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Computer aided diagnosis systems based on brain imaging are an important tool to

assist in the diagnosis of Parkinson’s disease, whose ultimate goal is the detection

by automatic recognizing of patterns that characterize the disease. In recent times

Convolutional Neural Networks (CNN) have proved to be amazingly useful for that

task. The drawback, however, is that 3D brain images contain a huge amount of

information that leads to complex CNN architectures. When these architectures become

too complex, classification performances often degrades because the limitations of the

training algorithm and overfitting. Thus, this paper proposes the use of isosurfaces as

a way to reduce such amount of data while keeping the most relevant information.

These isosurfaces are then used to implement a classification system which uses two

of the most well-known CNN architectures, LeNet and AlexNet, to classify DaTScan

images with an average accuracy of 95.1% and AUC = 97%, obtaining comparable

(slightly better) values to those obtained for most of the recently proposed systems. It

can be concluded therefore that the computation of isosurfaces reduces the complexity

of the inputs significantly, resulting in high classification accuracies with reduced

computational burden.

Keywords: deep learning, isosurfaces, Parkinson’s disease, convolutional neural networks, computer-aided

diagnosis

1. INTRODUCTION

Parkinson’s Disease (PD) is a progressive and chronic neurodegenerative disorder of the central
nervous system that affects movement. PD increases its occurrence with age and, currently, has
a prevalence between 1 and 3% in the population over 65 years of age, becoming the second
most common neurodegenerative disorder after the Alzheimer’s disease. The origin of the disease
has been not determined yet but it is related to the loss of dopaminergic neurons, which causes
reduced quantities of dopamine transporters in the striatum (Simuni and Rajesh, 2009). In fact,
dopaminergic neurons produce dopamine, a neurotransmitter, in the substantia nigra and and it is
transported to the striatum, composed by caudate and putamen, through the nigrostriatal pathway.

To date there is no cure for PD but early diagnosis allows limiting the rate of progression
by applying effective management and may help to develop new therapeutic methods. Diagnosis
of PD is usually based on clinical examinations that analyze different motor symptoms such as
tremor, bradykinesia, rigidity and postural instability (Eckert et al., 2007), along with the response
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to levadopa. Levadopa is a chemical product that converts to
dopamine so that PD is confirmed whether symptoms reduce
after levadopa is administered during a period of time. However,
PD can be confused with other parkinsonian syndromes and in
the early stages of the disease symptoms are still mild and the
response to levadopa are not so clear, whichmay result in difficult
diagnosis. As a consequence, functional neuroimaging are then
usually used to improve the early diagnosis of the disease.

Single Photon Emission Tomography (SPECT) using the
123I − ioflupane radiotracer (also known by its tradename
DaTSCAN) is commonly used for diagnosis of PD. DaTSCAN
binds to the dopaminergic transporters at the striatum, allowing
to measure quantitatively the amount of DaTSCAN in this
region. DaT SPECT or DaTSCAN imaging results in multiple
grayscale images captured by a gamma camera rotated through
360◦ around the body where the intensity of each pixel is directly
correlated with the presence of radiotracers registered by the
gamma camera. These 2D projections are then reconstructed
to produce a 3D image. Comparing to healthy individuals, the
resulting image for PD patients displays lower intensity and/or
asymmetry in the striatal region. This way, DaTSCAN can be
used to differentially diagnose PD with respect to normal or
other diseases presenting similar symptons (NC) by detecting
dopaminergic deficits.

In recent years, different works have analyzed DaTSCAN
images for use in the clinic as an aid to visual reporting. Thus,
a range of of semi-quantification methods can be found in the
literature (Taylor and Fenner, 2017). These methods compute
SBRs (Striatal Binding Ratios) from both, with and without
consideration of the caudates, using different methods and
establishing certain limits and likelihood of disease being present.
The clinician must eventually interpret the results to come to
an overall decision. At this point, machine learning algorithms
can be used to help with such decision. Machine learning
algorithms can combine multiple input variables describing
different features to produce a single value that helps the
clinician. These methods search statistical differences between
two groups, PD and control (NC), using statistical learning (Rojas
et al., 2013; Martínez-Murcia et al., 2014a; Martinez-Murcia et al.,
2016b; Khedher et al., 2015; Pereira et al., 2015; Badoud et al.,
2016). Although there are others, such as Naïve-Bayes (Towey
et al., 2011) or logistic lasso (Tagare et al., 2017), in line with
general trends, SVM, with linear or radial basis function kernel,
has been the most commonly employed tool, and in the last years
the use of methods based on artificial neural networks (ANN)
have gained popularity.

