Robust statistics and some non-parametric statistics

Stéphane Paltani

ISDC Data Center for Astrophysics Astronomical Observatory of the University of Geneva

Statistics Course for Astrophysicists, 2010–2011

Robust statistics

Stéphane Paltani

Why robust statistics? Removal of data L-estimators R-estimators M-estimators

Why robust statistics?

Removal of data

L-estimators

R-estimators

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics? Removal of data L-estimators R-estimators

Caveat

The presentation aims at being user-focused and at presenting usable recipes

Do not expect a fully mathematically rigorous description!

This has been prepared in the hope to be useful even in the stand-alone version

Please provide me feedback with any misconception or error you may find, and with any topic not addressed here but which should be included

Robust statistics

Stéphane Paltani

Why robust statistics? Removal of data L-estimators R-estimators M-estimators

Why robust statistics? First example General concepts Data representation

Removal of data

L-estimators

R-estimators

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

First example General concepts Data representation

Removal of data

_-estimators

R-estimators

Example: The average weight of opossums

- Find a group of N opossums
- Weight them: w_i , i = 1, ..., N
- Calculate the average weight as $1/N \sum_i w_i$
- You should get about 3.5 kg
- But you better not use this group!

Robust statistics

Stéphane Paltani

Why robust statistics?

First example General concepts Data representation Removal of data L-estimators R-estimators

Why robust statistics? First example General concepts Data representation

Removal of data

L-estimators

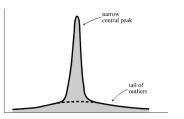
R-estimators

M-estimators

Robust statistics

Stéphane Paltani

General concepts



Robust statistics:

- are not (less) affected by the presence of outliers or deviations from model assumptions
- are related, but not identical to non-parametric statistics, where we drop the hypothesis of underlying Gaussian distribution

Robust statistics

Stéphane Paltani

Main approaches

Four main approaches:

- Discard data
- L-estimators: Use linear combinations of order statistics
- R-estimators: Use rank instead of values
- M-estimators: Estimators based on Maximum-likelihood argument

The breakdown point is the fraction of outliers above which the robust statistics fails. It can reach 50%

Robust statistics

Stéphane Paltani

Why robust statistics?

First example General concepts Data representation

Removal of data

L-estimators

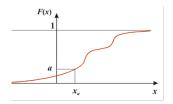
R-estimators

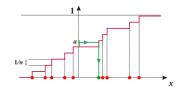
M-estimators

Robust statistics

Stéphane Paltani

Quantiles



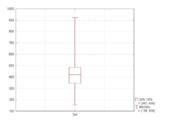


- *q*-quantiles (*q* ∈ ℕ) are the set of value
 *x*_[*a*], *a* = *k*/*q*, *k* = 1,..., *q* − 1 from a probability distribution for which *P*(*x* < *x*_[*a*]) = *a*
- 4-quantiles, or quartiles are then $x_{[0.25]}$, $x_{[0.5]}$, $x_{[0.75]}$
- *q*-quantiles from a sorted sample $\{x_i\}, i = 1, ..., N$: $x_{[a]} = \min_i x_i \mid i/N \ge a$
- Example: if N = 12, quartiles are: x₃, x₆, x₉; if N = 14, quartiles are: x₄, x₇, x₁₁

Robust statistics

Stéphane Paltani

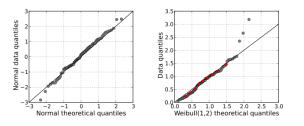
Box plot



Robust statistics Stéphane Paltani Why robust

- A box plot is a synthetic way to look at the sample properties
- It represents in a single plot, the minimum, the quartiles (hence also the median) and the maximum
- ▶ that is, the quantiles $x_{[0]}$, $x_{[0.25]}$, $x_{[0.5]}$, $x_{[0.75]}$, $x_{[1.0]}$

