basic programs all variables are accessible to all parts of the program, i.e. there are no local variables as in C or Pascal. This means that you have to be really carefull, because a given variable used in the current task may be altered by another task, if switching occurs. For instance, consider this loop:

500 FOR I=1 to 100

510 PRINT I

520 PRINT A$(I)

530 NEXT I

It should run fine, right? But suppose there is another task that also uses the variable I. Now if the scheduler switches to this task while in the loop, the value of I will be all messed up!

The conclusion is that each task should have its own set of variables: avoid names like I, A$, etc. My suggestion would be to use a mnemonic trick, such as appending a different number at the end of each variable belonging to a given task: I1 and A1$ for one task, I2 and A2$ for another, etc.

This strategy is unfortunately impossible when two tasks share the same section of your program, such as the above loop. This may occur because they are performing identical functions (e.g. animate the many alien ships that keep attacking the human player), or because they call a common subprogram.

It is said that each task constitutes an "instance" of this routine or subprogram. As all instances share the same code, they will use the same variables. You must therefore save these variables when a task switches off, and restore them when the task switches on. This is automatically achieved by the same mechanism that saves the value stack. The only thing you have to do is to tell the scheduler which variables you want to save for which task. You can do that by including one or more calls to LOCAL at the beginning of a task.

Local

200 CALL LINK("LOCAL",I,A$,X2)

In this example A$, I and X2 are three variables that we are declaring as local. If necessary, you could have several calls to LOCAL, and define as many local variables as you wish (although this would slow down switching).

It is very important that any call to LOCAL occurs at the beginning of the task, before any of the local variables is actually used. A good practice is to FORK a new task beginning with its first LOCAL line.

LOCAL can cause a "memory full" error if the scheduler runs out of memory. Remember that all active tasks, whether stalled or not, require memory space to save all their local variables (and the Basic value stack). For your information, each variable uses up 10 bytes.

A call to LOCAL has different effects depending on whether it deals with a string or a numeric variable.

For numeric variables, the current task makes a copy of the current value of this variable and restores it every time it is switched on. If a task did not declare this variable as local (such as the parent task) it will still be able to use it, but at the risk of seeing the value briskly altered, if a task switch has occured. Only tasks that have declared a numeric variable as local can safely assume that its value will never change unexpectedly.

For string variables, the current task grabs the string for its own use and replaces it with an empty string. Which means that if you are FORKing multiple instances, the parent task must reinitialize the string every time! Every tasks that did not declare this string variable as local share a "global" copy (initially empty) that may be modified by those tasks that have their own local copies, when they switch between each others.

This sounds a bit complicated, but you can make your life easier by adopting a simple rule: Never use a local variable in a task that did not declare it as local!

The exception to this rule is when the parent task needs to pass some initial parameter to the child task. In this case the variable should be initialize just before the FORK (possibly using a critical section for numeric variables, when forking more than one task that uses this variable).

Multitasking assembly language

The following files are provided:

Filename		Type	Contents

TASKS/O		DF80	Scheduler. Allows multitasking in assembly language

SUBS/O			DF80	Standard assembly utilities, adapted for multitasking

TASKS/EQU		DV80	Equates to be used in your programs (to be found on GPL disk)

DEMO1/S		DV80	Tutorial. Basics.

DEMO2/S		DV80	Tutorial. Priority.

DEMO3/S		DV80	Tutorial. Mutex semaphores.

DEMO4/S		DV80	Tutorial. General semaphores.

DEMO5/S		DV80	Tutorial. Barriers.

DEMO6/S		DV80	Tutorial. Context saving.

DEMO7/S		DV80	Tutorial. Instance basics.

DEMO8/S		DV80	Tutorial. Local variables.

DEMO9/S		DV80	Tutorial. Full instanciation.

DEMO10/S		DV80	Tutorial. Switch-time routines

DEMO11/S		DV80	Tutorial. Critical sections. Standard utilities

DEMO12/S		DV80	Tutorial. Real example: key scan with type-ahead buffer.

Loading the scheduler

The scheduler is a DF80 relocatable tagged-object file named TASKS/O. It should be loaded along with your program, with Editor/Assembler option 3, or an equivalent loader (such as Fweb). The current version is a little short of >800 bytes in size.

The file defines the following routines:

INITSK 		Initialize multitasking

FORK		Create a new task

KILL		Kill a task

DIE		Kill the current task

GRAB		Grab a semaphore

WAIT		Wait for a semaphore

BARIER 	Wait at a barrier

DROP		Drop a semaphore

RAISE		Raise a semaphore

GETTCB	Get a pointer to a task control block

And the following data words:

CRITIC		Flag for critical sections

TSKERR	Error code

ERRSEM	Semaphore for fatal error barriers

VADDR		Current VDP address

VR0		Copy of VDP registers (8 bytes).

Initializing multitasking

Just call the INITSK routine. It clears the task list, hooks the interrupt routine and returns with an implicit LIMI 2 to enable interrupts. If you want cooperative multitasking, add a LIMI 0 just after the call to INITSK.

BLWP @INITSK or BLWP @INITSK or BLWP @INITSK

DATA tcbptr DATA >000r DATA >FFFF

Tcbptr is the address of the Task Control Block (TCB) to be used for the main program. Alternatively, the data word can contain a number "r" from 0 to 15 (i.e >000F), which indicates in which register the address of the TCB is to be found.

If the data word or the register content is >FFFF, no TCB is specified. The scheduler will provide a minimal TCB of its own, with a priority of >60, no context saving, and no local memory.

