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Cell Elements

Cell elemental composition
Cells are 90% water.

The remaining is approximately:
• 50% protein
• 15% carbohydrate
• 15% nucleic acid
• 10% lipid
• 10% miscellaneous



Cell Elements

• Proteins are the main cellular machinery
• All proteins – proteome
• All DNA – genome
• All RNA – transcriptome
• All lipids – lipidome



Terms

• -omics ó high throughput data acquisition
in Molecular Biology

• Bioinformatics ó computational management
and analysis of biological data



Why Genomics?



Genome  encodes 
hereditary information



The dogma



• Heritable
• Only 4 letters
• Sequence matters most

• 21 letters
• Structure matters most

DNA/RNA sequencing 
is far ahead



DNA, chromatin, chromosomes



Sequencing cost is decreasing 
and data are being accumulated fast
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sequencing has been 
industrialized
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Sequencing «Generations»



Sequencers: read length and output





CGCGACCCGAGGCTGCCGCAGGGGGCGGGCTGAGCGCGTGCGAGGCGATTGGTTTGGGGCCAGAGTGGGCGAGGCGCGGAGGTCTGGCCTATAAAGTAGT
CGCGGAGACGGGGTGCTGGTTTGCGTCGTAGTCTCCTGCAGCGTCTGGGGTTTCCGTTGCAGTCCTCGGAACCAGGACCTCGGCGTGGCCTAGCGAGTTA
TGGCGACGAAGGCCGTGTGCGTGCTGAAGGGCGACGGCCCAGTGCAGGGCATCATCAATTTCGAGCAGAAGGCAAGGGCTGGGACGGAGGCTTGTTTGCG
AGGCCGCTCCCACCCGCTCGTCCCCCCGCGCACCTTTGCTAGGAGCGGGTCGCCCGCCAGGCCTCGGGGCCGCCCTGGTCCAGCGCCCGGTCCCGGCCCG
TGCCGCCCGGTCGGTGCCTTCGCCCCCAGCGGTGCGGTGCCCAAGTGCTGAGTCACCGGGCGGGCCCGGGCGCGGGGCGTGGGACCGAGGCCGCCGCGGG
GCTGGGCCTGCGCGTGGCGGGAGCGCGGGGAGGGATTGCCGCGGGCCGGGGAGGGGCGGGGGCGGGCGTGCTGCCCTCTGTGGTCCTTGGGCCGCCGCCG
CGGGTCTGTCGTGGTGCCTGGAGCGGCTGTGCTCGTCCCTTGCTTGGCCGTGTTCTCGTTCCTGAGGGTCCCGCGGACACCGAGTGGCGCAGTGCCAGGC
CCAGCCCGGGGATGGCGACTGCGCCTGGGCCCGCCTGGTGTCTTCGCATCCCTCTCCGCTTTCCGGCTTCAGCGCTCTAGGTCAGGGAGTCTTCGCTTTT
GTACAGCTCTAAGGCTAGGAATGGTTTTTATATTTTTAAAAGGCTTTGGAAAACAAAAATACGCAACAGAGACCGTTTGTGTGACACTTTGCAGGGAAGT
TTGCTGGCCTCTGTTCTAGGTCATGATTGGGCTGCAAGGGCAGAGAAGGTAGCCTTGAACAGAGGTCCTTTTCCTCCTCCTAAGCTCCGGGAGCCAGAGG
TTTAACTGACCCTTTTGGGGATTTTTGAGGGCAGTGATCTTAACTTTGGGTGCACAGTTAGCTTATTTGAAGATCTTACTAAAAATACACCAGAGCCCAA
CCTCCGACCAATTACATCAAAACCTGTCCTAGTGCAGGGTGAGTATTGCTGTTTTTTGAAAGTTTCCAAAAGTGATTTTGATGTGCACCTACGATTGAGA
ACTGTCGTTTGAGGACAGTGGGTGGAGTTTCGTATTTGGAAATTAGAAGACCTGGAGTTTCCATTACACCGAATTGGCACTTAATAACTGTTGTCGGAGC
ATTTCTTAAGCCACATTTTCGTAAAGTGGCTTTAAAATTGCTCTGCCAGTAGGCAGGTTGCTAAGATGGTCAGAGACAAACTTCTGAACGACTCTTGTAA
