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Covariance & Correlation

The covariance between two variables is defined by:

cov 	 x , y
=�	 x��x
	 y�� y
�=� xy ��� x � � y �

This is the most useful thing they never tell you in most lab 
courses!  Note that cov(x,x)=V(x).

The correlation coefficient is a unitless version of the same 
thing:

�=
cov 	x , y 


� x� y

If x and y are independent variables (P(x,y) = P(x)P(y)), then

cov 	x , y
=�dx dy P 	 x , y 
 xy  � 	� dx dy P 	 x , y 
 x 
	�dx dy P 	x , y 
 y 


 =� dx P 	 x 
 x� dy P 	 y 
 y  �  	�dx P 	 x 
 x
	� dy P 	 y 
 y 
= 0
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More on Covariance

Correlation 
coefficients for some 
simulated data sets.  

Note the bottom 
right---while 
independent 
variables must have 
zero correlation, the 
reverse is not true!  

Correlation is 
important because it 
is part of the error 
propagation 
equation, as we'll 
see.
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Variance and Covariance of Linear 
Combinations of Variables

Suppose we have two random variable X and Y (not necessarily 
independent), and that we know cov(X,Y).

Consider the linear combinations W=aX+bY and Z=cX+dY.  It can 
be shown that

cov(W,Z)=cov(aX+bY,cX+dY) 
              = cov(aX,cX) + cov(aX,dY) + cov(bY,cX) + cov(bY,dY)

 = ac cov(X,X) + (ad + bc) cov(X,Y) + bd cov(Y,Y)
 = ac V(X) + bd V(Y) + (ad+bc) cov(X,Y)

Special case is V(X+Y):
 

V(X+Y) = cov(X+Y,X+Y) = V(X) + V(Y) + 2cov(X,Y)

Very special case: variance of the sum of independent random 
variables is the sum of their individual variances!
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Gaussian Distributions

By far the most useful distribution is the Gaussian (normal) 
distribution:

P 	 x�� ,�
=
1

�2��2
e
�

1

2 	 x��

� 

2

68.27% of area within ±1σ
95.45% of area within ±2σ
99.73% of area within ±3σ

Mean = µ, Variance=σ2

Note that width scales with σ.

Area out on tails is important---use 
lookup tables or cumulative 
distribution function.

In plot to left, red area (>2σ) is 
2.3%.

90% of area within ±1.645σ
95% of area within ±1.960σ
99% of area within ±2.576σ
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Why are Gaussian distributions so critical?
� They occur very commonly---the reason is that the average of 

several independent random variables often approaches a 
Gaussian distribution in the limit of large N.

� Nice mathematical properties---infinitely differentiable, 
symmetric.  Sum or difference of two Gaussian variables is 
always itself Gaussian in its distribution.

� Many complicated formulas simplify to linear algebra, or 
even simpler, if all variables have Gaussian distributions.

� Gaussian distribution is often used as a shorthand for 
discussing probabilities.  A �5 sigma result� means a result 
with a chance probability that is the same as the tail area of 
a unit Gaussian:

2�
5

�

dt P 	t��=0,�=1


This way of speaking is used even for non-Gaussian 
distributions!
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Why you should be very careful with 
Gaussians ..

The major danger of Gaussians is that they are overused.  
Although many distributions are approximately Gaussian, 
they often have long non-Gaussian tails.  

While 99% of the time a Gaussian distribution will correctly 
model your data, many foul-ups result from that other 1%.

It's usually good practice to simulate your data to see if the 
distributions of quantities you think are Gaussian really 
follow a Gaussian distribution.