Technical note:

INITSK intalls an interrupt service routine hook at address >83C4. It you already had a hook in there, the scheduler will link to it. If a task switch is due to occur, your routine will be called before the switch takes place. You must return with B *R11 for the switch to occur. If you return with LWPI >83C0, RTWP, the current task will remain active.

If you would like to remove, or modify your hook, its value can be found 12 bytes after VR0:

LI R1,VR0

CLR @12(R1) to remove your hook

Creating a new task

The scheduler allows upto 32 tasks at any given time, including the main program. To create a new task, set up a Task Control Block (see below), then call the FORK routine.

BLWP @FORK or BLWP @FORK

DATA tcbptr DATA >000r

Tcbptr is the address of the Task Control Block (TCB) to use for the newly created task. Alternatively, this address can be in a workspace register whose number is passed in the data word (the address cannot be >FFFF with FORK).

The structure of a minimal TCB is the following:

TCB1 BYTE 0 priority (0 = same a parent task)

 BYTE 0 internal use

 DATA >0000 flags (0 = minimal TCB)

 DATA 0 workspace (0 = same as parent task)

 DATA 0 start point (0 = after the FORK statement)

 DATA 0 internal use (status buffer)

 DATA 0 internal use (timer count)

 DATA 0 internal use (semaphore ptr)

As you see, it's very simple: it basically consists in a string of 14 null bytes!

If you wanted to, you could specify a starting address for the child task, in the 4th word of the TCB. If you leave this word as 0, the child task will start where the parent task returns, i.e. after the call to FORK. You can differentiate them easily, because the parent task return with the Eq bit reset, whereas the child task starts with the Eq bit set. So you can use JNE to trap the parent task, or JEQ for the child task.

The parent task returns with the ID of the newly created (child) task in R0. Hint: you may want to save this value for further use... If this value is zero, an error occured and no task was created. The error number can be found in the word TSKERR.

Terminating a task

You can terminate tasks by calling either the KILL routine, or the DIE routine.

Kill

BLWP @KILL

Terminates the task whose ID is in R0 (I told you to save this value). If R0 contains zero, the current task will be terminated, which is equivalent to a call to DIE.

If an invalid task ID was placed in R0 the routine returns with the Eq bit set, and TSKERR will contain the value RNOTID.

Die

BLWP @DIE

Terminates the current task

Caution: if you terminate all tasks in a program, the scheduler can't run anything and will reset the TI-99/4A. The same thing will happen if all tasks are hanged by semaphores.

Terminating multitasking

To terminate multitasking operations, you can call ENDTSK

BLWP @ENDTSK

ENDTSK unhooks the interrupts and clears the list of tasks. It also places -1 in TSKERR. Then it calls the switch-time routines (if any) for each and every task (whether it is ready to run or hanged), including the current one. Finally ENDTSK returns to your program, that will not be considered as a task any more.

You can re-initiate multitasking by calling TSKINI again. Until you do that, do not call any other routine in the scheduler, as they will not function properly.

Setting priorities

You can affect the way a task is scheduled by changing the priority value in its TCB. Note that, for the current task, the change will only become effective after a task switch has occured.

There are four priority classes:

Low priority : >01 to >3F

Average priority: >40 to >7F

High priority : >80 to >BF

Critical task : >C0 to >FF

The scheduler will never select a task if a task in a higher priority class can be run instead.

Within a given class, the scheduler will run each task in turn at a frequency determined by the respective task priorities. For instance, a task with a priority of >20 will run twice as often as a task with a priority of >10, but twice less often than a task with a priority of >3F. The same is true for priorities >60 and >50 in the "average priority" class: within the class, a priority of >60 - >40 = >20 is twice higher as a priority of >50 - >40 = >10.

Synchronizing tasks

Task synchronisation can be achieved with semaphores. A semaphore is nothing more than a data word that should be part of your program's data and initialized to an appropriate value (generally zero). If it contains a positive value, it has the potential to suspend (hang) a task. A null or negative value will let the task run.

Three routines have the potential to hang a task, i.e. not to return until a semaphore reaches a given value: WAIT, GRAB and BARIER. (Yes I know, barrier is spelled with two Rs, but label names are limited to 6 characters).

You can manipulate the value of a semaphore with the routines DROP and RAISE (although BARIER and GRAB also change the semaphore value). You can also change it directly, but this will not free any currently hanged task!

Wait

BLWP @WAIT or BLWP @WAIT

DATA semptr DATA >000r

Semptr is the address of a semaphore, and can also be specified in register r.

WAIT tests the value of the semaphore word. If it is 0 or negative (>8000-FFFF) it returns immediately, with the Eq bit reset. If the semaphore value is positive(>0001-7FFF), the task hangs and will not resume until the semaphore value is brought back to 0 or less by the DROP routine. When the task is freed, the routine returns with the Eq bit set.

Drop

BLWP @DROP or BLWP @DROP

DATA semptr DATA >000r

Semptr is the address of a semaphore. This address can also be placed in register r, if you use the second syntax.

DROP decreases the value of the specifed semaphore by one. If the result is zero or less, it looks for a task hanged by this semaphore (due to a call to WAIT, GRAB or BARIER), with a priority class higher or equal to that of the current task.

If no such task is found, execution continues with the current task and the Eq bit will be reset.

If a hanged task was found, the outcome depends on the routine that suspended it:

- if it was GRAB, the task is switched on and the semaphore is incremented by one again,

- if it was WAIT, the task is switched on, but the semaphore is left unchanged,

- if it was BARIER, the scheduler frees the task and attempts to find another one. It's only when no more tasks can be freed that the scheduler switches one on.

If a task switch occured, the Eq bit will be set when DROP finally returns to the calling task.

Raise

BLWP @RAISE or BLWP @RAISE

DATA semptr DATA >000r

Semptr is the address of a semaphore. This address can also be placed in register r.