AATATACAGAAATATTTTCAGAACTTTTATCAGTAAAATTACAAAACGTGTTGCAAGGAAGGTGCTTGTGATAACACTGTCCCCAGAACCTTAGTGAAGT
TACCAACTGGTGGAAAATTTTCTCTTGCACTCGGCTTAAAAATCATGAGGGAATATTTACTATACGAATGAGATTCAGTCTTTAAAGGGGTTTACAGAAA
CGTGAGAGGACAGGAACAGTTAGTCTGTGTAAATGTCTGAAATATATGTGAGGGAGATAATGAGTTTAGCCTTTTTCTTTAATAGGTCTCCAGATTTTCT
GGAAAAGGTTCTTTGGCATTTGACTCCATTTTGCTGTTTCATTTGTCAGACTTCTTTTTGTCCCTCTTTACTTCTCCCCACATAATTCACCAGTACTAGT
GTTTTGTTTTTCAGACCAAGTCTCGCTCTGTCGCCCAGGCTGGAGTGCAGTGGCGCGATCTCAGCTCACTGCAACCTCCGCCTCCCAGGTTCAAGCAATT
CTCCTGCCTCAGCCTCCCGGGTAGCTGGGACTACAGGCGCGCGCCGCCACGCCTGGCTAATTTTTTATATTTTAGTAGAGACGGCGTTTCACCATGTTGG
CCAGGATGGTCTCGATCTGTTGACGTCGTGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCCCGCCCGGCCACCAGTGCT
ATTCTTAAGACGCCTCTGAGGAATCCCTTCTCCCTGGCCATTGAGAATCCATGCATGAACCCAGGTTTTCCACCTTCCCTGAGCAGCTTGCATAGTTCCT
TCTTTTAAGCGCCTGACTTCGTTTTGTTTGGTGCCCGTTGTACCTGAGAATGAGCCTTGGATAGTGGAGCATTCCAGCTTTCCAGATATGCAGAGATAAT
ACATTGGCTATCAGCTACTTGGCTTGGCCTATTCCGTGTTTAAAATCTTGGACTCTTTGCTAGTTTTTACAGATCAGAATTTTTCACGTATTAATCCAGT
TTTCCTAGCTTCTCTTGAAGAATTTTTGGAGATCTCTTCATACTGAGCCTTCATTAGCCCAGGACAGTACTGCTGTAGCAGTTCATATATTTTTTCGCTT
CCCAGGCCTGTGTTATTCACTTAAGTTCATAGCCTGGTCCCTGCAGGGTTGTACCCGAGCACAGCTACTTAGATGTCCTGAATGTATTACCGGTTAAATG
GAGGTTTCAAAGAACCTGCTGTTTTTGGCCCTGTGCTCTTGATAACAGAGTGTTTGAGGGACAACTTTCACATTTGAGTTTTTCCAAAATTAAAGGTTGT
AGAAGAGTCACAGTATCTATTGTCAAAAAGAAAAGAATTTAAAAAGGCAGCAATTGCCAGGATACTTCATTTGAGCAATGATATTTTCCAGTGGAAAGTC
ACATCTTAAGGGTTAATGCCCCTTAACTGTTGGCCGTATTTGAAAACAAACCAAGCTAAAAACAAGAGACACTGACATGTTGTATGACGGTGTGGTGTGG
ATGTTGTGTTTATTTTAGTCCTGAGATCTAGTTGTAACTTCCTTGATTTCTGTATGTAGCCACGGAGCACCATTACCTGTCACCATTACCTGAATGGCTA
TACTGCTTGCTTTCATTTTGGTAGAGTGGAAAGGTTACCTAGGTTTCAGTGCTTGAAAAGATTTCAGAAAGCAGTAGTACGTCTGGTTAGACTAGAATCA
GTCCTCTCCTGGGGGCAGTGGAATATAATATTTTCTGACTGCTAATTAAAAATACCTGTGATAGCCGGGCGTGGTGGCTTACGCCTGTAATCCCAGCACT
TTGGGAGGCCGAGACGGGTGGATCACGAGGTCAGCAGATGGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAATGCAAAAAAATTAGC
CGGGTGTGGTGGTGGGCGCCTGTAGTCCCAGCTACTCAGGAGGCTGAGGCAGGAGAATGGCATGAACCTGGGAGGCGGAGCTTGCAGTGAGCCGAGATCA
TGTCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCGTCTCAAAAAAAAAAAGAAAAAAACTTATGATGGACACTTAAAAACACTCACTGAGTGGGGA
GTGGAGAGCAGGGGTCCCAGGGTAGCCTGTTGGACATTTCCAGGGCGACTTTTTCTTTTTTTTTTTTTAAAGTCAAGTGAGTATGCCATATGGAAAAGGG
TGTGCGTGGAGAAAAAGCAAGGGGCTCCAGAGTGTAGGATGAGACATACACCTTTTGGGTTAAAAAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGG
CGGAGCTTGCAGTGAGCTGAGATCATGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCTTGTCTCAAAATAAAAAACGTTTACATGTACATGTAT