Common example: the ratio of two numbers with Gaussian 
distributions is itself often not very Gaussian (although in 
certain limits it may be).
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Review of covariances of joint PDFs

Consider some multidimensional PDF p(x
1
 ...

 
x

n
).  We define the 

covariance between any two variables by:

cov � xi , x j�=� d �x p��x �  �xi
� xi���x j
� x j ��

The set of all possible covariances defines a covariance matrix, 
often denoted by V

ij
.  The diagonal elements of V

ij
 are the 

variances of the individual variables, while the off-diagonal 
elements are related to the correlation coefficients:

V ij=[
�1

2 �12�1�2 ... �1n�1�n

�21�1�n �2

2
... �2n�2�n

� � � �

�n1�1�n �n2�2�n ... �n

2 ]
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Properties of covariance matrices

Covariance matrices always:
� are symmetric and square
� are invertible (very important requirement!)

The most common use of a covariance matrix is to invert it then 
use it to calculate a χ2:

�2=�
i

�
j

� yi
 f �xi��V ij


1� y j
 f �x j��

If the covariances are zero, then V
ij
=δ

ij
σ

i
2, and this reduces to:

�2=�
i

� yi
 f �xi��
2

� i

2

Warning: do NOT use the simplified formula if data points are correlated!
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Approximating the peak of a PDF with a 
multidimensional Gaussian

Suppose we have 
some 
complicated-
looking PDF in 
2D that has a 
well-defined 
peak. 

How might we 
approximate the 
shape of this PDF 
around its 
maximum?
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Taylor Series expansion

Consider a Taylor series expansion of the logarithm of the 
PDF around its maximum at (x

0
,y

0
): 

log P � x , y�=P0�A� x
x0��B � y
 y0�
C � x
x0�
2
D � y
 y0�

2
2E � x
x0�� y
 y0� ...

Since we are expanding around the peak, then the first 
derivatives must equal zero, so A=B=0.  The remaining 
terms can be written in matrix form:

log P � x , y��P0
�� x ,� y ��C E

E D � �� x� y �
In order for (x

0
,y

0
) to be a maximum of the PDF (and not a 

minimum or saddle point), the above matrix must be 
positive definite, and therefore invertible.
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Taylor Series expansion

Let me now suggestively denote the inverse of the above 
matrix by V

ij
.  It's a positive definite matrix with three 

parameters. In fact, I might as well call these parameters      
σ

x
, σ

y
, and ρ. 

Exponentiating, we see that around its peak the PDF can be 
approximated by a multidimensional Gaussian.  The full 
formula, including normalization, is

log P � x , y��P0
�� x ,� y ��C E

E D � �� x� y �

P � x , y �=
1

2�� x� y�1
�2
exp {
 1

2 �1
�2� [� x
x0

� x
�
2

�� y
 y0

� y
�
2


2�� x
x0

� x
� � y
 y0

� y
� ] }

This is a good approximation as long as higher order terms in 
Taylor series are small.
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Interpretation of multidimensional Gaussian

P � x , y �=
1

2�� x� y�1
�2
exp {
 1

2 �1
�2� [� x
x0

� x
�
2

�� y
 y0

� y
�
2


2�� x
x0

� x
� � y
 y0

� y
� ] }

Can I directly relate the free parameters to the covariance matrix? 
 First calculate P(x) by marginalizing over y:

P � x��exp {
 1

2�1
�2� �
x
x0

� x
�
2

}�dy exp {
 1

2 �1
�2� [ � y
 y0

� y
�
2


2� � x
x0

� x
� � y
 y0

� y
� ]}

P �x ��exp {
 1

2 �1
�
2
� �
x
x0

� x
�
2

}� dy exp {
 1

2 �1
�
2
� [� y
 y0

� y
�
2


2�� x
x0

� x
� � y
 y0

� y
���2 � x
x0

� x
�
2


�2� x
x0

� x
�
2

]}
P �x ��exp {
 1

2 �1
�2� �
x
x0

� x
�
2

}� dy exp {
 1

2 �1
�2� [� y
 y0

� y


�� x
x0

� x
� �

2


�
2 � x
x0

� x
�
2

]}
P �x ��exp {
 1

2 �1
�2� �
x
x0

� x
�
2

}exp {� �2

2 �1
�2� �
x
x0

� x
�
2

}=exp {
1

2 � x
x0

� x
�
2

}
So we get a Gaussian with width σ

x
.  Calculations of σ

y
 similar, and can also 

show that ρ is correlation coefficient.
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P(x|y)