RAISE increments by one the value of the specified semaphore. If the result is zero or less, it searches for a task hanged by this semaphore and switches it on. If no such task exists (or if it is in a lower priority class than the current task), the current task continues with the Eq bit reset. If RAISE caused a task switch it will return with the Eq bit will be set.

Grab

BLWP @GRAB or BLWP @GRAB

DATA semptr DATA >000r

Semptr is the address of a semaphore. This address can also be placed in register r.

GRAB is a combination of WAIT and RAISE. It first checks the semaphore value. If it is positive the task hangs until the semaphore becomes 0 or less. When it's the case, the task increments the semaphore value by one and returns with the Eq bit set. If GRAB is able to return right away, the Eq bit will be reset.

This is safer than calling WAIT and RAISE in succession: there is always a possibility that a task switch occurs just after WAIT, in which case the semaphore value may become positive even though the task went through WAIT without hanging!

GRAB is usefull to implement a mutex, or mutually exclusive semaphore. Imagine a resource that can only be used by one task at a time. A printer is a good example: you wouldn't want two tasks to take turns printing one line at a time, would you?

So each task should first grab a semaphore, then print what it needs to print, and drop the semaphore once done. If another task tries to print in the mean time, it will hang at the GRAB statement until the first task has released the semaphore. Then the second task grabs the semaphore and gains exclusive control of the printer, etc.

Barrier

BLWP @BARIER or BLWP @BARIER

DATA semptr DATA >000r

Semptr is the address of a semaphore. This address can also be placed in register r.

A barrier is a special type of semaphore: it suspends any task that reaches it, until a preset number of tasks has reached the barrier. At this point the barrier is opened and all tasks are free to go.

To implement a barrier, use a semaphore with an initial value corresponding to the number of tasks that should reach the barrier before it opens. Then have each task call BARIER: it decrements the semaphore value by one. If the result is not zero yet, this task hangs. If the result is zero (or less), BARIER frees all other tasks hanged by this barrier and returns to the caller.

The task that caused the barrier to open returns from BARIER with the Eq bit reset. All other tasks return with the Eq bit set.

Note that the semaphore will need to be initialized again before the barrier can be reused!

Critical sections and cooperative multitasking

There may be cases when you don't want your program to be interrupted: time critical processes, routines that are called by different tasks but cannot manage two tasks at a time, etc. These so-called critical sections can be created by bracketing them with a SETO @CRITIC and a CLR @CRITIC.

CRITIC is a flag that is part of the scheduler and DEFined inside the TASKS/O file. When CRITIC is zero, multitasking occurs normally. When CRITIC is >FFFF, interrupts still occur, but the scheduler won't switch tasks.

Alternatively, you could use LIMI 0 and LIMI 2 to bracket critical sections, in which case interrupts will not occur. The two solutions are not completely equivalent however. Remember that the console interrupt routine handles sprites in auto-motion, automatic sound playing, the <quit> key and the screen-saving timeout. Also, peripheral card interrupts won't be answered if you use LIMI 0. Therefore, it is generally better to use SETO @CRITIC, unless you know for sure that interrupts can safely be disabled in a given section of your program.

By default, INITSK enables the interrupts so multitasking will be preemptive. If you prefer cooperative multitasking, you can either place a LIMI 2 just after the call to INITSK so as to disable interrupts, use a SETO @CRITIC to prevent task switching upon interrupts, or both.

Regardless of the method chosen, it is critical that each task periodically returns control to the scheduler, so that other tasks get a chance to run. This can be achieved by calling the YIELD subroutine, although most of the other routines will also seize the opportunity to switch tasks.

Yield

BLWP @YIELD

Relinquish control to the scheduler. If a task switch can occur, it will. A task should always call YIELD when it is idling. For instance, suppose you scanned the keyboard and no key was pressed. Given the slow human reaction time it is likely that, if you rescan the keyboard right away, there still won't be any key pressed. So now is a good time to yield. When YIELD returns, scan the keyboard again, etc.

Another way to switch tasks in a cooperative program, is to temporarily enable preemptive multitasking, with a LIMI 2, LIMI 0 pair of instructions for instance. Toggling CRITIC also works, but in a slightly different manner: if a task switch does occur immediately, the new task will run in preemptive conditions until a SETO @CRITIC is encountered.

Context switching

It is possible for a task to save several parameters as it switches off, and to retrieve them when it's switched on again. Currently, the scheduler handles the following parameters:

GROM base, as specified in word >837A in the scratch-pad. This is the address of the GROM port.

Current GROM address, as obtained from the GROMs.

VDP address. The address can always be set when switching on, it can only be saved (when switching off) if all VDP operations were performed using my VDP access subroutines. These routines save the current address into the scheduler variable VADDR (initially, it is >0000).

VDP registers. These can always be set when switching on. They can only be saved reliably if my VWTRX routine was used to set the VDP registers: it saves them into the scheduler data area, in eight bytes starting at address VR0. The scheduler also updates the copy of VDP register 1 in the scratch-pad (byte >83D4, used by the keyboard scanning routine). If VWTRX has not been used yet, the default values are those of the Editor/Assembler module: >00, >E0, >00, >0E, >01, >06,>01, >F5.

To enable saving/retrieval of a given parameter, you must set the corresponding flag in the TCB. You must also provide space in the TCB to store this variable. Remember that a task is always switched on before it is switched off, so make sure you initialize these variables with some meaningfull value. Alternatively, you can set a value as >FFFF, and FORK will automaticatically initialize it with the current value.