Q-Q plot



- A Q-Q plot (quantile-quantile plot) is powerful way to compare sample properties with an assumed underlying distribution
- ► The QQ-plot is the plot of x_i vs f_i, where f_i are the values for which P(x < f_i) = i/(N + 1), when x_i is sorted in increasing order
- One usually also draw f_i vs f_i for comparison with expected values
- Outliers appear quite clearly

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data Caveat emptor

Chauvenet's criterion Dixon's Q test Trimmed estimators Winsorized estimators

L-estimators

R-estimators

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

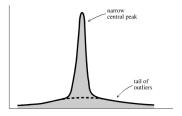
Removal of data

Caveat emptor Chauvenet's criterion Dixon's Q test Trimmed estimators Winsorized estimators

-estimators

R-estimators

What are these outliers?



Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

Caveat emptor Chauvenet's criterion Dixon's Q test Trimmed estimators Winsorized estimators

-estimators

R-estimators

- They can be due to errors in the measurement
- They may be bona fide measurements, but the distribution is heavy-tailed, so these points may be the black swan and contain important information
- Outliers can be difficult to identify with confidence, and they can hide each other
- There is the risk of data manipulation

Why robust statistics?

Removal of data

- Caveat emptor Chauvenet's criterion
- Trimmed estimators Winsorized estimators

L-estimators

R-estimators

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

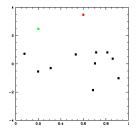
Removal of data Caveat emptor

Chauvenet's criterion Dixon's Q test Trimmed estimators Winsorized estimators

-estimators

R-estimators

Chauvenet's criterion



• Assuming a data set $\{x_i\} \sim \mathcal{N}(\mu, \sigma), i = 1, \dots, N$

- Calculate for each $i P(x_i) \equiv P(|x| > |x_i|)$
- ► Discard the point if N · P(x_i) < 0.5, i.e. if the probability to have such an extreme value is less than 50%, taking the number of trials into account</p>
- Moderate outliers may mask more extreme outliers
- Grubbs's test uses absolute maximum deviation $G = \max_{i} \frac{|x_i \mu|}{\sigma}$

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data Caveat emptor Chauvenet's criterion Dixon's Q test

Trimmed estimators Winsorized estimators

estimators

R-estimators

Why robust statistics?

Removal of data

Caveat emptor Chauvenet's criterion Dixon's Q test Trimmed estimators Winsorized estimators

L-estimators

R-estimators

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

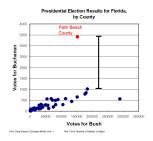
Removal of data Caveat emptor Chauvenet's criterion

Dixon's Q test Trimmed estimators Winsorized estimators

-estimators

R-estimators

Dixon's Q test



- Dixon's Q test: Find the largest gap in a sorted sample, and divide it by the total range
- In this case: $Q = \frac{2500}{3500} \simeq 0.71$

Critical values:

Number of values:	3	4	5	6	7	8	9	10
Q90%:	0.941	0.765	0.642	0.560	0.507	0.468	0.437	0.412
Q95%:	0.970	0.829	0.710	0.625	0.568	0.526	0.493	0.466
Q99%:	0.994	0.926	0.821	0.740	0.680	0.634	0.598	0.568

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data Caveat emptor Chauvenet's criterion Dixon's Q test

Trimmed estimators Winsorized estimators

-estimators

R-estimators

Why robust statistics?

Removal of data

Caveat emptor Chauvenet's criterion Dixon's Q test **Trimmed estimators** Winsorized estimators

L-estimators

R-estimators

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data Caveat emptor Chauvenet's criterion Dixon's Q test Trimmed estimators

Winsorized estimators

-estimators

R-estimators

Trimmed estimators

- Trimming is a generic method to to make an estimator robust
- The n% trimmed estimator is obtained by calculating the estimator on the sample limited to the range [x_[n%], x_[1-n%]]
- This is not equivalent to removing outliers, as the trimmed estimators have the same expectations if there are no outliers
- The trimmed mean (or truncated mean) is a robust alternative to the mean, which is more dependent on the distribution than the median

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data Caveat emptor Chauvenet's criterion Dixon's Q test Trimmed estimators Winsorized estimators

-estimators

R-estimators

/l-estimators

Why robust statistics?