P � x , y �=
1

2�� x� y�1
�2
exp {
 1

2 �1
�2� [� x
x0

� x
�
2

�� y
 y0

� y
�
2


2�� x
x0

� x
� � y
 y0

� y
� ] }

Note: if you view y as a fixed parameter, then the PDF P(x|y) is a 
Gaussian with width of:

� x�1
�2

and a mean value of

x0��� � x

� y
� � y
 y0�

(It makes sense that the width of P(x|y) is always narrower than 
the width of the marginalized PDF P(x) (integrated over y).  If 
you know the actual value of y, you have additional information 
and so a tighter constraint on x.
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σ
x
=2

σ
y
=1

ρ=0.8

Red ellipse: 
contour with 
argument of 
exponential 
set to equal 
-1/2

Blue ellipse: 
contour 
containing 
68% of 2D 
probability 
content.
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Contour ellipses

The contour ellipses are defined by setting the argument of the 
exponent equal to a constant.  The exponent equals -1/2 on the 
red ellipse from the previous graph.  Parameters of this ellipse 
are:

P � x , y �=
1

2�� x� y�1
�2
exp {
 1

2 �1
�2� [� x
x0

� x
�
2

�� y
 y0

� y
�
2


2�� x
x0

� x
� � y
 y0

� y
� ] }

tan 2�=
2�� x� y

� x

2
� y

2

�u=
cos

2��� x

2
sin
2��� y

2

cos
2�
sin

2�
�v=

cos
2��� y

2
sin
2��� x

2

cos
2�
sin

2�
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Probability content inside a contour ellipse

For a 1D Gaussian exp(-x2/2σ2), the ±1σ limits occur when the 
argument of the exponent equals -1/2.  For a Gaussian there's a 
68% chance of the measurement falling within around the mean.

But for a 2D Gaussian this is not the case.  Easiest to see this for 
the simple case of σ

x
=σ

y
=1:

1

2�
� dx dy exp [
1

2
�x2� y2� ]=�

0

r0

dr exp [
1

2
r

2 ]=0.68

Evaluating this integral and solving gives r
0
2=2.3.  So 68% of 

probability content is contained within a radius of σ�(2.3).

We call this the 2D contour.  Note that it's bigger than the 1D 
version---if you pick points inside the 68% contour and plot 
their x coordinates, they'll span a wider range than those 
picked from the 68% contour of the 1D marginalized PDF!
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σ
x
=2

σ
y
=1

ρ =0.8

Red ellipse: 
contour with 
argument of 
exponential 
set to equal 
-1/2

Blue ellipse: 
contour 
containing 
68% of 
probability 
content.



Physics 509 21

Marginalization by minimization
Normal marginalization 

procedure: integrate 
over y.

For a multidimensional 
Gaussian, this gives 
the same answer as 
finding the extrema of 
the ellipse---for every 
x, find the the value of 
y that maximizes the 
likelihood.

For example, at x=±2 
the value of y which 
maximizes the 
likelihood is just 
where the dashed line 
touches the ellipse.  
The value of the 
likelihood at that point 
then is the value P(x)
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Two marginalization procedures
Normal marginalization procedure: integrate over nuisance variables:

P � x�=� dy P �x , y�

Alternate marginalization procedure: maximize the likelihood as a function of 
the nuisance variables, and return the result:

P � x��max
y

P � x , y�

(It is not necessarily the case that the resulting PDF is normalized.)

I can prove for Gaussian distributions that these two marginalization 
procedures are equivalent, but cannot prove it for the general case (In fact 
they give different results).

Bayesians always follow the first prescription.  Frequentists most often use 
the second.  