The development of novel architectures and effective training
algorithms has enabled to use multi-layer neural networks or
deep neural networks (aka deep learning) for a wide range of
applications (LeCun et al., 2015), such as speech recognition
(Hinton et al., 2012), drug discovery (Chen et al., 2018) and
genomics (Alipanahi et al., 2015), but it is in the field of
computer vision and image classification where deep learning,
and particularly convolutional neural networks (CNN), has
undergone a real revolution of the state of the art (LeCun et al.,
2015). CNNs are biologically-inspired models that resemble the
human vision system, computing image features at different

abstraction levels by means of the convolution operator, which
is subsequently applied to the response of the previous layer
(Rawat and Wang, 2017). Nowadays, these architectures have
practically reached, or even surpassed, human-level performance
in object recognition (Kheradpisheh et al., 2016). Two of the
most famous CNN architectures are LeNet-5 (LeCun et al., 1998)
and AlexNet (Krizhevsky et al., 2012). They have been well-
studied and provide good results compared to other machine
learning algorithms and even more complex CNNs. In fact,
deeper networks (e.g., Inception Szegedy et al., 2015), with higher
number of abstraction levels, allow computing more complex
features, but they also result much more complex to train. This
causes that the performances degrade because the limitations of
the training algorithms (He et al., 2016) and that the architectures
tend to be overffited. Thus, although deeper architectures have
the potential to outperform simpler LeNet-5 and AlexNet, this
cannot be always achieved and even so, the gain in accuracy may
imply a considerable higher computational burden that may not
be always justified (Martinez-Murcia et al., 2018).

This work analyzes DaTSCAN (3D) images and identifies
features which are suitable for being used in a computer-aided
classification system intended to classify between positive and
negative cases of PD. In particular, this is realized through the
identification of isosurfaces and the extraction of descriptive
features from these by using CNN architectures based on LeNet-
5 and AlexNet. Isosurfaces connect voxels that have the specified
intensity or value, much the way contour lines connect points
of equal elevation. This work culminates in the implementation
of a classification system which uses supervised learning through
CNN architectures to classify DaTSCAN images with an average
accuracy of 95.1%. Sensitivity and specificity of the system
have also been calculated resulting at an average of 95.5% and
94.8%, respectively.

After this introduction, the rest of the paper is structured
as follows. Section 2 reviews related works for PD diagnosis.
Section 3 shows details on the database used in this work,
extracted from the Parkinson Progression Neuroimaging
Initiative (PPMI, RRID:SCR_006431) database, and the applied
preprocessing. Then, section 4 describes the computing of
isosurfaces, the analyzed architectures and their training process.
Section 5 presents and discusses the classification results using
data from the PPMI. And finally, section 6 shows the conclusions
drawn from this work along with its practical applicability.

2. RELATED WORK

The high spatial and color resolution provided by current
neuroimaging systems has prompted them to become the main
diagnosis tool for neurodegenerative disorders. Thus, DaTSCAN
SPECT imaging is used routinely for the diagnosis of PD
through the evaluation of deficits of dopamine transporters of
the nigrostriatal pathway. However, the visual assessment of these
images to come to a final diagnostic is, even for expert clinician,
a time-consuming and complicate task, which requires having
into accountmany variables. Machine learning algorithms, which
allow combining different types of inputs to produce a result, can
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potentially overcome this problem. Additionally, the vast amount
of information contained in DatSCAN images requires the use of
computer aided tools to be exploited, allowing to find complex,
disease-related patterns to increase the diagnosis accuracy. We
review next the main computer-based techniques proposed in
this framework.

