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JC session motivation

Main drivers are openly available datasets

* how do we know we have improved SoTA?

e are the obtained results meaningful and the conclusions accurate?
* s the clinical problem well defined and does the model address it?

Medical Information Mart for Intensive Care (MIMIC-X series)
- development of thousands of Al models since 2011

Critical to understanding

* theinherent biases

* the demographic representativeness
* the risk of model overfitting

Guidance to other initiatives to create further and even more powerful
e open-source EHR datasets
ML applications in Healthcare
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Multitask learning and benchmarking with
clinical time series data
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Langlotz, Curtis et al. (2019). A Roadmap for Foundational
Research on Artificial Intelligence in Medical Imaging: From the
2018 NIH/RSNA/ACR/The Academy Workshop. Radiology.

Respiratory failure; insufficiency; arrest (23) 1
Septicemia (except in labor) (24) 4
Shock (25) 1

Fig. 9 Correlations between task labels.
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Multitask learning and benchmarking with
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Multitas
clinical t

LR — logistic regression
S — standard LSTM

< learning and benchmarking with
me series data

C — channel-wise LSTM

DS — deep supervision

MS — multitask standard LSTM
MC — multitask channel-wise LSTM

SAPS - Simplified Acute Physiology Score
APS - Acute Physiology Score
OASIS - Oxford Acute Severity of lliness Score
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Model

AUC-ROC

AUC-PR

LR

S

S+ DS
C
C+DS
MS
MC

Decompensation

0.870 (0.867, 0.873)
0.892 (0.889, 0.895)
0.904 (0.901, 0.907)
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Pe e kl n g | nto a b | a C k b OX The Fairness and Generalizability Assessment Framework
/]
Three-stage analytical setting

the fairness and 1 z
generalizability of a MIMIC:
Il benchmarking model

Internal validation External validation

\ 4 \ 4 \ 4

D raphi + Ourtcome + Dat issingn
emographics distribution ata missingness

{ e " 2 Descriptive cohort analyses
Corbett-Davis and Goel classification of fairness:

 anti-classification Performance [ L
» classification parity Diseriminati AUROC, AUPRC,
ISCrimination - -
AT ol li brat|0n precision, recall etc. Complete test Zanty amon.g
— . emographic
Validation plots, population
Calibration Calib-in-the-large, groups
to characterize the risk of any undue bias towards certain Comorbidity-risk plots
demographic groups based on: Diagnostic tools
e gender
=, ethnicity MINIMAR + Class imbalance + Diagnostic results

* insurance payer type as a socioeconomic proxy Reporting requirements
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MIMIC STARR

Patients n (%) | ICU staysn (%) | IHM rate (%) | Patients n (%) | ICU staysn (%) | IHM rate (%)
Totals 18’094 21'339 13.23 6066 6407 10.18
Gender
Female 8'090 (44.7) 9’510 (45.0) 13.5 2’485 (41.0) 2’641 (41.2) 1.6
Male 10°004 (55.3) | 11’629 (55.0) 13 3'581 (59.0) 3766 (58.8) 9.2
Age
0-17 0(0.0) 0(0.0) 0 0(0.0) 0(0.0) 0
18-29 782 (4.3) 873 (4.1) 5.6 275 (4.5) 291 (4.5) 7.2
30-49 2’680 (14.8) 3’171 (15.0) 9.3 879 (14.5) 958 (15.0) 8.8
50-69 6'636 (36.7) 7921 (37.5) 11.1 2660 (43.9) 2’814 (43.9) 9.1
70-89 7'043 (38.9) 8065 (38.2) 16.5 2076 (34.2) 2’161 (33.7) 11.7
90+ 953 (5.3) 1’109 (5.3) 21.8 176 (2.9) 183 (2.9) 20.8
Ethnicity
Asian 437(2.4) 492 (2.3) 13.8 837(13.8) 883 (13.8) 11.9
Black 1480 (8.2) 2’016 (9.5) 9.2 329 (5.4) 354 (5.5) 9.3
Hispanic 568 (3.1) 679 (3.2) 8.1 945 (15.6) 1'015 (15.8) 11.4
White 12°851 (71.0) 15’043 (71.2) 12.9 3199 (52.7) 3’361 (52.5) 8.7
Other 2'758 (15.2) 2909 (13.8) 18.7 756 (12.5) 794 (12.4) 13.5
Insurance
Medicare 10°337 (57.1) | 12286 (58.1) 15.3 3'144 (51.8) 3'321(51.8) 10.5
Medicaid | 1'489 (8.2) 1813 (8.6) 10.3 944 (15.6) 1’006 (15.7) 10.3
Private 5’601 (31.0) 6326 (30.0) 10.2 1'711 (28.2) 1’800 (28.1) 9.1
Other 667 (3.7) 714 (3.4) 11.6 267 (4.4) 280 (4.4) 12.1