Sometimes it will be computationally easier to apply one, sometimes the 
other, even for PDFs that are approximately Gaussian.
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Maximum likelihood estimators

By far the most useful estimator is the maximum likelihood 
method.  Given your data set x

1
 ... x

N 
and a set of unknown 

parameters α, calculate the likelihood function

L� x1 ... xN����=�
i=1

N

P � xi����

It's more common (and easier) to calculate -ln L instead:


ln L� x1 ... xN����=
�
i=1

N

ln P �xi����

The maximum likelihood estimator is that value of α which 
maximizes L as a function of α.  It can be found by minimizing 
-ln L over the unknown parameters.
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Simple example of an ML estimator

Suppose that our data sample is drawn from two different 
distributions.  We know the shapes of the two distributions, but not 
what fraction of our population comes from distribution A vs. B.  We 
have 20 random measurements of X from the population.

PA�x�=
2

1
e
2
e

2x

PB �x�=3x
2

Ptot � x�= f PA� x���1
 f �PB �x�
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Form for the log likelihood and the ML 
estimator
Suppose that our data sample is drawn from two different 
distributions.  We know the shapes of the two distributions, but not 
what fraction of our population comes from distribution A vs. B.  We 
have 20 random measurements of X from the population.

Ptot � x�= f PA� x���1
 f �PB �x�

Form the negative log likelihood:

Minimize -ln(L) with respect to f.  Sometimes you can solve this 
analytically by setting the derivative equal to zero.  More often you 
have to do it numerically.


ln L � f �=�
i=1

N

ln �Ptot � xi� f ��
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Graph of the log likelihood
The graph to the left 
shows the shape of the 
negative log likelihood 
function vs. the unknown 
parameter f.

The minimum is f=0.415.  
This is the ML estimate.

As we'll see, the �1σ� error 
range is defined by 

∆ ln(L)=0.5 above the 

minimum.

The data set was actually 
drawn from a distribution 
with a true value of f=0.3
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Errors on ML estimators

In the limit of large N, the 
log likelihood becomes 
parabolic (by CLT).  
Comparing to ln(L) for a 
simple Gaussian:

it is natural to identify the 
1σ range on the parameter 
by the points as which 
∆ ln(L)=½.

2σ range: ∆ ln(L)=½(2)2=2
3σ range: ∆ ln(L)=½(3)2=4.5

This is done even when the 
likelihood isn't parabolic 
(although at some peril).


ln L=L0�
1

2 � f 
� f 	


 f
�
2
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Parabolicity of the log likelihood

In general the log likelihood 
becomes more parabolic as 
N gets larger.  The graphs 
at the right show the 
negative log likelihoods for 
our example problem for 
N=20 and N=500.  The red 
curves are parabolic fits 
around the minimum.

How large does N have to 
be before the parabolic 
approximation is good?  
That depends on the 
problem---try graphing 
-ln(L) vs your parameter to 
see how parabolic it is.
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Asymmetric errors from ML estimators
Even when the log likelihood is 
not Gaussian, it's nearly 
universal to define the 1σ 
range by ∆ ln(L)=½. This can 
result in asymmetric error 
bars, such as:

The justification often given for 
this is that one could always 
reparameterize the estimated 
quantity into one which does 
have a parabolic likelihood.  
Since ML estimators are 
supposed to be invariant under 
reparameterizations, you could 
then transform back to get 
asymmetric errors.

Does this procedure actually 
work?

0.41
0.15

�0.17
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Coverage of ML estimator errors

What do we really want the 
ML error bars to mean?  
Ideally, the 1σ range would 
mean that the true value 
has 68% chance of being 
within that range.

Fraction of time
     1σ range includes

N true value
5              56.7%
10            64.8%
20            68.0%
500          67.0%

Distribution of ML estimators for two N values
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Errors on ML estimators

Simulation is the best 
way to estimate the true 
error range on an ML 
estimator: assume a true 
value for the parameter, 
and simulate a few 
hundred experiments, 
then calculate ML 
estimates for each.