Removal of data

Caveat emptor Chauvenet's criterion Dixon's Q test Trimmed estimators Winsorized estimators

L-estimators

R-estimators

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data Caveat emptor Chauvenet's criterion Dixon's Q test Trimmed estimators Winsorized estimators

-estimators

R-estimators

Winsorized estimators

- Winsorizing is another generic method to to make an estimator robust which is very similar to trimming
- The n% winsorizing estimator is obtained by replacing in the sample all values below x_[n%] by x_[n%] and all values above x_[1-n%]] by x_[1-n%]
- I have no idea why you would want to do that...

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data Caveat emptor Chauvenet's criterion Dixon's Q test Trimmed estimators Winsorized estimators

-estimators

R-estimators

Why robust statistics?

Removal of data

L-estimators Central tendency estimators Statistical dispersion estimato

R-estimators

M-estimators

Robust statistics

Stéphane Paltani

Why robus statistics?

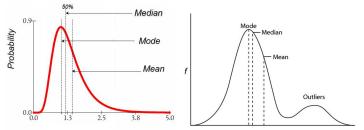
Removal of data

L-estimators

Central tendency estimators Statistical dispersion

R-estimators

Median



- The median x̃ is the 2-quantile, i.e. x_[0.5], i.e. x_{N/2} if N is even or x_{N+1/2} if N is odd
- If we have 10 "opossums", the mean will be about one ton! It has a breakdown point of 0 %
- The median has a breakdown point of 50%, i.e. you would get a roughly correct weight estimations even if there are 5 mammoths in your populations of 10 "opossums"

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators

Central tendency estimators Statistical dispersion

R-estimators

Why robust statistics?

Removal of data

L-estimators Central tendency estimators Statistical dispersion estimators

R-estimators

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators Central tendency estimators

Statistical dispersion estimators

R-estimators

Median average deviation

- ► Assuming a sample {x_i}, i = 1,..., N, and its median x̃, the median average deviation is MAD({x_i}) = median(|x_i x̃|)
- Example: $\{x_i\} \equiv \{1, 1, 2, 2, 4, 6, 9\}$ $\tilde{x} = 2, \{|x_i - \tilde{x}|\} \equiv \{0, 0, 1, 1, 2, 4, 7\}$, so MAD $(\{x_i\}) = 1$
- Note that 6 and 9 are completely ignored
- Relation to standard deviation is distribution-dependent:
 - For a Gaussian distribution, $\sigma_x \simeq 1.4826 \operatorname{MAD}(\{x_i\})$
 - For a uniform distribution, $\sigma_x = \sqrt{4/3} \operatorname{MAD}(\{x_i\})$

Robust statistics

Stéphane Paltani

Why robust statistics?

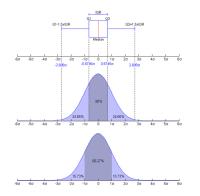
Removal of data

--estimators Central tendency estimators

Statistical dispersion estimators

R-estimators

Inter-quartile range



Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

--estimators Central tendency estimators

Statistical dispersion estimators

R-estimators

- Assuming a sample $\{x_i\}, i = 1, \dots, N$
- ► The inter-quartile range is the difference between the third and first quartiles: IQR({x_i}) = x_[0.75] x_[0.25]
- ▶ For a Gaussian distribution, $\sigma_x \simeq IQR(\{x_i\})/1.349$
- This can be used as a (non-robust) normality test

Why robust statistics?