Two of the first works to analyze the possibilities of machine
learning algorithms with DaTSCAN were Palumbo et al. (2010)
and Towey et al. (2011). The former compared a probabilistic
neural network (PNN) with a classification tree (CIT) to
differentiate between PD and essential tremor. Striatal binding
ratios for caudate and putamina on 3 slices were used as image
features. The latter used Naïve-Bayes with PCA decomposition
of the voxels in the striatal region. These were followed for a
series of works where SVMs were used as the main classifier
tool, with linear or RBF kernel and different image features. Illán
et al. (2012) and later Oliveira and Castelo-Branco (2015) used
voxel-as-features; i.e., image voxel intensities are used directly
as features. Segovia et al. (2012) used a Partial Least Square
(PLS) scheme to decompose DaT images into scores and loading.
Then, the scores with the highest Fisher Discriminant Ratios
were used as feature for the SVM. Khedher et al. (2015) also
used PLS. Rojas et al. (2013) proposed the use of 2D empical
mode decomposition to split DaTSCAN images into different
intrinsic mode functions, accounting for different frequency
subbands. The components were used to select features related
to PD that clearly differentiate them from NC, allowing an easy
visual inspection. Martínez-Murcia et al. (2014a) decomposed
the DaTSCAN images into statistically independent components
which revealed patterns associated to PD. Moreover, in this
approach, image voxels were ranked by means of their statistical
significance in class discrimination. A more recent approach
also based onmultivariate decomposition techniques is proposed
in Ortiz et al. (2018), where the use of functional principal
component analysis on 3D images is proposed. This is addressed
by sampling the 3D images using fractal curves in order to
transform the 3D DatSCAN images into 1D signals, preserving
the neighborhood relationship among voxels. Striatal binding
ratios for both caudates and putamina were used in Prashanth
et al. (2014), Palumbo et al. (2014), and Bhalchandra et al.
(2015). Martínez-Murcia et al. (2014b) proposed the extraction
of 3D textural-based features (Haralick texture features) for
the characterization of the dopamine transporters concentration
in the image. And finishing with those based on SVM,
Badoud et al. (2016) used univariate (voxel-wise) statistical
parametric mapping and multivariate pattern recognition using
linear discriminant classifiers to differentiate among different
Parkinsonian syndromes.

More recently, methods based on neural networks, especially
deep learning-based methods, have paved the way to discover
complex patterns and, consequently, to outperform the diagnosis
accuracy obtained by classical statistical methodologies (Ortiz
et al., 2016; Martinez-Murcia et al., 2017). The use of models
containing stacks of layers composed of a large number of
units that individually perform simple operations allows to
compute models containing a large number of parameters.
Moreover, these massively parallelized architectures are able

to discover very complex patterns in the data by a learning
process formulated as an optimization problem. Zhang and
Kagen (2017) proposes a classifier based on a single layer
neural network and voxel-as-features from different slices.
Martinez-Murcia et al. (2017) and Martinez-Murcia et al. (2018)
propose the use of Convolutional Neural Networks (CNN) to
discover patterns associated to PD. Increasing the accuracy
requires the use of deeper networks, but this increment also
makes the network prone to overfitting and push the training
algorithms to their performance limits. Thus, architectures
combining more elaborated blocks such as in He et al. (2016)
have been also proposed to effectively increase the number
of layers.

In this work, we describe a classifier based on the well-known
CNNs LeNet-5 and AlexNet where the image features used to
train them are isosurfaces computed from the regions of interest.
The computation of isosurfaces reduces the complexity of the
inputs significantly which results in high classification accuracies
with reduced computational burden.

3. MATERIALS

3.1. Database
Data used in the preparation of this article was obtained
from the PPMI (Parkinson’s Progression Markers Initiative,
RRID:SCR_006431). PPMI is an observational clinical study to
verify progression markers in PD. For up-to-date information
on the study, visit https://www.ppmi-info.org/. The images in
this database were imaged 4 + 0.5 h after the injection of
between 111 and 185 MBq of DaTSCAN. Raw projection data
are acquired into a 128 × 128 matrix stepping each 3 degrees
for a total of 120 projection into two 20% symmetric photopeak
windows centered on 159 KeV and 122 KeV with a total
scan duration of approximately 30–45 min (The Parkinson
Progression Markers Initiative, 2010).