N=20:
Range from likelihood 
function:  -0.16 / +0.17
RMS of simulation: 0.16

N=500:
Range from likelihood 
function:  -0.030 / +0.035
RMS of simulation: 0.030
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Likelihood functions of multiple parameters

Often there is more than one free parameter.  To handle this, we 
simply minimize the negative log likelihood over all free 
parameters.

Errors determined by (in the Gaussian approximation):

� ln L �x1 ... xN�a1...am�

� a j
=0

cov

1�ai , a j�=


�2
ln L

�ai� a j
   evaluated at minimum
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Error contours for multiple parameters

We can also find the errors 
on parameters by drawing 
contours on 
∆ ln L.

1σ range on a single 
parameter a: the smallest 
and largest values of a that 
give ∆ ln L=½, minimizing ln 
L over all other parameters.

But to get joint error 
contours, must use different 
values of ∆ ln L (see Num 
Rec Sec 15.6):

m=1 m=2 m=3

68.00% 0.5 1.15 1.77
90.00% 1.36 2.31 3.13

95.40% 2 3.09 4.01
99.00% 3.32 4.61 5.65
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Maximum Likelihood with Gaussian Errors

Suppose we want to fit a set of points (x
i
,y

i
) to some model 

y=f(x|α), in order to determine the parameter(s) α. Often the 
measurements will be scattered around the model with some 
Gaussian error.  Let's derive the ML estimator for α. 

The log likelihood is then

Maximizing this is equivalent to minimizing

L=�
i=1

N
1

� i�2�
exp [�1

2 � yi� f �xi�	
� i


2

]
ln L=�

1

2
�
i=1

N

� yi� f �xi�	
�i 

2

��
i=1

N

ln �� i�2�


�2=�
i=1

N

� yi� f �xi�	
� i


2
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The Least Squares Method

Taken outside the context of the ML method, the least squares 
method is the most commonly known estimator.

�2=�
i=1

N

� yi� f �xi�	
� i


2

Why?

1) Easily implemented.
2) Graphically motivated (see title slide!)
3) Mathematically straightforward---often analytic solution
4) Extension of LS to correlated uncertainties straightforward:

�2
=�
i=1

N

�
j=1

N

� yi� f �xi�	

� yi� f �x j�	

�V
�1
ij
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Least Squares Straight Line Fit

The most straightforward example is a linear fit:  y=mx+b.

�2
=�� yi�mxi�b�i 


2

Least squares estimators for m and b are found by differentiating χ2 
with respect to m & b.

d �2

dm
=�2�� yi�mxi�b� i

2 

xi=0

d �2

db
=�2�� yi�mxi�b� i

2 
=0

This is a linear system of simultaneous equations with two 
unknowns.
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Solving for m and b

The most straightforward example is a linear fit:  y=mx+b.

d �2

dm
=�2�� yi�mxi�b� i

2 

xi=0
d �2

db
=�2�� yi�mxi�b� i

2 
=0

�m=
�� yi

� i

2 
 �� xi

� i

2 
��� 1

� i

2 
 �� xi yi

� i

2 

�� xi

� i

2 

2

��� xi
2

� i

2 
 �� 1

� i

2 

          � �m= � y � � x ��� xy �

� x �
2
�� x

2
� 


� � yi� i

2 
=m� � xi� i

2 
�b�� 1

�i
2 
� � xi yi� i

2 
=m�� xi
2

� i

2 
�b�� xi� i2 


�b=
�� yi

�i
2 
� �m �� xi

� i

2 

�� 1

� i

2 

                                    � �b=� y �� �m� x � 


(Special case of equal σ's.)
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Solution for least squares m and b

There's a nice analytic solution---rather than trying to numerically 
minimize a χ2, we can just plug in values into the formulas!  This 
worked out nicely because of the very simple form of the likelihood, 
due to the linearity of the problem and the assumption of Gaussian 
errors.