MIMIC STARR
None (%) | Full (%) | Averagen(%) | None (%) |Full(%) | Average n(%)

Capillary refill rate 98.1 0 0.21(0.3) 100 0 0.0 (0.0)
Diastolic blood pressure | 1.2 14 43.4(6.2) 11 8.9 20.2 (42.0)
Fraction inspired oxygen | 70.5 0 3.0(6.2) 435 0 3.5(7.2)
Glascow coma scale

Eye opening 0.9 0.1 14.8 (30.9) 14.3 0 6.7 (14.1)

Motor response 0.9 0.1 14.8 (30.8) 14.2 0 7.2(15.1)

Total 41.8 0.1 8.8(18.4) 14 0 9.8 (20.4)

Verbal response 1 0.1 14.8 (30.8) 14.7 0 5.6(11.7)
Glucose 0.1 0 12.5 (26.0) 9.8 0.5 15.2(31.6)
Heart rate 1.2 19.8 44,4 (92.4) 1.8 74.9 45.8 (95.4)
Height 81 0 0.2 (0.4) 9.7 76.8 42.9 (89.4)
Mean arterial pressure 1.2 13.3 43.2 (90.0) 11 8.9 20.2 (42.0)
Oxygen saturation 0.7 14.1 42,8 (89.3) 1.7 65.2 45,5 (94.9)
Respiratory rate 1.3 18.6 43.7 (91.0) 13.7 36.7 38.1(79.3)
Systolic blood pressure 1.2 14.1 43.4(90.4) 11 8.9 20.2 (42.0)
Temperature 2 0.4 15.7 (32.6) 3.8 1.3 20.0 (41.7)
Weight 27 0 1.5(3.1) 4.5 81.1 45.3 (94.3)
pH 17.3 0 6.3(13.1) 222 0 7.8 (16.3)
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Bias? Why?

OW?

MIMIC-trained model

STARR-trained model

Metrics Benchmark study (1) Internal validation | (2) External validation | (3) Internal validation
Test data IHM rate — 11.56% 10.18% 10.19%
AUROC 0.862 (0.844,0.881) | 0.861 (0.842, 0.879 0.827 (0.810, 0.843 0.872 (0.839, 0.904)
AUPRC 0.515 (0.464, 0.568) | 0.499 (0.452, 0.546 0.408 (0.372, 0.446 0.500 (0.403, 0.601)
Accuracy — 0.896 (0.889, 0.903 0.907 (0.903, 0.911 0.912 (0.902, 0.921)

)

Precision event

Precision non-event

0.910 (0.905,0.914

0.915(0.912,0.918

0.915(0.908, 0.923)

Recall event

0.255(0.211, 0.299

0.186 (0.156,0.216

0.184(0.112, 0.265)

Recall non-event

( )
( )
( )
0.618 (0.546, 0.692)
( )
( )
( )

0.979 (0.974, 0.984

( )
( )
( )
0.658 (0.591, 0.724)
( )
( )
( )

0.989 (0.986, 0.992

(
(
(
0.783 (0.609, 0.944
(
(
(

0.994 (0.988, 0.999)

Table 3. Evaluation metrics reported by the benchmark study® and the three framework stages.
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Total (11.6) =

