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Caveat

The presentation aims at being user-focused and at
presenting usable recipes

Do not expect a fully mathematically rigorous description!

This has been prepared in the hope to be useful even in
the stand-alone version

Please provide me feedback with any misconception or
error you may find, and with any topic not addressed here
but which should be included
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Example: The average weight of opossums

I Find a group of N opossums
I Weight them: wi , i = 1, . . . ,N
I Calculate the average weight as 1/N

∑
i wi

I You should get about 3.5 kg
I But you better not use this group!
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General concepts

Robust statistics:
I are not (less) affected by the presence of outliers or

deviations from model assumptions

I are related, but not identical to non-parametric
statistics, where we drop the hypothesis of
underlying Gaussian distribution
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Main approaches

Four main approaches:
I Discard data

I L-estimators: Use linear combinations of order
statistics

I R-estimators: Use rank instead of values

I M-estimators: Estimators based on
Maximum-likelihood argument

The breakdown point is the fraction of outliers above
which the robust statistics fails. It can reach 50 %
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Quantiles

I q-quantiles (q ∈ N) are the set of value
x[a], a = k/q, k = 1, . . . ,q − 1 from a probability
distribution for which P(x < x[a]) = a

I 4-quantiles, or quartiles are then x[0.25], x[0.5], x[0.75]

I q-quantiles from a sorted sample {xi}, i = 1, . . . ,N :
x[a] = mini xi | i/N ≥ a

I Example: if N = 12, quartiles are: x3, x6, x9;
if N = 14, quartiles are: x4, x7, x11
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Box plot

I A box plot is a synthetic way to look at the sample
properties

I It represents in a single plot, the minimum, the
quartiles (hence also the median) and the maximum

I that is, the quantiles x[0], x[0.25], x[0.5], x[0.75], x[1.0]
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Q-Q plot

I A Q-Q plot (quantile-quantile plot) is powerful way to
compare sample properties with an assumed
underlying distribution

I The QQ-plot is the plot of xi vs fi , where fi are the
values for which P(x < fi) = i/(N + 1), when xi is
sorted in increasing order

I One usually also draw fi vs fi for comparison with
expected values

I Outliers appear quite clearly
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What are these outliers?

I They can be due to errors in the measurement
I They may be bona fide measurements, but the

distribution is heavy-tailed, so these points may be
the black swan and contain important information

I Outliers can be difficult to identify with confidence,
and they can hide each other

I There is the risk of data manipulation
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Chauvenet’s criterion

I Assuming a data set {xi} ∼ N (µ, σ), i = 1, . . . ,N
I Calculate for each i P(xi) ≡ P(|x | > |xi |)
I Discard the point if N · P(xi) < 0.5, i.e. if the

probability to have such an extreme value is less
than 50%, taking the number of trials into account

I Moderate outliers may mask more extreme outliers
I Grubbs’s test uses absolute maximum deviation

G = maxi
|xi−µ|
σ



Robust statistics

Stéphane Paltani

Why robust
statistics?

Removal of data
Caveat emptor

Chauvenet’s criterion

Dixon’s Q test

Trimmed estimators

Winsorized estimators

L-estimators

R-estimators

M-estimators

Outline

Why robust statistics?

Removal of data
Caveat emptor
Chauvenet’s criterion
Dixon’s Q test
Trimmed estimators
Winsorized estimators

L-estimators

R-estimators

M-estimators



Robust statistics

Stéphane Paltani

Why robust
statistics?