Flags:

>8000: Save / retrieve GROM base (from/to >83FA)

>4000: Save / set GROM address (from/to GROMs)

>2000: Set VDP address

>1000: Save VDP address (from VADDR)

>0800: Set VDP registers

>0400: Save VDP registers (from VR0 and following bytes).

Structure of a TCB with context saving:

TCB1 BYTE 0 priority

 BYTE 0 internal use

 DATA >FC00 <== flags

 DATA 0 internal use

 DATA 0 "

 DATA 0 "

 DATA 0 "

 DATA 0 "

 DATA >9804 GRAM base buffer (set it)

 DATA >FFFF GRAM address (use current)

 DATA >1234 VDP address (set it)

 BYTE >FF,>FF,>00,>0E,>01,>06,>00,>F5 VDP registers (use current)

 DATA 0 switch-time routine (none)

Switch-time routine

If you need to save other parameters, or to perform any kind of operation at switching time, you can place the address of a switch-time routine in the TCB, and set flag >0010 to indicate its presence.

The scheduler will call your switch-time routine with a BLWP in six distinct occasions. You can distinguish them by testing the value found *R14+ (You MUST fetch this value, so as to skip a word when returning with RTWP).

- When the task is first created, but is not running yet. *R14 = >8000

- When the task has been selected for running, before the context was loaded. *R14 = >FFFF

- When the task is about to run, after context was loaded (if any). *R14 = >FFFE

- When the task is due to switch off, before context was saved. *R14 = >0000

- When the task is about to switch off, after context was saved. *R14 = >0001

- When the task is killed, or multitasking is terminated. *R14 = >8001

If several tasks use the same switch-time routine, you can get a pointer to the task's TCB from the word @4(R13). Do not alter this word, nor any other in the scheduler's workspace!

An example of need for a switch-time routine would be a memory extension card that does bank switching. You could use such a routine to select the banks required by a given task.

Make sure you switch-time routine runs fast, as it may tremendously slow down program execution. Remember that tasks are switched as often as 60 times per second (50 on European consoles).

Technical note:

If necessary, you could abort the switching operation by redirecting R14 to a RTWP instruction. This causes the scheduler switching routine to return before switching was completed, so the same task will keep running (however, some context manipulation may already have been performed...). Don't do this during task creation though, as no switching will occur anyhow: the creation call is only here to give you an opportunity for some initialization. Don't do it during termination either, except if TSKERR is -1. In this case redirecting R14 to a RTWP returns from ENDTSK immediately, without calling the switch-time routines for the remaining tasks, nor clearing the rest of the task list.

Instances and local memory

It may occur that a given portion of your program is run simultaneously in several tasks. This "instanciation" (what an hugly neologism) process has a main drawback though: since tasks share the same lines of program, they act on the same variables and they'll overwrite each other's data! To some extent, this can be prevented by placing all data in registers and assigning a different workspace to each task. But that's only 16 variables...

A way to extend this mechanism is to reserve a different memory area for each task (known as a local memory), and have a workspace register point at it. All variables can then be accessed as offsets from this pointer. Upon request, the scheduler will conveniently place the proper address in the register of your choice each time a task is switched on.

Example:

Without instanciation With instanciation

 THIS EQU 0

 THAT EQU 2

 CLR @THIS CLR @THIS(R8)

 SETO @THAT SETO @THAT(R8)

* *

THIS DATA >1234 LOCAL DATA >1234 <--- R8 points here

THAT DATA >5678 DATA >5678

 ENDLOC

Actually, the address of your local data area does not need to end up into a register: it could be placed anywhere in memory. A register is just more convenient. Similarly, you can cause the scheduler to place the address of your workspace into a register or at any given address.

All this is done by setting the proper flags, and including the required addresses in the TCB.

Flags:

>0020: Place a pointer to the local data area into a register/address

>0040: Place a pointer to the workspace into a register/address

>0080: Automatically assign a data area when creating a new instance

Structure of a TCB for instanciation:

TCB1 BYTE 0 priority

 BYTE 0 internal use

 DATA >00E0 <== flags

 DATA 0 internal use

 DATA 0 "

 DATA 0 "

 DATA 0 "

 DATA 0 "

 DATA 0 local context

 DATA 0 "

 DATA 0 "

 BYTE 0,0,0,0,0,0,0,0 "

 DATA 0 "

 DATA LOCAL address of local data area

 DATA ENDLOC-LOCAL size of local data area

 DATA >0008 where to place ptr to data area (here: in R8)

 DATA THERE where to place workspace ptr (here: in data word THERE)

You can even have the scheduler assign a local data area to each task, as it creates it. This way, you can use the same TCB for each task instance. There are two requirements though:

- The TCB must be part of the data area.

- There must be enough free space just after the data area to create a copy of it for each task.

If you set the >0080 flag in the TCB, the FORK function will copy the whole data area somewhere in the memory immediately downstream of it. That's why you should reserve enough space for as many times the data area size, as you plan to have instances. The TCB must be part of the local area, so that each task can have its own TCB. You may also want to have the task's workspace in the local area, unless it's ok for all instances to share the same workspace. Personally, I like to place my workspace at the beginning of the data area: this way I can use the same pointer for both.

* Example of local data area

WREGS BSS 32 workspace

THIS DATA >1234 some data

THAT DATA >1234

TSK1 BYTE 0,0 TCB

 DATA >00A0

 DATA WREGS

 DATA 0,0,0,0,0,0,0,0,0,0,0

 DATA WREGS

 DATA ENDLOC-WREGS

 DATA >0007

 DATA 0

COUNT	DATA 123 more data used by the task

DSR TEXT 'DSK1.'