A total ofN = 269 DaTSCAN images from this database were
used in the preparation of the article. Specifically, the baseline
acquisition from 158 subjects suffering from PD and 111 normal
controls (NC) was used.

3.2. Spatial Normalization
Spatial normalization is frequently used in neuroimaging
studies. It eliminates differences in shape and size of brain,
as well as local inhomogeneities due to individual anatomic
particularities. It is particularly key in group analysis, where
voxel-wise differences are analyzed and quantified (Martinez-
Murcia et al., 2016a). In this procedure, individual images are
mapped from their individual subject space (image space) to
a common reference space, usually stated using a template.
The mapping involves the minimization of a cost function
that quantifies the differences between the individual image
space and the template. The most frequent template is the
Montreal Neurological Institute (MNI), set by the International
Consortium for Brain Mapping (ICBM) as its standard template,
currently in its version ICBM152 (Mazziotta et al., 2001),
an average of 152 normal MRI scans in a common space
using a nine-parameter linear transformation. A particular
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case of affine transformation is the similarity transformation,
where only scale, translation and rotation are applied. This is
often used for motion correction and reorientation of brain
images with respect to a reference, and is frequently performed
automatically on many imaging equipment. The DaTSCAN
images from the PPMI dataset are roughly realigned. We will
refer to this as non-normalized (given that it is only a similarity
transformation that preserves shape) or “original.” We further
preprocessed the images using the SPM12 (Functional Imaging
Laboratory of the University College London, 2012) New
Normalize procedure with default parameters, which applies
affine and local deformations to achieve the best warping
of the images and a custom DaTSCAN template defined in
Salas-Gonzalez et al. (2015).

Finally, the regions of interests, those which reveal
dopaminergic activity, were selected. As a result, the images of
original size of (95, 69, 79) were converted into images of size
(29, 25, 41). This means passing from 498,800 to 29,795 voxels,
a diminution of 94%, which reduces dramatically the complexity
of the system without losing almost relevant information since
beyond the elected area the intensity values of most of the pixels
for both groups is very low or zero.

3.3. Intensity Normalization
Intensity normalization is an important step to ensure that the
same intensity levels corresponds to similar drug uptakes, so
that intensities can be compared as an indirect measure of the
neurophysical activity. Similar intensity values should indicate
similar drug uptakes and, as a consequence, differences in these
values may reveal different pathologies (Martínez-Murcia et al.,
2012; Segovia et al., 2012; Padilla et al., 2015).

This paper uses Integral Normalization (Illán et al., 2012):

Îi = Ii/In,i, (1)

where Ii is the image of the ith subject in the dataset, Îi is the
normalized image, and In is an intensity normalization value that
is computed independently for each subject as the mean of the
whole image (in an approximation of the integral). Sometimes,
for Parkinson studies, In is set to the average of the brain without
the striatum; although the influence of this is small and it can
be approximated by the mean of the whole image. Finally, in
this work, the resulting values are further normalized between
0 and 1.

FIGURE 1 | Examples of isosurfaces with threshold = 0.5 for a NC subject (A) and PD patient (B).

FIGURE 2 | Examples of isolines with different threshold for a NC subject (A) and PD patient (B).
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4. METHODS

4.1. Feature Extraction Using Isosurfaces
DaTSCAN SPECT images contains an enormous amount of
information. The approach of using voxels-as-features has been
adopted by different works (Illán et al., 2012; Badoud et al.,
2016) reporting modest classification results around 70–75% and
suggesting that better results can be achieved by using more
refined techniques that focus on the significant information
that lies in such images. When CNN are used, as mentioned
in the previous sections, this can be explained by a reduction
in the complexity that results in lower computational burden
(Martinez-Murcia et al., 2018), more efficient training algorithms
(He et al., 2016) and less proneness to overfitting. The extraction
and selection of features is therefore one of the most determinant
processes, and maybe the most characteristic part, in the
definition of a classification method.