Medicaid (8.5)
Medicare (13.9) ——
Private (8.3) ——

Fermale (12.3) ——
Male (11.0) ——

T abels

Asian (14.3)
Black (9.7)
Hispanic (7.3) ——

White (11.3) -

Total (10.2) e

Medicaid (10.3) —— -

Medicare (10.5) ——
Private (9.1)

Female (11.6)
Male (9.2)

Z abels

Asian (11.9)
Black (9.3)
Hispanic (11.4)
White (B.7)

Total (10.2})

——
— ———
il
—————
e ——
N —
—————
Medicaid (10.8) ———
e ——
e ——
——
———
———
————

Private (10.2)

Female (12.7)
Male (B.4)

€ a2bels

Asian (12.8)
Black (7.3)
Hispanic (11.7)
White (9.4)

0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AUROC AUPRC
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Stage 1 Stage 2 Stage 3

Total —-I-—i - i  —g— i
1 1 )
Medicare —p— H = ! ———1
Private ——— o > :
| | |
Fema|e —— : —— : —— :
MalE' e i  wigm i = i — .E -

] I ]
Acian - —— | —— ]
Black ——i— —— 1: :
Hispanic t —— —— ! ——
White = : = : —— :
] 1 ]

=0.10 =0.05 0.00 0.05 0.10 =0.10 =0.05 0.00 0.05 0.10 =0.10 =0.05 0.00 0.05 0.10

Calibration-in-the-large

Fig. 4 Plots of calibration-in-the-large under demographic stratification for the three analytical framework
stages. The deviations of the predicted average risk from the observed average risk are shown. 95% confidence
intervals are illustrated by thin gray lines, standard deviations by bold black lines and median values by black
dots. The dashed line in red indicates optimal agreement between predicted and observed risk.
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Conclusions

* the cohort and performance screening unmasked a typical class imbalance problem,
where the model struggles to correctly classify minority class instances as

demonstrated through low recall. Only every fourth to fifth high-risk patient is
identified as such by the Al tool

* while the assessment showed the model’s capacity to generalize, the classification
parity assessment revealed that model fairness is not guaranteed for certain ethnic and
socioeconomic minority groups, but gender is unaffected

 the calibration fairness study pointed to differences in patient comorbidity burden for
identical model risk predictions across socioeconomic groups
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«Who is in my study ?»

internal validity

» confounding (i.e. differences in other causes of the outcome
between exposed and unexposed)

» selection bias (e.g. differential cohort attrition or control
selection)

* measurement error

external validity

» differences in effect modifiers

» differences of the outcome between the source population
and target population

tradeoffs
breadth and comprehensiveness versus parsimony and reader-
friendliness.

FACULTE DE MEDECINE

BOX1

Dataset suggestions

Necessary

¢ Provide a thorough description of the provenance, demo-
agraphics and content of the dataset (for example, Table 1 data).

e Apply and include numerical (for example, mean, variance, min,
max and correlation matrices) and/or graphical (for example,
scatterplot, histogram, heatmap and dimensionality reduction)
exploratory data analysis in the final work.

¢ Include details of how the quality of the dataset was verified
by describing missing features, imbalanced data, duplicate
instances, sampling bias and other dataset-specific issues.

Recommended
e Release a transparency artefact by using standardized
questionnaire templates (for example, Healthsheet®) along with
the paper.

Encouraged (private datasets only)
e Use robust infrastructure developed by non-profits such as
Openmined” to host and manage health datasets.
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Basic Table 1 structure
and analysis-specific
considerations

FACULTE DE MEDECINE

Analysis-specific considerations

BN BTN T

Total column (EV)

Stratify by exposure
(RCT/cohort/cross-
sectional) or disease
(case-control) (IV)

Stratify controls by
exposure (case-control)

(v)

Do not include

Figure0001

“ial statistics

o column

Basic Table 1 considerations
l

describing target

population (EV)

Missing data

Sample weights

Clustered data

Interest in effect
modification or
interaction

Show columns for
complete and partial
cases, or one imputed
dataset (IV)

Show separate table for
clusters and individuals
(EV)

