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Introduction

Monitor and diagnose patients
e Electronic Health Records (EHR) can be used to { Provide personalized health care

Explore new treatments
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e However EHR data are very heterogeneous (categories, free-text, numerals, etc)

e There is a scalability problem when experts design new rule-based methodologies.
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e Natural Language Processing (NLP) models designed to extract information from documents

e NLP can categorize and organize documents for classification and translation purposes

e Some NLP models learn word associations from text

King - Man + Woman = Queen

Corpus Model
(Wikipedia) (word2vec)
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e Heterogeneous data set with health from hospitals

e NLP models that learn word associations
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data set

e Main goal:

Introduction
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e Heterogeneous data set with health from hospitals

e NLP models that learn word associations

o Study of relations among medical concepts using NLP models.
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Medical concept representations

EHR e Extraction of clinical information from MIMIC-IV
(MIMIC-1V)
Category Labels Description
+ Demographics 14 Gender, age, ethnicity, status after hospitalization
. Locations 36 Locations within the hospital
Demographics
Locations Diagnoses 19,735 ICD-10 Clinical Modification
Diagnoses
Procedures Procedures 11,503 ICD-10 Procedure Coding System
Lab tests
Medications Lab tests 929 MIMIC-IV ItemID (OK: Normal, AB:Abnormal)
Medications 4,770 Generic Sequence Number
Around 37,000 different medical concepts!
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Medical concept representations

EHR Sentence e Extraction of clinical information from MIMIC-IV
(MIMIC-IV) (Admission)

+

Demographics
Locations
Diagnoses
Procedures
Lab tests
Medications

e Sentence generation from +500k hospital admissions

l
oo 0000
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Medical concept representations

EHR Sentence e Extraction of clinical information from MIMIC-IV
(MIMIC-IV) (Admission)

+

Demographics
Locations
Diagnoses
Procedures
Lab tests
Medications

e Sentence generation from +500k hospital admissions

A A sentence is generated for each admission

Admission sentence example:

Female patient gave birth with epidural in the labor room

Demographi& ICD-10 l \ GSN /ocation

[‘F/, ‘7z3800’, ‘NO1AH’, ‘LDR’]

l
oo 0000
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Medical concept representations

EHR Sentence Embeddings
(MIMIC-IV) (Admission) (Medical concepts)
e Numerical representations of
+ @ T . B medical concepts.
O
Word2vec 1 1 o o o e Eachconcepthasanumeric vector
Demographics . (CR0W) :
Locations — ™= O 0 : 5 1 )
Diagnoses
Procedures O_ITL::\ i i : i s
Lab tests O fg o ol 1 BB
Medications
o F
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EHR
(MIMIC-1V)

+

Demographics
Locations
Diagnoses
Procedures
Lab tests
Medications
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Sentence
(Admission)

Word2vec
(CBOW)

Embeddings

Medical concept representations

(Medical concepts)
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Patient sequence embeddings
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e Numerical representations of
medical concepts.

e Each concept has a numeric vector

AApplication example:

In medicine:

e Diagnosis prediction
e Personal medicine
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Medical concept representations

EHR Sentence Embeddings 2D Representation
(MIMIC-IV) (Admission) (Medical concepts) (Clusters)

3
+ o 1 0o 1 1 Dimensionality . .= '":’
Word2vec [l S reduction Rt T
(CBOW) (t-SNE, UMAP) :isis, o Lo >

Demographics

Locations

Diagnoses ‘
0 0 1 0 1

Procedures O_It:\

Lab tests & g

Medications
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 J

50\6 0 0 1 55
"\X . 0 00 In medicine:

e Diagnosis prediction

Patient sequence embeddings e Personal medicine
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Patient sequence embeddings

e Patient sequence embeddings (PSE) generated by aggregating medical concepts vectors.

e PSE used to predict diagnosis, procedures and medications




Patient sequence embeddings

e Patient sequence embeddings (PSE) generated by aggregating medical concepts vectors.

e PSE used to predict diagnosis, procedures and medications

AExample:
Female patient gave birth with epidural in the labor room

Demographi\ ICD-10 l GSN /ocation

[‘F/, ‘73800’, ‘NO1AH’, ‘LDR’]
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Patient sequence embeddings

e Patient sequence embeddings (PSE) generated by aggregating medical concepts vectors.

e PSE used to predict diagnosis, procedures and medications

AExample:

Female patient < ... > with epidural in the labor room

Demom /GSN /ocation
['F ]

r, “NOlAH’, ‘LDR'
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Patient sequence embeddings

e Patient sequence embeddings (PSE) generated by aggregating medical concepts vectors.

e PSE used to predict diagnosis, procedures and medications

AExample:

Female patient < ... > with epidural in the labor room

Demom / /ocatlon

E’ ‘NOlAH’ ‘LDR' ]

N

0 i, 1/3

PSE = mean o = | =

1
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Patient sequence embeddings

e Patient sequence embeddings (PSE) generated by aggregating medical concepts vectors.

e PSE used to predict diagnosis, procedures and medications

AExample:

Female patient < ... > with epidural in the labor room

Labor & delivery

PSE Diabetes

Broken limb

Score PSE with all possible diagnoses using a given metric (e.g., cosine distance)
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Patient sequence embeddings

e Patient sequence embeddings (PSE) generated by aggregating medical concepts vectors.

e PSE used to predict diagnosis, procedures and medications

AExample:

Female patient < ... > with epidural in the labor room

Labor & delivery (0.97)

(0.02)

PSE Scores

(0.01)

Score PSE with all possible diagnoses using a given metric (e.g., cosine distance)
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Do these models predict medical concepts correctly?

Results

Category  Concepts Top 10 Top 30 Top 50
Diagnoses 19,735 47.07% | 66.48% | 72.74 %
Procedures 11,503 5846 % | 77.20% | 83.82 %
Medications 4,770 65.45% | 80.45% | 84.64 %

High prediction power (accuracy) of exact medical concepts
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Results

Are there relations between medical concept representations and their codes?

Diagnosis
ICD-10

S-T  Injury
O | Pregnancy

® e 060 0 0 0 o
Z - X&emT

Similar diagnoses are grouped together matching the subcategories of ICD-10 codes
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Results

Are there relations between medical concept representations and their codes?

Procedure
ICD-10

00
02

04 R irat
og Respiratory

op System
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Procedure representations learn body parts where surgical operations (“0”) take place.
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Results

Are there relations between medical concept representations and their codes?
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Consistent match between medication representations and their anatomical main group
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Results

e Are non-linear models such as word2vec necessary after all?

o  Study of relationships among different medical concepts using k-means
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Are non-linear models such as word2vec necessary after all?

Results

Study of relationships among different medical concepts using k-means

Example: K-means clusters vs true label
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Results

e Are non-linear models such as word2vec necessary after all?

o  Study of relationships among different medical concepts using k-means

o Example: K-means clusters vs true label
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Results

e Are non-linear models such as word2vec necessary after all?

o  Study of relationships among different medical concepts using k-means

A o Example: K-means clusters vs true label

12.54

1. Generate vector space
10.0 A

751 o 2. K-means clustering
5.0 A .
el 3. True label comparison
0.0 A

-2.51
- Are all concepts from the same subcategory?
_,s] Diagnosis l

0 2 4 6 8 10 12 14 F1 score

www.ml-science.com/k-means-clustering (the higher the better)
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Results

Are non-linear models such as word2vec necessary after all?

o  Study of relationships among different medical concepts using k-means

—o— t-SNE

=o= PCA
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Dimensions

o Non-linear (-SNE) > Linear (PCA) dimensionality-reduction methods

33




F1 score
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Results

Are non-linear models such as word2vec necessary after all?

o  Study of medical concept relationships: Linear (LSA) vs non-linear (word2vec)

Word2vec
LSA
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Diagnoses Procedures

Medic'ations

LSA stands for Latent Semantic Analysis

Linear representation of medical concepts

Co-occurrence matrix + Singular Value Decomposition
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Results

Are non-linear models such as word2vec necessary after all?

0.30

F1 score

o  Study of medical concept relationships: Linear (LSA) vs non-linear (word2vec)
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Diagnoses

Procédures Medic'ations

LSA stands for Latent Semantic Analysis

Linear representation of medical concepts

Co-occurrence matrix + Singular Value Decomposition

Word2vec has higher F1 scores than LSA

Relationships among medical concepts are non-linear
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Conclusions

e Robust numeric representations of medical concepts extracted from electronic records
e Representations exhibited high predictive power

e Similar concepts are located nearby within the vector space
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Conclusions

Robust numeric representations of medical concepts extracted from electronic records
Representations exhibited high predictive power
e Similar concepts are located nearby within the vector space
e Complex relationships among medical concepts

e Importance of using non-linear models such as word2vec
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