For feature extraction, this paper proposes the use of
isosurfaces. Isosurfaces connect voxels that have the specified
intensity or value much the way contour lines connect points
of equal elevation. Roughly, this implies to set a threshold at a
certain level and take the surface that envelops the remaining
voxels above that threshold. In this work, however, a refined
version for computing isosurfaces is used where interpolation is
employed instead of just thresholding.

Figure 1 shows two examples of isosurfaces computed with a
threshold of 0.5 (intensity is normalized to 1) for a NC subject
and a PD patient. Unfortunately, it is difficult to observe in
a figure different isosurfaces computed for different thresholds
since that with the highest threshold will envelop the rest. As
an alternative, when different thresholds are used, isolines are
preferred. Isolines are simply 2D slices of the corresponding
isosurfaces. In Figure 2 isolines with different thesholds for a
NC subject and a PD patient are represented. The following
characteristics can be observed in isosurfaces/isolines: (i) they
define closed volumes/areas, (ii) they do not cross each other,
(iii) the same threshold can result in several isosurfaces/isolines,
and (iv) the proximity between isosurfaces/isolines provides
information about intensity gradients; the closer they are, the
faster the changes. Regarding the diagnosis of PD, it can be
observed in previous figures that isosurfaces and isolines from
PD patients, in contrast with those from NC subjects, are
characterized by a loss of symmetry between hemispheres.

Feature selection is usually based on either statistical
analysis or optimization of the classifier. In the former,
previously computed thresholds based on statistical relevance
or correlations are set and features are discarded if they are
not above such thresholds without considering the performance
of the classifier. In the latter, however, features are selected,
or discarded, if they improve, or not, the performance of the

FIGURE 3 | CNN architecture based on LeNet.
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classifier. This paper uses this second approach. Classification
results using isosurfaces computed with different thresholds
have been compared, choosing those that provide the best

FIGURE 4 | CNN architecture based on AlexNet.

classification results. More specifically, isosurfaces for thresholds
0.4, 0.5, 0.6, 0.7, and 0.8 have been computed. Then, the two
possible options have been analyzed: forward selection, where
just one isosurface for a threshold is initially used with the
classifier and then others are gradually included if they improve
the results; and backward selection, where the whole set of
isosurfaces is initially employed to classify and then some of
these are removed if their absence does not affect negatively the
classification performance.

4.2. CNNs for Classification
Method based on neural networks are becoming more and
more popular for the development of new early diagnosis tools
(Ortiz et al., 2016). More specifically, CNNs have been proposed
for the detection of patterns in medical images associated to
PD (Martinez-Murcia et al., 2017, 2018). The election and
configuration of the CNN architecture are, however, not trivial
tasks. In fact, although deeper structures, with higher numbers of
layer and units, are potentially more capable of revealing hidden
patterns, they are not always advisable because the complexity
that they introduce. When a big amount of parameters need
to be adjusted, it may result in training problems, overfitting
and high computational loads. Thus, apart from preprocessing
input data to remove non-significant information and feed CNNs
with relevant inputs, the best performances are obtained with
balanced architectures; that is, architectures complex enough to
reveal the relevant patterns but not so complex that it cannot be
conveniently trained with certain guarantees of non-overfitting.
In this paper, two 3D versions based on well-known architectures
have been tested. The first based on LeNet (LeCun et al.,
1998), and then another based on the most powerful AlexNet
(Krizhevsky et al., 2012), both of them fed with pre-processed
data resulting from the computation of the isosurfaces.

TABLE 1 | Characteristics of the AlexNet-based CNN used.