�m=
�� yi

� i

2 
 �� xi

� i

2 
��� 1

� i

2 
 �� xi yi

� i

2 

�� xi

� i

2 

2

��� xi
2

� i

2 
 �� 1

� i

2 

          � �m= � y � � x ��� xy �

� x �
2
�� x

2
� 


�b=
�� yi

�i
2 
� �m �� xi

� i

2 

�� 1

� i

2 

                                    � �b=� y �� �m� x � 


(Special case of equal errors)
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Errors in the Least Squares Method

What about the errors and correlations between m and b?  
Simplest way to derive this is to look at the chi-squared, and 
remember that this is a special case of the ML method:

�ln L=
1

2
�2
=

1

2
�� yi�mxi�b� i



2

In the ML method, we define the 1σ error on a parameter by the 
minimum and maximum value of that parameter satisfying 

∆ ln L=½.  

In LS method, this corresponds to ∆χ2=+1 above the best-fit point.  
Two sigma error range corresponds to ∆χ2=+4, 3σ is ∆χ2=+9, etc.

But notice one thing about the dependence of the χ2---it is 
quadratic in both m and b, and generally includes a cross-term 
proportional to mb.  Conclusion: Gaussian uncertainties on m and 
b, with a covariance between them.



Physics 509 10

Formulas for Errors in the Least Squares 
Method

We can also derive the errors by relating the χ2 to the negative log 
likelihood, and using the error formula:

� �m
2
=

1

� 1 /� i

2

1

� x2��� x �2
=
�2

N

1

�� x2��� x �2


��b

2
=

1

� 1 /� i

2

� x2�

� x2��� x �2
=
�2

N

� x2�

�� x2��� x �2


cov � �m , �b
=�
1

� 1/�i
2

� x2�

� x ��� x �2
=�

�2

N

� x �

�� x2��� x �2


(intuitive when <x>=0)

cov
�1�ai , a j
=�� �

2
ln L

�ai�a j �=�
�2

ln L

�ai�a j
�a=�a=

1

2

�2�2

�ai�a j
�a=�a
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Nonlinear least squares

The derivation of the least squares method doesn't depend on the 
assumption that your fitting function is linear in the parameters.  
Nonlinear fits, such as A + B sin(Ct + D), can be tackled with the 
least squares technique as well.  But things aren't nearly as nice:

� No closed form solution---have to minimize the χ2 numerically.
� Estimators are no longer guaranteed to have zero bias and 
minimum variance.
� Contours generated by ∆χ2=+1 no longer are ellipses, and the 
tangents to these contours no longer give the standard deviations. 
 (However, we can still interpret them as giving �1σ� errors---
although since the distribution is non-Gaussian, this error range 
isn't the same thing as a standard deviation
� Be very careful with minimization routines---depending on how 
badly non-linear your problem is, there may be multiple solutions, 
local minima, etc.
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Goodness of fit for least squares

By now you're probably wondering why I haven't discussed the 
use of χ2 as a goodness of fit parameter.  Partly this is because 
parameter estimation and goodness of fit are logically separate 
things---if you're CERTAIN that you've got the correct model and 
error estimates, then a poor χ2 can only be bad luck, and tells you 
nothing about how accurate your parameter estimates are.

Carefully distinguish between:

1) Value of χ2 at minimum: a measure of goodness of fit
2) How quickly χ2 changes as a function of the parameter: a 
measure of the uncertainty on the parameter.

Nonetheless, a major advantage of the χ2 approach is that it does 
automatically generate a goodness of fit parameter as a byproduct 
of the fit.  As we'll see, the maximum likelihood method doesn't.