 EVEN *must* end on a even address

ENDLOC

 BSS ENDLOC-WREGS space for 1 instance

 BSS ENDLOC-WREGS space for 2 instances

 BSS ENDLOC-WREGS etc.

Fooling around with TCBs

The Task Control Block is the key structure that governs the behaviour of a task. In addition, it is used by the scheduler to store important variables upon task switching. Therefore, TCBs should always be modified with due caution. In particular, the scheduler does not have time for sanity checks, so absurd values (that would be rejected by FORK) will be blindly accepted upon task switching. Also remember that the TCB of the current task is different from these of currently "off" tasks: part of its contents will be overwritten when the task switches off.

Finally, beware that a task switch may occur in the middle of your modifications. You should thus make sure that the task you are modifying will not be selected before you are done. This can be achieved by INVerting its semaphore word (at offset +12 whithin the TCB), but don't forget to INV it again when done otherwise your task will never run!

The routine GETTCB can be used to obtain the address of a TCB, by providing the task ID. Don't assume that you know where the TCB is: if the task is instanciated, each instance will have its own copy of the TCB, somewhere downstream in the local memory area...

BLWP @GETTCB

Called with the task ID in R0 (or >0000 for the current task), returns a pointer to the TCB in R1. If an error occurs (e.g. the task ID is incorrect) GETTCB returns with the Eq bit set, and R1 contains zero.

If you call GETTCB with >FFFF in R0, it returns a pointer to the task list in R1. You can the walk the list with a series of MOV *R1+, and so get pointers to the TCBs of all tasks currently alive (whether they are ready to run or not), in no particular order. Possible values for each word in the list are:

>0000: Empty slot, skip this word

>0001: End of list

Other: Pointer to a TCB

Structure of a Task Control Block

Now let's examine the different fields that make up a TCB. The names correspond to labels defined in the TASKS/EQU file. Except that in the file they are provided as EQU offsets, so that you can use them with a task pointer. For instance: CLR @TVAD(R1).

TPRIOR BYTE 0 priority

TBYTE1 BYTE 0 internal use only

TFLAGS DATA >0000 flags

TWS DATA 0 workspace buffer

TPC DATA 0 program counter buffer

TST DATA 0 status buffer

TCOUNT DATA 0 time counter

TSEM DATA 0 semaphore ptr

-------------optional from here down----------------

TGBA DATA 0 GRAM base buffer

TGAD DATA 0 GRAM address

TVAD DATA 0 VDP address

TVR BYTE 0,0,0,0,0,0,0,0 VDP registers

TSWI DATA 0 switch-time routine

TLOCAL DATA 0 address of local data area

TLSIZE DATA 0 size of local data area

TLPTR DATA 0 were to place ptr to local data area

TWSPTR DATA 0 where to place workspace ptr

TPRIOR Priority. The meaning of this field has been discussed above. If you modify it "on the fly", it will take effect immediately and is likely to affect the next task switch. Note that only FORK understands a priority of zero as "same as parent"

TBYTE1. This byte is reserved by the scheduler for storage of some status flags (currently: whether the taks is hanged by a GRAB, a WAIT, or a BARIER). Better don't touch this field. Always use byte-oriented operations to deal with the priority byte.

TFLAGS. Here is a summary of the flags currently understood by the scheduler.

>8000: Save / set GROM base (from/to >83FA)

>4000: Save / set GROM address (from/to GROMs)

>2000: Set VDP address

>1000: Save VDP address (obtained from VADDR)

>0800: Set VDP registers

>0400: Save VDP registers (obtained from VR0 and following bytes).

>0080: Automatically assign a data area when creating a new instance

>0040: Place a pointer to the workspace into a register/address

>0020: Place a pointer to the local data area into a register/address

>0010: Call a switch-time routine

If you change a flag, it will only have effect the next time this task is switched on or off. Be carefull that many flags affect the size of the TCB. The length of the TCB is defined by the last word for which a flag is set (even if all previous words are not used, they are still there). Hence it is useless (and risky) to enable context saving in a minimal TCB that does not contain room for this purpose!

TWS Task workspace buffer. Note that only FORK recognises a zero as "same as parent". Any value that you put in here will be used as workspace, no matter how crazy it is, the next time this task is switched on.

For the current task, this value is the worskpace used when the task was switched on. There is no guaranty that it is still the current workspace. This value will be updated when the task switches off.

TPC Task PC buffer, indicates where execution will resumes next time the task is switched on. Note that only FORK understands a zero as "after the FORK statement". Any value placed in here will be used as a start point next time the task switches on.

For the current task, this value indicates where the task resumed last time it was selected. It will be overwritten when the task switches off.

TST Task status buffer. This value will be placed in the status register when the task is switched on. Caution: it contains the interrupt mask! If you modify it, make sure it ends with >xxx2 for preemptive multitasking, with >xxx0 for cooperative multitasking. For the current task, this value will be overwritten when the task switches off.

TCOUNT Time counter. This variable is initialized by FORK and used by the scheduler to determine which task should run next. The value will be reset as zero for the selected task. For all other tasks that could have been selected but were not (i.e. not hanged, same priority class), this word will be incremented by the in-class priority value (after masking out the class bits).

Setting this word as >FFFF almost guaranties that the task will run soon, provided it has the right priority class and is not stalled at a semaphore. For the current task, this word is always zero, any change will become effective when the task is switched off.

Conversely, setting TCOUNT as >0000 renders the task less likely to run. It may still be selectect though, if no other task is ready to run.

TSEM Semaphore buffer. This variable is used by the scheduler to store a pointer to the semaphore currently hanging the task. This word must be >0000 for the task to run. You can clear a non-zero word, to make the task ready to run, or use a non-zero value to prevent a task from running.