Layer Kernel/Window Output shape Trainable

parameters

Input 29× 25× 41

3D-Conv_1 10@7× 7× 7 10@29× 25× 41 3,440∗

Max_pool_1 2× 2× 2 10@15× 13× 21 0

3D-Conv_2 8@6× 6× 6 8@15× 13× 21 17,288

Max_pool_2 2× 2× 2 8@8× 7× 11 0

3D-Conv_3 7@5× 5× 5 7@8× 7× 11 7,007

3D-Conv_4 6@4× 4× 4 6@8× 7× 11 2,694

3D-Conv_5 5@3× 3× 3 5@8× 7× 11 815

Max_pool_3 2× 2× 2 5@4× 4× 6 0

Flatten 480 0

FC_1 2,048 985,088

FC_2 2,048 4,196,352

FC_3 2 4,098

Total 5,216,782

∗Computed by a single input volume.
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Our first architecture comprises 7 layers, not counting the
input (see Figure 3) : 2 convolutional layers (first and third), 2
subsampling layers (second and fourth), 1 flatten layer (fith) and

2 full connected layers (sixth and seventh). The 2 convolutional
layers use five 3D-kernels of [3 × 3 × 3] to sweep over the
input topologies and transform them into feature maps. Stride

FIGURE 5 | Results of the LeNet-based architecture using as input a single isosurface: sensibilities, sensitivities and accuracies (A) and ROC curves (B).

FIGURE 6 | Results of the AlexNet-based architecture using as input a single isosurface: sensibilities, sensitivities and accuracies (A) and ROC curves (B).

FIGURE 7 | Results of the LeNet-based architecture using as input several isosurfaces: sensibilities, sensitivities and accuracies (A) and ROC curves (B).
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of (1,1,1) and padding are employed with the convolution so that
the output feature maps keep the size of the input. For the second
convolutional layer (3DCONV_2), each unit in each feature map
is connected to [3 × 3 × 3] neighborhoods at identical locations
in the entire set of input feature maps. Thus, the number of
trainable parameters of these two layers are 33 ∗ 5 + 5 = 140
and 33 ∗ 5 ∗ 5 + 5 = 680, respectively. Note however, that
the number of trainable parameters of the first layer increases
if several images are introduces simultaneously (#params =

33 ∗ 5 ∗ #inputs + 5). The two subsampling layers apply max-
pooling, connecting each unit in the output feature map to [2 ×
2 × 2] neighborhood in the input feature map. The output is
the maximum within the [2 × 2 × 2] window. Consequently,
the output feature maps have half the number of units in the
three dimensions. Sub-sampling reduces the complexity of the
CNN and provides invariance to local translations. Once the
feature learning phase is completed, using the convolutional and
sub-sampling layers, feature maps are flattened into a feature
vector. This vector consists of 8 ∗ 7 ∗ 11 ∗ 5 = 3, 080 neurons,
and is followed by two fully-connected layers of 4,096 and 2
neurons, respectively. The number of trainable parameters of
the last two layers are 3, 080 ∗ 4, 096 + 4, 096 = 12, 6190, 776
and 4, 096 ∗ 2 + 2 = 8, 194, respectively. Between these two
layers there is a dropout interphase with 0.5 dropout probability.
The last layer yields the prediction probability using softmax
activation. The total number of trainable parameters of this CNN
is 12,628,790.

The AlexNet based architecture is shown in Figure 4. It
comprises 12 layers: 5 (first, third, fourth, fifth and sixth)
3D-convolutional layers, 3 (second, fourth and eight) max-
pooling (subsampling) layers, 1 flatten layer (ninth) and 3 fully-
connected layers (tenth, eleventh and twelfth). The convolutional
layers use 10, 8, 7, 6 and 5 kernels of sizes [7 × 7 × 7],
[6 × 6 × 6], [5 × 5 × 5], [4 × 4 × 4] and [3 × 3 × 3],
respectively. Convolutional layers use padding and stride (1,1,1),
and output feature maps are connected to every input feature
map (not just a subset). The flatten layer has 480 neurons
and the three last fully connected layers 2,048, 2,048, and 2,
respectively. Between these three fully connected layers there

are two dropout interphases with dropout probability of 0.7.
The last two-neuron layers uses softmax activation to predict a
classification. These characteristics and information about the
number of trainable parameters of this CNN are summarized
in Table 1.

4.3. Evaluation
Classification performance is evaluated by means of the accuracy,
sensitivity and specificity. Resulting from these values, Receiver
Operating Curves (ROC) and the Areas Under the ROC Curves
are also computed. ROC curves comprise the sensitivity and
specificity to provide compromise values between these two
values, while AUC provides a metric regarding the performance
of the classifier.