Without interpretation
(by comparisons) 

DNA is unintelligible

=> sequence analysis required!
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2. Find overlaps between reads

…AGCCTAGACCTACAGGATGCGCGACACGT 
GGATGCGCGACACGTCGCATATCCGGT… 

3. Assemble overlaps into contigs

1. Fragment DNA and sequence

4. Assemble contigs into scaffolds

high-quality genomes and how to recognize 
a high-quality assembly. For the Genome 
Assembly Gold-standard Evaluations 
(GAGE), scientists led by Steven Salzberg 
at Johns Hopkins University School of 
Medicine assembled four genomes (three 
of which had been previously published) 
using eight of the most popular de novo 
assembly algorithms3.

Two other efforts, the Assemblathon 
and dnGASP (de novo Genome Assembly 
Assessment Project), have taken the form of 
competitions. Teams generally consisted of 
the software designers for particular assem-
blers, who could adjust parameters as they 
thought best before submitting assembled 
genomes for evaluation. Performance was 
evaluated using simulated data from com-
puter-designed genomes4.

The point is not identifying the best 
overall assembler at a particular point 
in time, but finding ways to assess and 
improve assemblers in general, says Ivo 
Gut, director of the National Genome 
Analysis  Center in Spain,  who ran 
dnGASP. dnGASP compared assembly 
teams’ performance on a specially designed 
set of artificial chromosomes: three derived 
from the human genome, three from the 
chicken genome, and others represent-
ing the fruit fly, nematode, brewer’s yeast 

and two species 
of mustard plant. 
In addit ion,  the 
contest organizers 
included special 
‘challenge chromo-
somes’ that tested 
assembler perfor-
mance on various 
repetitive struc-
tures ,  divergent 
alleles and other 
difficult content.

T h e  d a t a  s e t 
for these calibra-
tion chromosomes 
should be freely 
available later this 

year. “You can run [the reference data set] 
through your assembler and post the results 
back on the server. And then you can opti-
mize your results,” says Gut. Researchers can 
tune assembly parameters for their genome 
of interest and benchmark the performance 
of new versions of their assemblers, get-
ting an early indication of an assembler’s 
performance with a modest investment of  
computational time, he explains. The  

come from either end of DNA fragments 
that are too long to be sequenced straight 
through. Depending on the preparation 
technique, that distance can be as short as 
200 base pairs or as large as several tens 
of kilobases. Knowing that paired reads 
were generated from the same piece of 
DNA can help link contigs into ‘scaffolds’, 
ordered assemblies of contigs with gaps in 
between. Paired-read data can also indi-
cate the size of repetitive regions and how 
far apart contigs are.

Assessing quality is made more difficult 
because sequencing technology changes 
so quickly. In January of this year, Life 
Technologies launched new versions 
of its Ion Torrent machines, which can 
purportedly sequence a human genome 
in a day, for $1,000 in equipment and 
reagents. In February, Oxford Nanopore 
Technologies announced a technology that 
sequences tens of kilobases in continuous 
stretches, which would allow genome 
assembly with much more precision and 
drastically less computational work. Other 
companies, such as Pacific Biosciences, 
also have machines that produce long 
reads, and at least some researchers are 
already combining data types to glean the 
advantages of each.