The latter is a bit dangerous: make sure you don't overwrite an existing semaphore pointer! I recommend using the INV instruction: it will turn >0000 to >FFFF and modify any existing semaphore value so that it will not be cleared by a DROP in another task. A second INV will restore the previous value if needed. A potential problem is that the actual semaphore may have been cleared in the mean time, and our task won't know about it. Thus it will still hang, as the scheduler has no time to check semaphore values (the mere presence of a semaphore pointer in the TCB marks the task as suspended).

The remaining fields are only meaningfull if the corresponding flag is set in TFLAGS. They may be missing in some TCBs, but their order is invariable (i.e. TCBs "grow" from the bottom).

TGBA Buffer for GROM base. This value will be transfered to word >83FA when the task switches on, provided the corresponding flag is set in TFLAG. Caution: a value that does not correspond to a GROM base (i.e. in the range >9800-983C) will crash the GPL interpreter and any program making use of this value.

The current task will overwrite this value with the content of word >83FA as the task switches off.

TGAD Buffer for GROM address. This value will be set as the current GROM (or GRAM) address when the task is switched on, provided the corresponding flag is set in TFLAGS. The current task overwrites this value with the current GROM address, as obtained from the GROMs (with the -1 address correction).

TVAD Buffer for VDP address. This value will be set as the current VDP address when the task switches on, if the corresponding bit is set in TFLAGS. It must contain the read/write indication bit, i.e. write operations add >4000 to the actual address. The value is also copied into VADDR.

The current task will overwrite this value with the content of word VADDR in the scheduler memory, if the corresponding (and distinct) bit in TFLAGS is set.VADDR is maintained by the VDP access subroutines VSBRX, VMBRX, VXBWX, VMBWX and VIBW.

TVR Buffer for the eight VDP registers. If the corresponding bit is set in TFLAGS, these 8 bytes will be send to the 8 VDP registers when the task is switched on. They will also be copied into byte VR0 and following in the scheduler's memory.

Another bit in TFLAGS causes these values to be overwriten by byte VR0 and following, as the current task switches off. VR0 and the next 7 bytes contain copies of the VDP register values set by the VWTRX subroutine.

TSWI Address of the switch-time routine. The use of this routine has been discussed above. It must be enabled by setting the corresponding bit in TFLAGS. Once this is done, the routine will be called twice when the task is switched on, and twice when it switches off. (Remember that the current task is next due to switch off, not on).

TLOC Address of the local memory area. This address is used by TFORK to create instances, provided the corresponding bit is set in TFLAGS. When a task is switched on, this value will be placed at the address specified in TLPTR, if the corresponding bit is set in TFLAGS. Nothing happens when the task is switched off.

TLSIZE Size of the local memory area. This value is only used by TFORK to create instances. Modifying it on the fly has no effects.

TLPTR Pointer to local memory area. This can be either a register number, from 0 to 15, or an address. If the corresponding bit is set in TFLAGS, the address of the local memory area will be placed in the specified register or address when the task is switched on. Nothing happens when the task is switched off.

WSPTR Pointer to the workspace. Can be an address or a register number, from 0 to 15. If the corresponding bit is set in TFLAGS, the address of the task workspace will be placed in this register, or at this address, when the task switches on. Nothing happens when it switches off.

Scheduler error codes

When an error occurs, an error code can be retrieve from the word TSKERR. If no error occured, the content of this word is meaningless. Currently, the following codes are defined (in the TASKS/EQU files).

RMEM	EQU	>0001	Out of memory. Most likely, too many tasks were created.

RINST1	EQU	>0002	Instanciation error #1. The TCB is not in local memory.

RNOTID	EQU	>0003	Wrong task ID (may have been valid, but task is now dead).

RNOTPT	EQU	>0004	Not a valid address for a pointer (e.g. ROM space).

RGPL	EQU	>0005	Error in TCB for GPL task (most likely, FGAD flag missing).

RNORUN	EQU	>0081 Fatal error. Nothing to run.	

When checking the error code, use the label rather than the numeric value. This way, if the code change in the future, your program will still work (you will only need to update the /EQU file).

Fatal errors

If the scheduler cannot find a task ready to run, either because you killed them all, or because they are all hanged at semaphores, the TI-99/4A will be reset.

This kind of error typically occurs when task 1 waits for a semaphore grabbed by task 2, and then task 2 starts waiting for a semaphore grabbed by task 1... One way to avoid this error is to number your semaphores (SEM1, SEM2, etc) and adopt the rule that a task should never wait for a semaphore with a number smaller than the highest one it has already grabbed, but not dropped yet.

Of course, there is also the case when a given task is killed before it has dropped all the semaphores it had grabed.... Or when a tasks grabs twice the same semaphore... There is no failsafe strategy here, apart from carefull programming.

The scheduler provides you with a way to catch fatal errors before it resets the TI-99/4A. To this end, it defines the semaphore ERRSEM, with an initial value of >3000. You can have your error-handling task wait for that semaphore with either GRAB, WAIT, or BARIER (the latter is recommended). When a fatal error occurs, the scheduler clears the semaphore and attempts to run any task(s) that were waiting for it.

A task that handles the error successfully should reset the semaphore as >3000, a task the cannot handle it should simply INCT the semaphore and loop back to the BARIER call. If no tasks was able to handle the lock-up, the scheduler will reset the TI-99/4A (the scheduler won't free the semaphore again if its value is less than >2000, so as not to loop forever).

Standard assembly utilities

For your convenience, the scheduler comes with another file, SUBS/O, which contains the standard assembly language utilities, suitably modified for multitasking (namely, they are enclosed in a critical section). While I was at it, I also added a few extra features.