Classification experiments conducted in this work have been
assessed by nested cross-validation (Stone, 1974), with inner
and outer loops implementing stratified k-fold cross-validation
(k=10) to ensure that the proportion of both classes is preserved
in each fold. The inner loop is used to select the features and
the outer to determine the generalization ability of the proposed
method (Lozano et al., 2017). However, in order to provide a
sweep of the performances obtained for different thresholds and
to carry out a fair comparison with the optimal one, the results
of the outer loop are provided for the different used values (even
when they were not the optimal in the inner loop). Estimation of
the generalization error by cross-validation will always result in
an overestimate in practice, since the entire training set is not
used but just a fraction. This overestimate will depend on the
slope of the learning curve of the classifier and reduces when
k increases.

Standard error is computed from the standard deviation.
Cross-validations performed for k << N (where N is the
number of samples) allow to estimate the standard deviation of
an experiment CV(ζ ). First, the validation error in the j-th fold is
averaged as

CVj(ζ ) =
1

nj
ej(ζ ) =

1

nj

∑

i∈Fj

(yi − f̂
−j
ζ (xi))

2 (2)

FIGURE 8 | Results of the AlexNet-based architecture using as input several isosurfaces: sensibilities, sensitivities and accuracies (A) and ROC curves (B).
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where nj is the number of samples in the j-th fold. Then, the
standard deviation of CVj(ζ ) with 1 ≤ j ≤ k can be computed as:

SD(ζ ) =
√
var(CV1(ζ ), ...,CVk(ζ )) (3)

where var(x) stands for the variance of the vector x. Finally, the
standard error [or standard deviation of CV(ζ )] is computed as:

SEM(ζ ) = k−
1
2 SD(ζ ) (4)

5. RESULTS AND DISCUSSION

In this section, we firstly compare classification results when just
a single input volume (isosurface) is introduced in the LeNet-
based and AlexNet-based architectures. This allows determining
which isosurfaces provide more significant information and
comparing the performances of both architectures.

Figure 5 shows the results of the LeNet-based architecture
for the computed isosurfaces (see section 4.1); Figure 5A graphs
sensibilities, sensitivities and accuracies, and Figure 5B the ROC

curves. Likewise, Figure 6 shows the results for the AlexNet-
based architecture. Classification performances increase slightly
with the threshold, until this is 0.7. This is explained because
the greater the threshold the less the volume captured by the
isosurfaces. Thus, as the threshold increases but the chosen
volume still contains most of the relevant regions (around
the striatum) the performances maintain or improve, since the
computational complexity reduces while keeping the significant
information. However, for thresholds beyond 0.8, the captured
area reduces too much, leaving out relevant regions for the
classification and therefore decreasing the performances. As a
result, intermediate values of isosurfaces, i.e., 0.5, 0.6, and 0.7,
seem to contain the most relevant information providing slightly
better classification results for both architectures. On the other
hand, there is not a clear difference between the results of the two
architectures, both achieving similar performances.

Once the analysis using isosurfaces independently is
completed, classification performances obtained when different
number of isosurfaces are used as input of the architectures
are compared. Note that, although the introduction of more
isosurfaces adds more information, it also increases the

TABLE 2 | Classification results using different methods.

Method Accuracy Sensitivity Specificity AUC

EMD (Rojas et al., 2013) 0.95 0.95 0.94 0.94

Significance M. (Martínez-Murcia et al., 2014a) 0.92 0.95 0.89 0.90

Brahim et al. (2015) 0.92 0.94 0.91 –

VAF 0.8± 0.05 0.72±0.17 0.85± 0.14 0.87

PCA 0.87± 0.04 0.96±0.03 0.86±0.04 0.9

EfPCA (Ortiz et al., 2018) 0.93±0.05 0.97±0.08 0.88±0.05 0.94

LeNet-based 0.95± 0.03 0.94 ± 0.04 0.95±0.04 0.97

AlexNet-based 0.95± 0.03 0.95± 0.05 0.95± 0.04 0.97

FIGURE 9 | Saliency maps of the LeNet-based architecture superimposed on a MRI image: NC (A) and PD (B).
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FIGURE 10 | Saliency maps of the AlexNet-based architecture superimposed on a MRI image: NC (A) and PD (B).