Removal of data

L-estimators

R-estimators Ranks Correlation coefficient Kolmogorov-Smirnov (and Kuiper) test

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators

R-estimators

Ranks

Correlation coefficient Kolmogorov-Smirnov (and Kuiper) test

Ranks

- R-estimators are based on rank
- Given a sample $\{x_i\}, i = 1, \ldots, N$
- The rank of x_i is i if x_i is sorted in increasing order
- Example: $\{x_i\} \equiv \{4, 9, 6, 21, 3, 11, 1\}$
- ► The ranks are: {3,5,4,7,2,6,1}, because the sorted {*x_i*} is {1,3,4,6,9,11,21}

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators

R-estimators

Ranks

Correlation coefficient Kolmogorov-Smirnov (and Kuiper) test

Why robust statistics?

Removal of data

L-estimators

R-estimators

Ranks Correlation coefficient Kolmogorov-Smirnov (and Kuiper) test

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

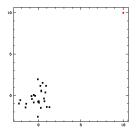
L-estimators

R-estimators

Ranks

Correlation coefficient Kolmogorov-Smirnov (and

Pearson's r: a non-robust estimator



Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators

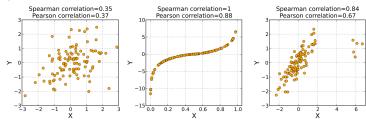
R-estimators

Ranks

Correlation coefficient Kolmogorov-Smirnov (and

- ► Pearson's *r* correlation coefficient between two random variables {*x_i*, *y_i*}, *i* = 1,..., *N* is: $r = \frac{\overline{xy}}{\sigma_x \sigma_y}$
- But it is not robust. In this case, r = 0.85
- Of course, on can use L-estimators to compute xy, *σ_x*, *σ_y*
- But we would have to figure out the critical values

Spearman's correlation coefficient



- Spearman's coefficient: Replace {x_i} and {y_i} with their ranks, and calculate s as the the Pearson's correlation coefficient of the ranks
- Consistent with Pearson's r in "good" conditions
- It is insensitive to the shape of y vs x and it is robust
- ► Significance: t = s√(N-2)/(1-s²) is approximately Student-t distributed with N 2 degrees of freedom
- Ties should have the same (average) rank, i.e. if x₆ = x₇, give them a rank of 6.5

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators

R-estimators

Ranks

Correlation coefficient Kolmogorov-Smirnov (and Kuiper) test

Kendall's τ rank correlation

- Rank still contain quantitative values
- Form N(N-1)/2 pairs $\{\{x_i, y_i\}; \{x_j, y_j\}\}, j > i$

$$\tau = \frac{\sum_{i,j} \operatorname{sgn}(x_i - x_j) \operatorname{sgn}(y_i - y_j) - \sum_{i,j} \operatorname{sgn}(x_i - x_j) \operatorname{sgn}(y_j - y_i)}{N(N-1)/2}$$

- For relatively large sample, $\tau \sim \mathcal{N}\left(0, \frac{2(2N+5)}{9N(N-1)}\right)$
- No single recipe in case of ties

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

_-estimators

R-estimators

Ranks

Correlation coefficient

Kolmogorov-Smirnov (and Kuiper) test

Why robust statistics?

Removal of data

L-estimators

R-estimators

Ranks Correlation coefficient Kolmogorov-Smirnov (and Kuiper) test

M-estimators

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

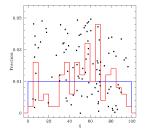
L-estimators

R-estimators

Ranks Correlation coofficie

Kolmogorov-Smirnov (and Kuiper) test

Do two distributions differ?



Robust statistics

Stéphane Paltani

Nhy robust statistics?

Removal of data

L-estimators

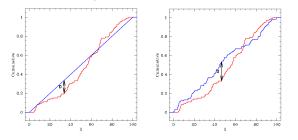
R-estimators

anks

Kolmogorov-Smirnov (and Kuiper) test

- Assuming a sample {x_i}, i = 1,..., N, is it a probable outcome from a draw of N random variables from a given distribution (say U(a, b))?
- Similarly, assuming two samples {*x_i*}, *i* = 1,..., *N* and {*y_j*}, *j* = 1,..., *M*, how probable is it that they have the same parent population?