Software engineers who write assembly 
programs know they need to adapt. “Every 
time the data changes, it’s a new problem,” 
says David Jaffe, who works on genome 
assembly methods at the Broad Institute 
in Cambridge, Massachusetts. “Assemblers 

are always trying to catch up to the data.” 
Of course, until a technology has been 
available for a while, it is hard to know 
how much researchers will use it. Cost, 
ease of use, error rates and reliability are 
hard to assess before a wider community 
g a i n s  m ore  e x p e r i e n c e  w i t h  n e w 
procedures. Luckily, ongoing efforts for 
evaluating short-read assemblies should 
make innovations easier to evaluate and 
incorporate.

Judging genomes
In the absence of a high-quality reference 
genome, new genome assemblies are often 
evaluated on the basis of the number of scaf-
folds and contigs required to represent the 
genome, the proportion of reads that can be 
assembled, the absolute length of contigs 
and scaffolds, and the length of contigs and 
scaffolds relative to the size of the genome.

The most commonly used metric is N50, 
the smallest scaffold or contig above which 
50% of an assembly would be represented. 
But this metric may not accurately reflect 
the quality of an assembly. An early assem-
bly of the sea squirt Ciona intestinalis had an 
N50 of 234 kilobases. A subsequent assem-
bly extended the N50 more than tenfold, but 
an analysis by Korf and colleagues showed 
that this assembly lacked several conserved 
genes, perhaps because algorithms discard-
ed repetitive sequences2. This is not an iso-
lated example: the same analysis found that 
an assembly of the chicken genome lacks 36 
genes that are conserved across yeast, plants 
and other organisms. But these genes seem 
to be missing from the assembly rather than 
the organism: focused re-analysis of the raw 
data found most of these genes in sequences 
that had not been included in the assembly.

Though the sea squirt and chicken 
genomes were assembled several years ago, 
such examples are still relevant because 
assembly is more difficult with the shorter 
reads used today, says Deanna Church, a 
staff scientist at the US National Institutes of 
Health who leads efforts to improve assem-
blies for the mouse and human genomes. 
“In my experience, people do not look at 
assemblies critically enough,” she says.

Assessing assemblers
Right now, when researchers describe a 
new assembler, they often run it on a new 
data set, making comparisons difficult. But 
a few projects are examining how different 
assemblers perform with the same data. 
The goal is to learn both how to assemble 

Genome assembly stitches together a genome 
from short sequenced pieces of DNA.

Competitions for 
genome assembly 
bring developers 
together to exchange 
advice and ideas, says 
Ivo Gut.

M
ic

ha
el

 S
ch

at
z,

 C
ol

d 
Sp

rin
g 

Ha
rb

or

Just like in a jigsaw puzzle, the 
genome needs to be assembled 
from short DNA reads.

The problem is that 
there are billions of pieces and
we don’t know the final picture..
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Some assembly required



Genomics is unthinkable without
computer data analysis

our computer

just one 
genome

16

computers can only execute 
human intelligence



The promise: i.e. why we are here

17
comparative genomics

for future medicine



Genome sizes



Genomics “Holy Grail”:
predicting phenotypic variability 
from genetic variability



Gene expression

• Proxy to cell functions (via proteins)
• Not all genes expressed 
• Highly uneven expression levels 



Gene expression

www.proteinatlas.org



Not only genome can be sequenced



Genomics keywords 

• DNA-Seq is sequencing DNA in the sample
• RNA-Seq is sequencing RNA in the sample
• ChIP-Seq is sequencing DNA sites 

interacting with specific protein
• Meta-genomics is sequencing many 

organisms in one sample



Why genomics?

+ “Complete” cellular DNA/RNA snapshot,
+ Protein/NA & NA/NA interactions
+ relative abundance of “reads”
+ wealth of data

- it doesn’t tell you about biology;
proteins, interactions, metabolites,  etc.;
not even which sequences are meaningful 
and which not.



Biological systems

• Ecosystem
• Population
• Organism
• Organ
• Tissue
• Cell
• Complexes/networks
• Molecules



Metagenomics: 
direct sequencing of total DNA/RNA

a mix of intestinal bacteria

www.micronaut.ch

can be sequenced without culturing
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Scaling-up and mixing the puzzles

27

- Who is there?
or What they can do?