VSBRX Just like VSBR, but tests for 0 in R2 and saves the final address in VADDR.

VMBRX Just like VMBR, but tests for 0 in R2 and saves the final address in VADDR.

VSBWX Just like VSBW, but tests for 0 in R2 and saves the final address in VADDR.

VMBWX Just like VMBW, but tests for 0 in R2 and saves the final address in VADDR.

VIBW. New routine: VDP Identical Bytes Write. Writes multiple occurences of the same byte in VDP memory and saves the final address in VADDR.

Parameters:

R0 = VDP address

R1(msb) = byte to write

R2 = number of repeats (>0000 does nothing).

VWTRX Just like VWTR, but saves register values in VR0 and following bytes in the scheduler memory.

KSCANX Just like KSCAN, but returns with the Eq bit set if a new key was pressed, and with the H bit set if the same key was held.

Usage:

 BLWP @KSCANX

 JEQ NEW

 JH SAME

 JMP NONE

XMLLNX Just like XMLLNK.

GPLLNX Just like GPLLNK, but does not require the Editor/Assembler cartridge. It makes use of some data byte in the console GROMs to simulate a dummy XML and regain control when then called GPL routine returns. As this may be console dependent, the critical values can be modified by changing the two words immediately preceding GPLLNX:

 LI R1,GPLLNX get ptr to GPLLNX

 MOV ...,@-2(R1) change the RAM vector

 MOV ...,@-4(R1) change the GROM address

The GROM address must be that of a >0F byte, which will be interpreted as an XML. The next byte will indicate where the XML vector is located. This must be an address in RAM. Calculate its value and place it in the word @-2(R1).

GPLLNX also provides an alternative syntax, to call routines that are normally called with the GPL routine G@>0010. This requires passing the GROM base together with the desired address:

 BLWP @GPLLNK

 DATA >0000 Flag: alternate syntax

 DATA >98xx GROM base

 DATA address Address in GROM/GRAM memory

DSRLNX Just like DSRLNK, but the DATA statement is optional: if omited it is assumed to be DATA >0008, i.e. calling a DSR. Also, when DSRLNX has found the DSR/subprogram, it saves all parameters for use by DSRRPT.

DSRCRU New routine. Just like DSRLNK but begins scanning the peripheral cards with the CRU base specified in word >83D0.

DSRRPT New routine. Calls the same DSR or subprogram that was previously called with DSRLNX. Caution: make sure a task switch did not result in calling DSRLNX in another task. This is a good example of what a mutex semaphore can be used for...

Multitasking GPL programs

The scheduler for GPL is the same as for assembly, with a thin wraper that allows you to call each routine with an XML. In order not to uselessly clutter the XML table, you have the option to call all routines with a single XML.

Remember that the GPL interpreter performs a LIMI 2, LIMI 0 in between instructions, except while it's in the FMT sub-interpreting mode (screen access: always LIMI 0). Therefore, multitasking will always be preemptive, unless you perform a DST >FFFF,@CRITIC. Assembly routines called from GPL (with either a XML instruction or the DSR-calling routine G@>0010) will be cooperative. If you want preemptive multitasking in assembly, you must include a LIMI 2 in the called assembly routine.

The following files are provided:

Filename		Type	Contents

TASKGPL		Prog	Scheduler. Allows multitasking in assembly and GPL

TASKG/EQU		DV80	Equates to be used in your programs

GPLDEMO/T		DV80	Demo program (source text)

GPLDEMO/C		DF80	Demo program (tagged-object code)

GPLDEMO		Prog	Demo program (GROM image, in GramKracker format)

TASKG/S		DV80	Source file: XML wrapper around the assembly scheduler

Loading the scheduler

The GPL scheduler comes in the form of a "program" file, called TASKGPL. It is nothing more than the assembly scheduler (TASKS/O) with a thin wrapper to allow XML calls. If you are interested, have a look at the file TASKG/S that contains the source for the wrapper.

The scheduler can easily be loaded from disk into the high memory expansion with the following routine:

	MOVE	22,G@PAB,V@>1000		or whatever VDP address you like

	DST	>1009,@>8356			pointer to name size byte

	CALL	G@>0010			call DSR

	BYTE	>08

	BS	ERROR				handle errors

	DST	V@>1102,@>834A		get size

	DST	V@>1104,@>834C		get address (should be >A000)

	MOVE	@>834A,V@>1106,@0(@>834C) 	copy program in CPU mem

	... 		and use it

PAB	DATA	>0500				PAB for file access

	DATA >1100				VDP buffer address

	DATA	>0000

	DATA	>2000				max file size

	BYTE	>00

	STRI	'DSK1.TASKGPL'		filename (string including size byte)

This will load the scheduler at the beginning of the high memory expansion, from >A000 to >AA20. You can then use XML >B1 through >BB to access the scheduler. Alternatively, you can access it exclusively through XML >B0 and use the other XML entries for your own vectors. In case you would want to restore them afterwards, there is an internal copy (used by XML >B0) at addresses >A020-A037.

You can access the scheduler variables at the following addresses (included in the file TASKG/EQU):

CRITIC	EQU	>A286			>FFFF = critical section, >0000 = normal

TSKERR	EQU	>A288			scheduler error code

ERRSEM	EQU	>A28A			semaphore for fatal error barrier

VADDR	EQU	>A28C			VDP address buffer (not used by GPL)

VR0	EQU	>A28E			VDP register buffers (not used by GPL)

Context saving

The VDP context cannot be saved in GPL, because the GPL interpreter uses its own routines rather than those I modified for use with multitasking. It should not matter too much though, since GPL considers all VDP access operations as critical sections. Just remember that you cannot assume the VDP address will be maintained from one instruction to the next (which should never be assumed with GPL anyhow).