Cumulative comparison



A (good) idea is to compare cumulative distributions

- $F(x) = \int_a^b f(x) dx$ for a continuous distribution f(x)
- $C_{\{x_i\}}(x) = \frac{1}{N} \sum_i H(x x_i)$ for a sample (H(x) is the Heaviside function, i.e., 1 if $x \ge 0$, 0 if x < 0)
- ► The KS test is the simplest quantitative comparison: $D = \max_{x} |C_{\{x_i\}}(x) F(x)| \text{ or }$ $D = \max_{x} |C_{\{x_i\}}(x) C_{\{y_i\}}(x)|$

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

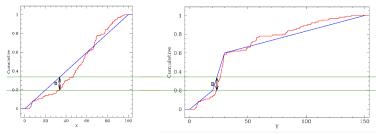
_-estimators

R-estimators

anks arrelation apoffici

Kolmogorov-Smirnov (and Kuiper) test

Independence on underlying distribution



- *D* is preserved under any transformation $x \rightarrow y = \psi(x)$, where $\psi(x)$ is an arbitrary strictly monotonic function
- Thus KS test works with any underlying distribution
- ► The null-hypothesis distribution of *D* is: $P(\lambda > D) = 2 \sum_{k=1}^{\infty} (-1)^{k-1} e^{-2k^2 \mu^2}, \text{ with } \mu = \left(\sqrt{N} + 0.12 + 0.11/\sqrt{N}\right) \cdot D$
- When comparing two samples, use: $N_e = \frac{N \cdot M}{N + M}$

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

--estimators

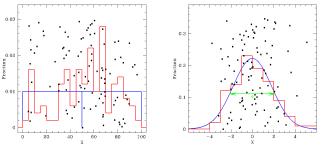
R-estimators

anks

Kolmogorov-Smirnov (and Kuiper) test

M-estimators

Caveats



In weird cases, KS-test might be extremely inefficient. KS test makes hidden assumptions

 KS-test will not work if you derive parameters from the data (see "Monte-Carlo methods" course)

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators

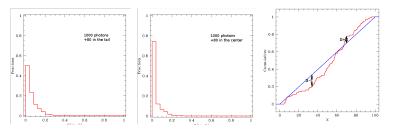
R-estimators

Ranks Correlation coefficient

Kolmogorov-Smirnov (and Kuiper) test

M-estimators

Kuiper test



- KS test is more sensitive in the tails than in the center
- Among several solutions, the simplest: Kuiper test!
 V = D⁺ + D⁻
- $P(\lambda > V) = 2 \sum_{k=1}^{\infty} (4k^2 \mu^2 1) e^{-2k^2 \mu^2}$, with $\mu = (\sqrt{N} + 0.155 + 0.24/\sqrt{N}) \cdot V$
- Kuiper test can be used for distributions on a circle (see Paltani 2004)

Robust statistics

Stéphane Paltani

Vhy robust tatistics?

Removal of data

_-estimators

R-estimators

anks

Correlation coefficient

Kolmogorov-Smirnov (and Kuiper) test

M-estimators

Outline

Why robust statistics?

Removal of data

L-estimators

R-estimators

M-estimators Concepts Maximum-likelihood estimation So, these M-estimators...

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators

R-estimators

M-estimators

Concepts

Maximum-likelihood estimation So, these M-estimators..

Concepts

- M-estimators are a generalization of maximum-likelihood estimators
- So, maximum likelihood is an M-estimator
- It allows to give arbitrary weight to data points
- Weights can be chosen so that they decrease for too far-off points, opposite to Gaussian weights in least square-estimation

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

_-estimators

R-estimators

A-estimators

Concepts

Maximum-likelihood estimation So, these M-estimators...

Outline

Why robust statistics?

Removal of data

L-estimators

R-estimators

M-estimators Concepts Maximum-likelihood estimation So, these M-estimators...