How does this work?
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χ2 as a goodness of fit parameter

Remember that the sum of N Gaussian variables with zero mean 
and unit RMS, when squared and added, follows a χ2 distribution 
with N degrees of freedom.  Compare to  the least squares 
formula:

�2
=�

i

�
j

� yi� f �xi�	

� y j� f �x j�	

�V
�1
ij

If each y
i
 is distributed around the function according to a 

Gaussian, and f(x|α) is a linear function of the m free parameters 
α, and the error estimates don't depend on the free parameters, 
then the best-fit least squares quantity we call χ2 actually follows a 
χ2 distribution with N-m degrees of freedom.

People usually ignore these various caveats and assume this 
works even when the parameter dependence is non-linear and 
the errors aren't Gaussian.  Be very careful with this, and check 
with simulation if you're not sure.
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Goodness of fit: an example

Does the data sample, 
known to have 
Gaussian errors, fit 
acceptably to a 
constant (flat line)?

6 data points � 1 free 
parameter = 5 d.o.f.

χ2 = 8.85/5 d.o.f.

Chance of getting a 
larger χ2 is 12.5%---an 
acceptable fit by 
almost anyone's 
standard.

Flat line is a good fit.
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Distinction between goodness of fit and 
parameter estimation

Now if we fit a sloped 
line to the same data, 
is the slope consistent 
with flat.

χ2 is obviously going to 
be somewhat better.

But slope is 3.5σ 
different from zero!  
Chance probability of 
this is 0.0002.

How can we 
simultaneously say 
that the same data set 
is �acceptably fit by a 
flat line� and �has a 
slope that is 
significantly larger than 
zero�???
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Distinction between goodness of fit and 
parameter estimation

Goodness of fit and parameter estimation are answering two 
different questions.

1) Goodness of fit: is the data consistent with having been drawn 
from a specified distribution?

2) Parameter estimation: which of the following limited set of 
hypotheses is most consistent with the data?

One way to think of this is that a χ2 goodness of fit compares the 
data set to all the possible ways that random Gaussian data might 
fluctuate.  Parameter estimation chooses the best of a more 
limited set of hypotheses.

Parameter estimation is generally more powerful, at the expense 
of being more model-dependent.  

Complaint of the statistically illiterate: �Although you say your data 
strongly favours solution A, doesn't solution B also have an 
acceptable χ2/dof close to 1?�
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What is an error bar?
Someone hands you a 

plot like this.  What do 
the error bars indicate?

Answer: you can never 
be sure, unless it's 
specified!

Most common: vertical 
error bars indicate �±1σ� 
uncertainties.

Horizontal error bars can 
indicate uncertainty on 
X coordinate, or can 
indicate binning.

Correlations unknown!
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Relation of an error bar to PDF shape

The error bar on a plot is 
most often meant to 
represent the ±1σ uncertainty 
on a data point.  Bayesians 
and frequentists will disagree 
on what that means.  

If data is distributed normally 
around �true value�, it's clear 
what is intended: 
        
        exp[-(x-µ)2/2σ2].

But for asymmetric 
distributions, different things 
are sometimes meant ...
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An error bar is a shorthand approximation to a 
PDF!

In an ideal Bayesian universe, error bars don't exist.  
Instead, everyone will use the full prior PDF and the 
data to calculate the posterior PDF, and then report 
the shape of that PDF (preferably as a graph or 
table).

An error bar is really a shorthand way to parameterize 
a PDF.  Most often this means pretending the PDF is 
Gaussian and reporting its mean and RMS.

Many sins with error bars come from assuming 
Gaussian distributions when there aren't any.
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An error bar as a confidence interval

Frequentist techniques don't directly answer the question of what the 
probability is for a parameter to have a particular value.  All you can 
calculate is the probability of observing your data given a value of the 
parameter.The confidence interval construction is a dodge to get 
around this.

Starting point is the 
PDF for the estimator, 
for a fixed value of the 
parameter.