Stratify by exposure
and modifier (IV)

Include rows for all
variables included in
final model (1V)

Summarize variables as
analyzed, rather than
as-collected (V)

Consider including:

- sampling variables
and paossible
confounders (V)

- possible effect
maodifiers (EV)

Include row for
outcome variable (IV)

Include row showing
distribution and range
of sample weights {1V,
EV)

Include a row for n per
cluster and sampling
fraction (EV)

Show distribution of
exposure and modifier
in total column (EV)

Show n (%) for
categorical variables
(IV, EV)

Show mean (5D) for
continuous variables,
but consider median
(min/max or
lower/upper quartile)
for skewed data (IV, EV)

Reduce visual clutter;
round percentages to
whole numbers

Show unweighted n,
weighted % (IV, EV)

Abbreviations: (V] denotes shows internal validity, (EV) denotes shows external validity, and (IV, EV] denotes shows both internal and external

validity; RCT denctes randomized contralled trial; 5D denotes standard deviation
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[ ]
O t | I e t I < a | Point 1: Including a column for total Point 2: Stratifying controls by exposure
controls shows distribution of shows potential confounding in the source

characteristics in the source population. population (e.g. by education or heart
(EV) failure) by showing association with
e X a m | e O f a NG exposure in controls. (IV)
p \’\\_\ \ Point 3: No column with p-values, as
"\\_\ \ statistical tests are not an appropriate
e \\ method for assessment of confounding in
C a S e -— C O n t r O | Point 4: Showing variables both as collected Table 1 Charannanc stroke cases and controls, stratified by e_)(p.c>setd a‘nd Unexposea controls, and
(e.g. continuous age), and as analyzed (e.g. exposure (to represent distribution in the source population) \ similarity is not expected between cases
categorical age), can show potential for Cases \ Controls \', and total controls. T
measurement error and residual PO i (nt?l;:;a) f:,_,;;;,: L;,:ﬁo’:;, . -/___/ﬂ___,,
St u d y confounding. (IV) = Diabetes (exposure)’ 265 (31%) | 332 (19%) | - - ==
R Demographics i
S Male 325 (38%) | 637 (37%) | 73 (22%) @ S64 (41%) Point 5: To reduce visual clutter, show
T Age,years(mean[SD)) | 69 (108) 63 (99) 64 (11.7) 63 (13.) percentages rounded to nearest whole
: z : : Age, years ' number, unless more precision is warranted.
Point 6: Including a selection variable (e.g. 18-40 38 (4%) 150 (9%) | 27 (8%) 124 (9%)
insurance status), even if notincluded in 41-60 111 (13%) | 242 (14%) | SO (15%) 193 (14%) I
final analytic model, allows its distribution to 61-80 il squic 8 Rermedll b & Rl i B Bercodil e /
be compared between cases and total Ed?;lc; e 120 (14%) . 72 (4%) | 16 (5%) 55 (%) /,,/"
controls to make judgements about whether < High «hool 77 (9% | 165 (10%) | 13 (a%) | 151 (%) &
cases reasonably arose from this source High school 325 (38%) 0 735 (43%) | 116 (35%) 620 (45%) Point 7: Show skewed continuous variables
population. (IV) SON*‘CO'%&G 367 (43%) | 678 (e0%) | 170 (51%) 509 (37%) as median (min-max) or (25% — 75
T i Imz:g‘:(:s:nm S 0N W0 &9 B 0m % N percentile) instead of/mean (SD). (IV, EV)
Point 8: Showing potential modifiers (e.g. ::‘:.':. ﬁ 897:} 2:3 g;:: i 13 :;g:: :2: :;::: /_/-*’/
hypertension), even if not included in the None 120 (14%) | 215 (13%) | 37 (11%) 179 (13%) il
final analytic model, can help readers assess Personal medical history /
generalizability of findings. (EV) CCl, median (min-rmax) 5 (0-15) 2 (0100 3 (010 0 7
e Heart failure 453 (S3%) 404 (24%) 60 (18%) 344 (25%)
e Atrial fibrillation 265 (31%) 238 (14%) 73 (22%) 165 (12%)
T Hypertension 290 (34%) 375 (22%) 86 (26%) 289 (21%)
Pharmacologic agent use
Sulfonylureas 538 (63%) 692 (40%) 183 (55%) S09 (3™%)
Vasodilators 154 (18%) 195 (11%) 43 (13%) 151 (11%)
Diuretics 461 (S54%) | 728 (43%) | 136 (41%) 592 (43%)
Beta blockers 239 (28%) 416 (24%) | 113 (34%) 303 (22%)
Statins 325 (38%) | 453 (27%) | 123  (37%) 330 (24%)
NSAIDs 376 (44%) | 731 (43%) | 139 (42%) @ 592 (43%)