- How many?



Bacterial and archaeal genomes

gtdb.ecogenomic.org/stats



Recent trends in genomics

• cancer / clinical human variations
• metagenomics
• single-cell and spatial transcriptomics



Human microbiomes

doi: 10.3389/fmicb.2015.01050 

Belizário and Napolitano Human microbiomes

FIGURE 1 | Taxonomic distribution, prevalence and abundance of microbial taxa that inhabit healthy human body sites as defined in the human
microbiome projects (HMP). The colored rectangles denote phylum/class and genera. Clinical studies of the microbiome will help to elucidate the link between
microbes and the promotion of a large number of diseases and pathological conditions as shown in the figure. The images were adapted from NIH HMP (http://
www.hmpdacc.org/) and National Human Genome Research Institute (https://www.genome.gov/). TORCH, Toxoplasmosis, Oher infections (coxsackievirus, HIV,
syphilis, etc), Rubella, Cytomegalovirus, Herpes simplex.

complex ecosystem is difficult and it is still not easy to define
how shifts in microbial composition and member abundance
can lead to diseases. Induction of some IBD has been linked to
a reduction of Firmicutes and Bacteroidetes and an expansion
of Proteobacteria. For example, Faecalibacterium prausnitzii,
a prominent member of Clostridium group IV (Firmicutes),
protective and anti-inflammatory commensal bacterium, is
frequently reduced in CD patients (Sokol et al., 2008; Sartor and
Mazmanian, 2012). Despite these advances, it should be noted
that microbiota composition varies between different locations
in the gastrointestinal tract (Eckburg et al., 2005; Zoetendal et al.,
2008; Arumugam et al., 2011; Cucchiara et al., 2012; Segata et al.,
2012; Lepage et al., 2013). Most studies in the literature have
explored only fecal microbiota. Fecal samples contain between
1,000 and 1,150 bacterial species, and up to 55% are uncultivable
and thus uncharacterized (Zoetendal et al., 2008; Qin et al., 2010;
Segata et al., 2012; Zhou et al., 2014). Our knowledge is especially
limited when it comes to the other parts of the GI tract, a potential
source of uncharacterized microbial species, which is largely due
to sampling constraints.

The dysregulation of the intestinal immune system can
also trigger microbial dysbiosis (Clemente et al., 2012; Sartor
and Mazmanian, 2012; Brown et al., 2013). Many different
inflammatory diseases are characterized by mutations or loss
of some innate response genes in lymphoid tissues, Paneth
cells, smaller Peyer’s patches and mesenteric lymph nodes
(Clemente et al., 2012; Frantz et al., 2012; Sartor andMazmanian,
2012). The growth of microbiota communities is under control
of distinct subfamilies of host genes encoding antimicrobial

peptides (AMPs). AMPs are the most ancient component of
the innate host response against bacterial infections (Guani-
Guerra et al., 2010; Ostaff et al., 2013). When bacteria colonize
a given human habitat, the expression of AMPs, including α

and β defensins and cathelicidins, is upregulated in order to
limit the spreading of bacteria. The equilibrium between the
immune system and immunoregulatory functions of bacteria
appears to be a delicate balance in which the loss of a
specific species can lead to an overreaction or suppression
of the innate immune system (Round and Mazmanian, 2009;
Clemente et al., 2012; Sartor and Mazmanian, 2012; Brown
et al., 2013). Intestinal epithelial cells (IECs) form a physical
and immunological barrier that separate luminal bacteria from
underlying immune cells in the intestinal mucosa. IECs and
hematopoietic cells express a variety of receptors called pattern
recognition receptors (PRRs) that mediate the interactions
between the immune system and the commensal microbiota
(Frantz et al., 2012). Toll-like receptors (TLRs) and nuclear
oligomerization domain-like receptors (NLRs) are examples
of PRR that recognize unique microbial molecules named
microbe-associated molecular patterns (MAMPs) including
lipopolysaccharides (LPS), lipid A, peptidoglycans, flagella, and
microbial RNA/DNA. These receptors activate inflammasomes
and thereby the production of cytokines TNF-α and IL-
1β (Brown et al., 2013; Sangiuliano et al., 2014). Myeloid
differentiation factor MyD88 is an adaptor protein that is
essential for TLRs signaling and host-microbial interactions
and tissue homeostasis (Sangiuliano et al., 2014). Mice lacking
MyD88 in IECS (IEC-Myd88−/−mice) display intestinal barrier