The GROM context must always be part of the TCB, since this is the way GPL will be multitasked. The XML wrapper around FORK will reject a TCB that does not have the corresponding flag set. Saving and retrieving the GROM base is optional.

The GPL interpreter uses some critical bytes in the scratch-pad memory (>8300-83FF), that must be saved upon task switching for proper functionning. The GPL scheduler provides a default switch-time routine that is automatically implemented if you don't specify one. This routine saves and retrieves the following:

Bytes >8372-8373

Bytes >837C-837F

Subroutine stack (>8380 to pointer in >8373)

Data stack (>83A0 to pointer in >8372)

These values are saved at the top of your local memory area, provided you specifed one (you don't need to set the "instanciation" flag). If you didn't specify a local area, the default switch-time routine will not be installed !

If you want to save more context, you will have to implement your own switch-time routine in assembly. You can finish by linking to the default routine with B @>A040: it will save the above parameters and return to the scheduler with RTWP. Caution: the default routine performs a MOV *R14+ to get the calling code, so if your routine also needs this code, it should get it with MOV *R14, so that R14 does not get incremented twice!

XML routines

There are 12 routines that can be called from GPL. Rather than remembering their numbers, you can include the file TASKG/EQU in your program. In addition to TCB offsets, flags and error code, it defines the following labels:

XML0	EQU	>B0		XML base (table is at >A000)

INTISK	EQU	XML0+1		Initialize scheduler

FORK	EQU	XML0+2		Create a new task

KILL	EQU	XML0+3		Kill a task

DIE	EQU	XML0+4		Kill current task

YIELD	EQU	XML0+5		Return control to the scheduler

GRAB	EQU	XML0+6		Grab a semaphore

WAIT	EQU	XML0+7		Wait for a semaphore

BARIER	EQU	XML0+8		Wait at a barrier

DROP	EQU	XML0+9		Drop a semaphore

RAISE	EQU	XML0+10	Raise a semaphore

GETTCB	EQU	XML0+11 	Get TCB pointer from task ID

ENDTSK	EQU	XML0+12	Terminate multitasking

The corresponding call becomes, for instance:

	XML	INITSK

For detailed instructions on the use of these routines, see the chapter on multitasking assembly language. What follows here is just a quick description of how to call each XML routine.

XML >B0 Call any multitasking routine

This is the common entry point to all routines. It allows you to overwrite the remaining entries in the XML table, in case you need them for your program.

Byte >834A needs a routine number, from 1 to 11. This number corresponds to the second digit of the XML number, as described above (but the first digit is ignored anyhow, so you can use the same labels). Parameter passing is the same as for a direct call via a dedicated XML.

Example:

	ST	INTISK,@>834A		routine to be called

	DST	>FFFF,@>834C		pass parameter

	XML	>B0			call it

XML >B1 call INITSK

Word >834C contains the TCB pointer, or >FFFF to use the default TCB.

You can have upto 32 tasks running, including the parent program.

XML >B2 call FORK

Word >834C contains the TCB pointer (in cpu memory).

Upon return, byte >834B will contain the task ID, or >00 if an error occured (you can get the error code from word TSKERR)

This XML can be used to create either assembly or GPL tasks. To start an assembly task, you must specify its address in the TPC entry of the TCB (the task will generally start with a LIMI 2 instruction). If you don't, the XML wrapper assumes you want to start a GPL task and clears the TWR and TPC entries in the TCB.

If you would like the child GPL task to start at a different GRAM address, you must set this address in the GAD file of the TCB. If you set this field as >FFFF, the scheduler will substitute the current GRAM address for it (which means the child task will return after the XML >B2).

If the child task returns after the XML, it will have the Cnd bit set. The parent task returns with the Cnd bit reset, so you can tell parent from child with a BR (resp. BS) instruction.

XML >B3 call KILL

Byte >834B must contain a valid task ID, or >00 for the current task.

Invalid ID errors return with the Cnd bit set and can be trapped with BS. TSKERR will contain the value RNOTID.

XML >B4 call DIE

No parameter is required.

XML >B5 call YIELD

No parameter is required.

The instruction returns with the Cnd bit set if a task switch effectively occured, with the Cnd bit reset otherwise.

XML >B6 call GRAB

Word >834C must contain the address (in cpu memory) of the semaphore to be grabbed.

The Cnd bit will be set if the semaphore was grabbed immediately and reset when the task hanged for a while before the semaphore became available.

XML >B7 call WAIT

Word >834C must contain a pointer to the semaphore to be waited for.

Just like the above, a reset Cnd bit indicates that no waiting occured, a set bit signals that the task hanged for a while.

XML >B8 call BARIER

Word >834C must contain a pointer to the semaphore controlling the barrier.

Here also, the Cnd bit can be used to detect whether the task hanged at the barrier (jumps on BS) or went right through (jumps on BR).

XML >B9 call DROP

Word >834C must contain a pointer to the semaphore to be dropped.

BS can be used to detect cases when this caused a task switch, BR for cases when the task continued normally.

XML >BA call RAISE

Word >834C must contain a pointer to the semaphore to be raised.

This will rarely cause a task switching (unless the semaphore value was negative), but if this is the case the Cnd bit will be set upon return.

XML >BB call GETTCB

Byte >834B must contain a valid task ID, or >00 for the current task.

Upon return, word >834C will contain the task pointer, or >0000 if the task ID was invalid. Such an error sets the Cnd bit and can be detected with a BS.

If >834B contains >FF, the word >834C will contain a pointer to the task list upon return.

XML >BC call ENDTSK

No parameter is required.