Warlable distributions are reported as n (%) uniess otherwise specified
‘Exposure distribution not reported for strata defined by exposure status
Abbreviations: CCl, Charison Comorbidity Index; min, minimum; max, maximum;
NSAID, non-steroidal anti-inflammatory drug; SD, standard deviation,
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yvpothetical example of a cohort study with missing

d a t a Point 1: Including columns for response Point 2: Including a total column for final Point 3: Stratifying final analytic data for Point 4: No column with p-values, as
sample and complete cases can show which analytic data shows distribution of cohort study by exposure shows potential statistical tests are not an appropriate
variables are associated with missingness characteristics in the source population. confounding (e.g. by maternal smoking in method for assessment of confounding in
and might induce selection bias. (IV) (EV) first trimester). (IV) exposed and unexposed, or similarity

Se—— vy s between response, complete case, and
e . e imputed samples.
Point 5: Including a row for the outcome S \\‘\—-\__ \\ \
lets the reader assess whether selection e e g \
. M e o~ N \
ln.to F°'“p’e;? c:se sadmplte ("ec"’_ Table 1. Maternal prenatal alcohol use, thild.conduct disorder at age 9, amlaernstls of response, completé case, and imputed samples. \
missingness) is dependent on disease, Response. - <
: (Res > sample Complete cast— Imputed sample
which would bias risk measures in a ~——a sample B rotod Exposed ™ Unexposed
completa case analysis. (V) Sample characteristic' (n=2472) (n=1871) (n=2472) (n=717) (n=1755)
S e B Any maternal prenatal alcobol use (exposure) 667 (27%) 337 (18%) 717 (29%) 717  (100%) 0 (0%)
T Conduct disorder at age 9 (outcome) 297 (12%) 168 (9%) 297 (12%) 65 (9%) 232 (13%)
: z Child variables
Point 6: S_howmg variables both as collected Male 1335 (54%) 992 (53%) 1335 (S4%) 380 (53%) 955 (54%)
(e.g. continuous age), and as analyzed (e.g. Non-white 840 (34%) 692 (37%) 890 (36%) 251 (35%) & 639 (36%)
categorical age), can show potential for Birthweight (g), mean (SD) 3395 (605) 3671 (523) 3410 (S97) | 3361 (583) | 3458 (609)
measurement error and residual Gestational age (weeks), mean (S0) 39 (L7) 40 (1.2) 39 (1.3) 38 (1.9) 39 (1.7)
confounding. (IV) __’__—/‘_’ Gestational age <37 weeks 445 (18%) 225 (12%) 470 (19%) 151 (21%) 319 (18%)
"f'\___\ Maternal variables
—-\‘——\__ Age of mother (years) 28.1 (5.0) 29.0 (43) 28.7 (5.2) 301 (47) 281 (5.1)
- Age of mother (categorized)
<25 1014 (41%) 824 [(44%) 1039  (42%) 258 (36%) 780 (4a%)
> . ; 25-35 964 (39%) 692 (37%) 939 (38%) 308 (43%) 631 (36%)
Pol?t 7: Includnng arow !o_r p(_)tenhal ' 535 254 (20%) 355 (19%) 494 (20%) 151 (21%) 344 (20%)
confounders not included in final analytic Any maternal smoking in first trimester 544 (22%) 38 (17%) 519 (21%) | 129 (18%) | 390 (22%)
model could reduce concerns about residual Maternal education
confounding. (IV) B < High school 222 (9%) 7S (4%) 198  (8%) 65 (9% @ 133 (8%)
e ey High school 939 (38%) 655 (35%) 915 (37%) 250 (35%) 664 (38%)
Some college 1064 (43%) 916 (49%) 1112 (45%) 323 (45%) 790 (45%)
>=College 247 (10%) 225 (12%) 247 (10%) 79 (11%) 168 (10%)