Removal of data
Caveat emptor

Chauvenet’s criterion

Dixon’s Q test

Trimmed estimators

Winsorized estimators

L-estimators

R-estimators

M-estimators

Dixon’s Q test

I Dixon’s Q test: Find the largest gap in a sorted
sample, and divide it by the total range

I In this case: Q = 2500
3500 ' 0.71

I Critical values:
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Trimmed estimators

I Trimming is a generic method to to make an
estimator robust

I The n% trimmed estimator is obtained by calculating
the estimator on the sample limited to the range
[x[n%], x[1−n%]]

I This is not equivalent to removing outliers, as the
trimmed estimators have the same expectations if
there are no outliers

I The trimmed mean (or truncated mean) is a robust
alternative to the mean, which is more dependent on
the distribution than the median
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Winsorized estimators

I Winsorizing is another generic method to to make an
estimator robust which is very similar to trimming

I The n% winsorizing estimator is obtained by
replacing in the sample all values below x[n%] by
x[n%] and all values above x[1−n%]] by x[1−n%]]

I I have no idea why you would want to do that...
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Median

I The median x̃ is the 2-quantile, i.e. x[0.5], i.e. xN/2 if
N is even or xN+1/2 if N is odd

I If we have 10 “opossums”, the mean will be about
one ton! It has a breakdown point of 0 %

I The median has a breakdown point of 50 %, i.e. you
would get a roughly correct weight estimations even
if there are 5 mammoths in your populations of 10
“opossums”
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Median average deviation

I Assuming a sample {xi}, i = 1, . . . ,N, and its
median x̃ , the median average deviation is
MAD({xi}) = median(|xi − x̃ |)

I Example: {xi} ≡ {1,1,2,2,4,6,9}
x̃ = 2, {|xi − x̃ |} ≡ {0,0,1,1,2,4,7}, so
MAD({xi}) = 1

I Note that 6 and 9 are completely ignored

I Relation to standard deviation is
distribution-dependent:

I For a Gaussian distribution, σx ' 1.4826 MAD({xi})
I For a uniform distribution, σx =

√
4/3 MAD({xi})
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Inter-quartile range

I Assuming a sample {xi}, i = 1, . . . ,N
I The inter-quartile range is the difference between the

third and first quartiles: IQR({xi}) = x[0.75] − x[0.25]

I For a Gaussian distribution, σx ' IQR({xi})/1.349
I This can be used as a (non-robust) normality test
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Ranks

I R-estimators are based on rank

I Given a sample {xi}, i = 1, . . . ,N

I The rank of xi is i if xi is sorted in increasing order

I Example: {xi} ≡ {4,9,6,21,3,11,1}

I The ranks are: {3,5,4,7,2,6,1}, because the sorted
{xi} is {1,3,4,6,9,11,21}
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Pearson’s r : a non-robust estimator

I Pearson’s r correlation coefficient between two
random variables {xi , yi}, i = 1, . . . ,N is: r = xy

σx σy

I But it is not robust. In this case, r = 0.85

I Of course, on can use L-estimators to compute xy ,
σx , σy

I But we would have to figure out the critical values
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Spearman’s correlation coefficient

I Spearman’s coefficient: Replace {xi} and {yi} with
their ranks, and calculate s as the the Pearson’s
correlation coefficient of the ranks

I Consistent with Pearson’s r in “good” conditions
I It is insensitive to the shape of y vs x and it is robust

I Significance: t = s
√

N−2
1−s2 is approximately Student-t

distributed with N − 2 degrees of freedom
I Ties should have the same (average) rank, i.e. if

x6 = x7, give them a rank of 6.5
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Kendall’s τ rank correlation

I Rank still contain quantitative values

I Kendall’s τ test removes all quantities

I Form N (N − 1)/2 pairs {{xi , yi}; {xj , yj}}, j > i

τ =

∑
i,j sgn(xi − xj) sgn(yi − yj)−

∑
i,j sgn(xi − xj) sgn(yj − yi)

N (N − 1)/2

I For relatively large sample, τ ∼ N
(

0, 2(2N+5)
9N(N−1)

)
I No single recipe in case of ties
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Do two distributions differ?

I Assuming a sample {xi}, i = 1, . . . ,N, is it a
probable outcome from a draw of N random
variables from a given distribution (say U(a,b))?