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators

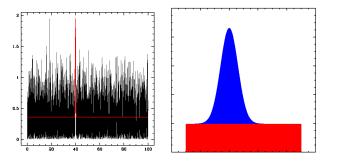
R-estimators

/-estimators

Concepts

Maximum-likelihood estimation

A case of known outlier distribution



Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

-estimators

R-estimators

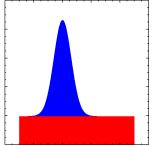
I-estimators

Concepts

Maximum-likelihood estimation

- We search for a Gaussian peak in a very noisy environment
- In a fraction f of the cases the right peak is found. It has a Gaussian uncertainty
- ► In a fraction 1 f of the cases a spurious peak is found. It can be anywhere in the searched range
- We know the real distribution of our measurements

Maximum-likelihood estimation



Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

_-estimators

R-estimators

/-estimators

Concepts

Maximum-likelihood estimation

- We obtain a sample $\{x_i\}, i = 1, \ldots, N$
- The distribution of x_i is $f \mathcal{N}(\mu, \sigma) + (1 f) \mathcal{U}(0, 100)$
- One can use a maximum likelihood to find parameters μ , σ and f!

$$L = \prod_{i} \frac{f}{\sqrt{2\pi\sigma}} \exp\left(-(x_i - \mu)^2/2\sigma^2\right) + \frac{1 - f}{100}$$

Outline

Why robust statistics?

Removal of data

L-estimators

R-estimators

M-estimators

Concepts Maximum-likelihood estimation So, these M-estimators...

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

L-estimators

R-estimators

/-estimators

Concepts Maximum-likelihood estimation

Model fitting with M-estimators

Let's take sample {x_i; y_i}, i = 1,..., N, whose errors on y_i we know are not normally distributed, and a model y(x; p), where p is the parameters of the model. As above, we have:

 $L = \prod_{i} \exp\left(-\rho(y_i, y(x_i; \mathbf{p}))\right)$

 ρ is the negative logarithm of the probability

We want then to minimize:

 $\sum_{i} \rho(\mathbf{y}_i, \mathbf{y}(\mathbf{x}_i; \mathbf{p}))$

Let's assume that ρ is local, i.e. ρ(y_i, y(x_i; p)) ≡ ρ(z), with z = (y_i − y(x_i; p))/λ_i, i.e. ρ depends only on the difference with the model scaled by a factor λ_i

Robust statistics

Stéphane Paltani

Nhy robust statistics?

Removal of data

-estimators

R-estimators

1-estimators

Concepts Maximum-likelihood estimation

Parameter estimation (cont.)

• Let's write
$$\psi(z) \equiv \frac{d\rho(z)}{dz}$$

The minimum of L is obtained when:

$$0 = \sum \frac{1}{\lambda_i} \psi \left(\frac{y_i - y(x_i; \mathbf{p})}{\lambda_i} \right) \left(\frac{\partial y(x_i; \mathbf{p})}{\partial \mathbf{p}_k} \right)$$

- We can solve this equation, or we can minimize $\sum_{i} \rho\left(\frac{y_{i}-y(x_{i};\mathbf{p})}{\lambda_{i}}\right)$
- $\psi(z)$ acts as a weight in the above equation

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

--estimators

R-estimators

1-estimators

Concepts Maximum-likelihood estimation

Some weights one can think of

- In the Gaussian case, put λ_i = σ_i, and we get the least-squares estimates
- But we have then: $\rho(z) = z^2/2$ and $\psi(z) = z$
- Two-sided exponential, P(z) ~ exp(−z):
 ρ(z) = |z| and ψ(z) = sgn(z)
- Lorentzian, $P(z) \sim \frac{1}{1+z^2/2}$: $\rho(z) = \log(1+z^2/2)$ and $\psi(z) = \frac{z}{1+z^2/2}$

Robust statistics

Stéphane Paltani

Why robust statistics?

Removal of data

_-estimators

R-estimators

1-estimators

Concepts Maximum-likelihood estimation