'Reported as n (%) unless otherwise specified
Abbreviations: g, grams; SD, standard deviation,
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Code availability BOX2
Tools and infrastructure

Machine Learning for Health (ML4H) conference open source SuggeStlonS
statistics:
Necessary
¢ Add an implementation section in either the main paper or the
2020 : 66% appendix.
2021: 73% e Add a 'How was this implementation verified?’ section for
submissions.
Open-sourcing the code remains the most transparent way for Recommended
P .g _ P y ¢ Add an ‘Experimental environment’ section in the final works,
the community to check results: which should not count towards the page limit.
e ascript to run the code
* areal or synthetic dataset (depending on the possibility) Encouraged

¢ Provide links to the open-source code and ways to run it.
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Labeling

BOX3

Problem formulation
suggestions

Expert-defined labels

PPV<95% . Necessary
R PPV [ Vi N : - : .
5059, €ploy Canatio ¢ Add a detailed description of the labelling process used in the
/ \ / \ S at Site 1 » S paper.
Case & control Manual / L association
algorithm > review; T tes.ts; Expert-guided labels
development assess Validate | —3 5 replicate ) Necessary
: o t oth : L .
\_ and refinement y € precision ) g s?teser e Add a‘Label analysis’ section in the main paper.
e Investigate ‘label leakage’ in the data and include findings in the
Majority of ML in Healtcare = supervised learning appendix or supplementary information.
3.3% labeling errors in average Recommended
e Implement a multistage label quality framework consisting of
Labels manual feature inspection, label statistics and case reviews.

* fully defined by clinicians:
report inter-annatator agreement, time to annotate, human-level peformance, etc.
* generated semi-autonomously using rule-based methods incorporating clinical guidance
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TensorFlow Model Analysis

Slic:  Slices Overview 0

Metrics Hknslogram
Show th
post_export_metrics/example_count Slice

Il post_export_metrics/example_count
400

300
200

100

0

B e e & e’ 8t el e e e et el e 8 e e el et 8l el e el el e
07 G0 R 0 R (R R R R R R (R R R R R R 0 R R R R 0 R

feutine . accuracy_bassiine auC suic precislon_recall average_los
trip_start_hour:19 0.65672 0.59104 0.66079 0.57315 0.64654
trip_start_hour:14 0.63964 0.65766 0.63072 0.46030 0.63655

trip_start_hour:2 0.64407 0.63559 0.55829 0.46379 0.67816
trip_start_hour:12 0.70536 0.65625 0.71230 0.57907 0.57703

trip_start_hour:0 0.63768 0.66667 0.62093 0.42289 0.62715
trip_start_hour:23 0.66016 0.64844 0.58337 0.44173 0.65142

. ——

«The medical algorithmic audit» (april 2022) |
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True positive rate

04|/

024

All (AUC 0.87)
—— Chest drains (AUC 0.94)
No chest drains (AUC 0.77)
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0 02 04 0.6 08 10

False positive rate
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BOX4

Results suggestions

Necessary
¢ Include fairness measurements, calibration scores and
label-dependent metrics during model evaluation.
¢ |Include comparisons with baseline models and tune the bias-
variance trade-off with respect to model complexity.

Recommended
o Perform failure analysis — identify instances where the model
fails and investigate their commonalities. We recommend
methods such as the ‘'medical algorithmic audit’ framework for
structured failure analysis®.

Encouraged
¢ |nclude thorough descriptions of experiments that need to be
done, but were not performed.
¢ Add model visualizations to the resulting research.
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