complexity of the CNN (number of trainable parameters of
the first layer) so that the best results are only obtained when
the input has an optimum trade-off between the information
it provides and the complexity that it introduces. Thus, many
possible combinations of isosurfaces have been tested. One of
these tests is shown in Figures 7, 8 for the LeNet-based and
AlexNet-based architecture, respectively. They show the results
for the case where isosurfaces are sequentially added from top
level (0.8) to bottom level (0.4); that is, first the isosurface with
level 0.8 is used by itself (marked as 1 in the figures), then 0.7 is
added (2 in the figures), next 0.6 is also added (3 in the figures)
and so on: 0.8+0.7+0.6+0.5 (4 in the figures) and all of them (5
in the figures).

The inputs chosen eventually as providing the best
classification results while keeping the complexity as low as
possible have been the combination of isosurfaces 0.8 and 0.7
for the LeNet-based architecture and the isosurface 0.7 for
the AlexNet-based architecture. They both provide accuracy,
sensibility and specificity about 0.95 and AUC = 0.97. These
classification performances can be considered as very good when
compared with other well-known methods such as VAF (Voxels
as Features), PCA (Principal Component Analysis) or EfPCA
(Empirical functional PCA), outperforming most methods
recently published in the bibliography for the detection of
Parkinsonism (Rojas et al., 2013; Martínez-Murcia et al., 2014a;
Brahim et al., 2015). Table 2 collects the different performance
classifications, including the typical deviation when available.
Additionally, in order to statistically confirm the effectiveness
of the proposed method, a statistical hypothesis test (Welch
test) has been performed in terms of the AUC. As a result, the
statistical significance of the use of isosurfaces along with the
LeNet-based architecture when compared with the EfPCA (the
next best performing method in the comparison) is confirmed
with a p-value of 0.04. By contrast, a p-value of 0.18 is computed

when both architectures, LeNet and AleNet based, are compared,
which allows to infer that while the use of isosurfaces as a feature
extraction method outperforms previous approaches, it is not
possible to state if one of the two architectures performs better
than the other.

Finally, and for the sake of completeness, the saliencymaps for
the last layer of the Lenet-based and AlexNet-based architecture
are provided. Figures 9, 10 show a relevant slice of the saliency
maps obtained for both architectures superimposed on a MRI
image. Saliency maps use the gradient of output category with
respect to input image to determine the regions of the input
image that have a greater impact on the output class. Thus, for
the Alexnet-based architecture (Figure 10), it is observed that for
control subjects the most decisive regions are those between the
putamen and globus pallidus, while for PD patients, the most
important ones are those in the interface between the caudate
nucleus and the putamen. Similar regions are found in the case
of the LeNet-based classifier. However, in this latter case, for
the control subjects, sparser regions are marked in the figure
(Figure 9), while for PD patients, it again shows as the most
determinant regions the interface between the caudate nucleus
and the left putamen. These anatomical regions matched with
those reported in the literature (Greenberg et al., 2012; Tuite
et al., 2013) as linked to the development of the Parkinson’s
disease, which confirms the use of isosurfaces as an effective
means to extract the most relevant information for PD diagnosis.

6. CONCLUSIONS

This paper proposes the use of isosurfaces as a way to
extract the relevant information from 3D DatSCAN images
so that they can be used as inputs of CNN architectures.
As a result, a classification system that uses LeNet-based
and AlexNet CNN architectures has been implemented. This
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system achieves accuracy of 95.1% and AUC = 97%, providing
comparable (slightly better) values to those obtained for recently
proposed systems. It can be concluded, therefore, that the
computation of isosurfaces reduces the complexity of the inputs
significantly while keeping the relevant information, resulting
in high classification accuracies with reduced computational
burden. Finally, in order to determine which areas of the
input brain images has a greater impact on the predicted
output class, saliency maps of the last two-neuron layer are
also computed.
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