The estimator has 
probability 1−α−β to 
fall in the white region.
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The ∆ ln(L) rule

It is not trivial to construct proper 
frequentist confidence intervals.  
Most often an approximation is 
used: the confidence interval for a 
single parameter is defined as the 
range in which ln(L

max
)-ln(L)<0.5

This is only an approximation, and 
does not give exactly the right 
coverage when N is small.

More generally, if you have d free 
parameters, then the quantity

�ω = ∆χ2� = 2[ln(L
max

)-ln(L)] 

approximates a χ2 with d degrees 
of freedom.

For experts: there do exist 
corrections to the ∆ ln(L) rule that 
more accurately approximate 
coverage---see �Bartlett's 
correction�.  Often MC is better 
way to go.
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Error-weighted averages

Suppose you have N independent measurements of a quantity.  
You average them.  The proper error-weighted average is:

� x �=
� xi /� i

2

� 1/� i

2

V �� x ��=
1

� 1 /� i

2

If all of the uncertainties are equal, then this reduces to the simple 
arithmetic mean, with V(<x>) = V(x)/N.
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Averaging correlated measurements II

The obvious generalization for correlated uncertainties is to form 
the χ2  including the covariance matrix:

�2
=�

i

�
j

�xi����x j����V�1�ij

We find the best value of µ by minimizing this χ2  and can then find 
the 1σ uncertainties on µ by finding the values of µ for which 

  χ2 = χ2
min

 + 1.

This is really parameter estimation with one variable.

The best-fit value is easy enough to find:

�=
�
i , j

x j �V
�1�ij

�
i , j

�V�1�ij



Physics 509 12

Averaging correlated measurements III

Recognizing that the χ2 really just is the argument of an 
exponential defining a Gaussian PDF for µ ...

�2
=�

i

�
j

�xi����x j����V�1�ij

we can in fact read off the coefficient of µ2, which will be 1/V(µ):

��
2
=

1

�
i , j

�V�1�ij

In general this can only be computed by inverting the matrix as 
far as I know. 
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The error propagation equation

Let f(x,y) be a function of two variables, and assume that the 
uncertainties on x and y are known and �small�.  Then:

� f

2
= � dfdx �

2

� x

2�� dfdy �
2

� y

2�2 � dfdx � � dfdy � �� x� y

The assumptions underlying the error propagation equation are:

� covariances are known
� f is an approximately linear function of x and y over the span of  

x±dx or y±dy.

The most common mistake in the world: ignoring the third term.  
Intro courses ignore its existence entirely!
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Example: interpolating a straight line fit

Straight line fit y=mx+b

Reported values from a 
standard fitting package:

m =  0.658 ± 0.056
b  =    6.81 ± 2.57

Estimate the value and 
uncertainty of y when 
x=45.5:

y=0.658*45.5+6.81=36.75

UGH!  NONSENSE!

dy=�2.57
2��45.5�.056�2=3.62
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Example: straight line fit, done correctly

Here's the correct way to estimate y at x=45.5.  First, I find a better 
fitter, which reports the actual covariance matrix of the fit:

m = 0.0658 + .056
      b = 6.81 + 2.57
      ρ = -0.9981

dy=�2.57
2��0.056�45.5�2�2 ��0.9981��0.056�45.5��2.57�=0.16

(Since the uncertainty on each individual data point was 0.5, and the 
fitting procedure effectively averages out their fluctuations, then we 
expect that we could predict the value of y in the meat of the 
distribution to better than 0.5.)

Food for thought: if the correlations matter so much, why don't most 
fitting programs report them routinely???
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Reducing correlations in the straight line fit

The strong correlation 
between m and b results 
from the long lever arm---
since you must extrapolate 
line to x=0 to determine b, a 
big error on m makes a big 
error on b.

You can avoid strong 
correlations by using more 
sensible parameterizations: 
for example, fit data to
y=b'+m(x-45.5):

b' = 36.77 ± 0.16
m = 0.658 ± .085

ρ = 0.43

dy at x=45.5 = 0.16
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