Frontiers in Microbiology | www.frontiersin.org 4 October 2015 | Volume 6 | Article 1050











Comparative approaches



It all started with microbes

and model organisms

36

a tool to see, and 

bookkeeping
the comparisons

Research requires



Looking same but some are pathogenic,
requiring molecular-level investigations

Welch, R.A. (2002). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia 
coli. Proceedings of the National Academy of Sciences, 99(26), 17020-17024. 

Three strains 
of E. coli 

can have only 
40% genes 

in common..
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Comparative genomics is about 
comparing the genomic features of 

different organisms.
An example

38

• Enable knowledge 
transfer, e.g. from models 
to human

• Interpret Nature’s 
molecular experimentation

The aims are to:



How genomes evolve

• Accumulation of mutations ó divergence

• Vertical descent by speciation



Inheritance of sequence and function
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fragment of HOXD4 protein

time

mutations happen

homology of forelimbs

functional selection 
accepts or rejects mutations



41

How to get there:
employing knowledge to interpret genomes and 

using genomes to further our knowledge 



General aims

• Similarities allow to transfer our knowledge 
from well studied model organisms 
to the newly sequenced ones

• Differences may shed light on unique 
species adaptation processes

42



• Similarity
vs

• Homology
vs

• Orthology
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How would you compare?
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Sequence alignment

* - identical 
: - conserved substitutions (same colour group)
. - semi-conserved substitution (similar shapes).
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The significance of  similarity scores

Maximum score

N
um
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r 

of
 m
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Extreme-value distribution of random sequence alignment scores 

E-value (expected value):
the expected number of 
random hits with the same 
score expected by chance in 
this database.
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Seq. similarity identification tools:
• SSAHA 
• Blat
• BLAST
• Smith-Waterman (Paralign)
• PSI-Blast / RPS-Blast
• CS-Blast 
• HHMER
• HHsearch



Originally the term was introduced in 1970 by Walter Fitch

Two homologous genes in two different species that 
derive from a single gene in the last common ancestor 
of the species

and better rephrased by Koonin in 2005:
Genes originating from a single ancestral gene in the 
last common ancestor of the compared genomes.

Orthology definition 
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Orthologs



Please note

51

• Similarity
could be

• Homology
could be

• Orthology

i.e. all orthologs are homologs and look similar;
not all similar looking sequences are homologs,
and not all homologs are orthologs;
and there is no ‘function’ in these definitions.



The growth of the need: linking genomics data 
to gene function knowledge
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Source: GOLD database



How to identify orthologs

?
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1. Tree-reconciliation
(complicated)
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2. Best-Reciprocal-Hits (BRH)

- what are these?

- why do they work?



Mammalian ancestor

gene duplication

#1 Why BRH is indicative of orthology?

56

human genesrat genes

Nobody knows the exact history



Mammalian ancestor

gene duplication

1st hit2nd hit

#2 lets BLAST 
a rat gene to all human genes

57

the longer evolutionary distance
the worse similarity score



Mammalian ancestor

gene duplication

1st hit2nd hit

#3 lets BLAST in reverse 
the best human gene hit to all rat genes

58

the longer evolutionary distance
the worse similarity score



Mammalian ancestor

gene duplication

#4 there is a reciprocally best matching 
pair of genes between rat and human

59

• BRH joins a pair of genes 
via a single 
last-common-ancestor gene

☛ orthologs by definition



a real-life 
BRH graph

☛ likely orthologs



Orthology identification:
DIY is more error-prone

• COG/KOG
• InParanoid
• eggNOG
• OrthoMCL
• OrthoFinder
• OrthoDB (Orthologer)



Sensitivity vs. Specificity tradeoff



To keep in mind

• Sensitivity vs. Specificity tradeoff

• Cost ($ or time) vs Accuracy tradeoff

☛ find or do benchmarking
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Examples of comparative study



Counting genes



Cow is molecularly 
closer to human than mouse



Pathway 
perspective



Nasonia 
problem 
with 
amino acid 
metabolism