I Similarly, assuming two samples {xi}, i = 1, . . . ,N
and {yj}, j = 1, . . . ,M, how probable is it that they
have the same parent population?
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Cumulative comparison

I A (good) idea is to compare cumulative distributions

I F (x) =
∫ b

a f (x) dx for a continuous distribution f (x)

I C{xi}(x) =
1
N
∑

i H(x − xi) for a sample (H(x) is the
Heaviside function, i.e., 1 if x ≥ 0, 0 if x < 0)

I The KS test is the simplest quantitative comparison:
D = maxx |C{xi}(x)− F (x)| or
D = maxx |C{xi}(x)− C{yi}(x)|
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Independence on underlying distribution

I D is preserved under any transformation
x → y = ψ(x), where ψ(x) is an arbitrary strictly
monotonic function

I Thus KS test works with any underlying distribution
I The null-hypothesis distribution of D is:

P(λ > D) = 2
∑∞

k=1 (−1)k−1 e−2k2µ2
, with

µ =
(√

N + 0.12 + 0.11/
√

N
)
· D

I When comparing two samples, use: Ne =
N·M
N+M
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Caveats

I In weird cases, KS-test might be extremely
inefficient. KS test makes hidden assumptions

I KS-test will not work if you derive parameters from
the data (see “Monte-Carlo methods” course)
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Kuiper test

I KS test is more sensitive in the tails than in the center

I Among several solutions, the simplest: Kuiper test!
V = D+ + D−

I P(λ > V ) = 2
∑∞

k=1 (4k2µ2 − 1) e−2k2µ2
, with

µ =
(√

N + 0.155 + 0.24/
√

N
)
· V

I Kuiper test can be used for distributions on a circle
(see Paltani 2004)
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Concepts

I M-estimators are a generalization of
maximum-likelihood estimators

I So, maximum likelihood is an M-estimator

I It allows to give arbitrary weight to data points

I Weights can be chosen so that they decrease for too
far-off points, opposite to Gaussian weights in least
square-estimation
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A case of known outlier distribution

I We search for a Gaussian peak in a very noisy
environment

I In a fraction f of the cases the right peak is found. It
has a Gaussian uncertainty

I In a fraction 1− f of the cases a spurious peak is
found. It can be anywhere in the searched range

I We know the real distribution of our measurements
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Maximum-likelihood estimation

I We obtain a sample {xi}, i = 1, . . . ,N

I The distribution of xi is f N (µ, σ) + (1− f )U(0,100)

I One can use a maximum likelihood to find
parameters µ, σ and f !

L =
∏

i

f√
2πσ

exp
(
−(xi − µ)2/2σ2

)
+

1− f
100
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Model fitting with M-estimators

I Let’s take sample {xi ; yi}, i = 1, . . . ,N, whose errors
on yi we know are not normally distributed, and a
model y(x ;p), where p is the parameters of the
model. As above, we have:

L =
∏

i

exp (−ρ(yi , y(xi ;p)))

ρ is the negative logarithm of the probability
I We want then to minimize:∑

i

ρ (yi , y(xi ;p))

I Let’s assume that ρ is local, i.e. ρ(yi , y(xi ;p)) ≡ ρ(z),
with z = (yi − y(xi ;p))/λi , i.e. ρ depends only on the
difference with the model scaled by a factor λi
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Parameter estimation (cont.)

I Let’s write ψ(z) ≡ dρ(z)
dz

I The minimum of L is obtained when:

0 =
∑ 1

λi
ψ

(
yi − y(xi ;p)

λi

) (
∂y(xi ;p)
∂pk

)

I We can solve this equation, or we can minimize∑
i ρ
(

yi−y(xi ;p)
λi

)
I ψ(z) acts as a weight in the above equation
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Some weights one can think of

I In the Gaussian case, put λi = σi , and we get the
least-squares estimates

I But we have then: ρ(z) = z2/2 and ψ(z) = z

I Two-sided exponential, P(z) ∼ exp(−z):
ρ(z) = |z| and ψ(z) = sgn(z)

I Lorentzian, P(z) ∼ 1
1+z2/2 :

ρ(z) = log(1 + z2/2) and ψ(z) = z
1+z2/2
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