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The concept of allosteric proteins was initially proposed
to account for paradoxical properties exhibited by cer-
tain bacterial enzymes that catalyze strategic reactions
in biosynthetic pathways. The activity of these enzymes
was found to be selectively feedback inhibited by the
end product of the pathway, despite its very limited struc-
tural resemblance to the substrate (Umbarger, 1956;
Yates and Pardee, 1956). Subsequently, various in vitro
chemical treatments or mutations were found that abol-
ished the interactions between substrate and regulatory
effector, with little or no loss of activity (Changeux, 1961,
Gerhart and Pardee, 1962). These observations led to
the proposal that the interactions between both classes
of ligand do not result from classical mutual exclusion
by steric hindrance at a common binding site, but rather
occur between topographically and stereochemically
distinct sites (Changeux, 1961; Monod and Jacob, 1961).
The binding of the regulatory ligand to a specific alloste-
ric site (Monod and Jacob, 1961), structurally distinct
from the active site, brings about a reversible alteration
of the conformation of the protein, an allosteric transi-
tion, that indirectly modifies the properties of the biologi-
cally active site (Monod et al., 1963). This indirect action
via a distinct regulatory site is still the most commonly
accepted meaning of the word allosteric.

On the other hand, the 1965 article by Monod, Wyman,
and Changeux, “On the nature of allosteric transitions:
a plausible model” (Monod et al., 1965), led to an exten-
sion of the meaning to account for another characteristic
feature of these regulatory enzymes: the occurrence of
cooperative interactions for both the substrate and the
regulatory ligand. This property renders their function
dependent upon threshold concentrations of ligand in
analogy with the cooperative binding of oxygen. The three-
dimensional structure of hemoglobin at 5.5 A resolution
(Muirhead and Perutz, 1963) further revealed that the
molecule of hemoglobin is a symmetrical tetramer; co-
operative interactions for oxygen binding take place be-
tween the four hemes separated by at least 25 A and
are thus allosteric.

In the absence of corresponding structural data for
regulatory enzymes, the MWC model was first proposed
to account, by a common molecular mechanism, for
both the interactions between different ligands (e.g.,
regulatory molecules and substrates) and the positive
cooperative effects observed for each category of li-
gand. The postulate was made that the cooperative
binding properties of these proteins are determined by
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the presence of several identical subunits assembled
into a cooperative and symmetrical quaternary struc-
ture. Moreover, the conformational transition that such
protein assemblies undergo was thought to affect pri-
marily the quaternary interactions between subunits,
rather than the tertiary folding within each individual
subunit. In other words, the cooperative interactions
between ligand binding sites would result from the coop-
erative transition of the quaternary structure of the mole-
cule. Accordingly, the symmetry properties postulated
by the model would simply express a characteristic reg-
ularity of protein quaternary structure.

Specifically, the MWC model hypothesizes that: (1)
regulatory proteins in general are oligomers made up of
a finite number of identical subunits that occupy equiva-
lent positions and as a consequence possess at least
one axis of rotational symmetry (Figure 1A); (2) the allo-
steric oligomers can spontaneously exist in a minimum
of two freely interconvertible and discrete conforma-
tional states (T = R) that differ in the energy of their
intersubunit interactions (quaternary constraint), but
with conserved molecular symmetry; (3) the affinity and
activity of the stereospecific sites carried by the oligo-
mers may differ between the two states, and ligand
binding differentially stabilizes the particular state for
which it exhibits a higher affinity; and (4) in the absence
of ligand, the preexisting conformational equilibrium is
characterized by an isomerization constant L = (T)/(R),
and modulation of the conformational equilibrium by
ligand binding suffices to generate cooperative ligand
binding, as well as interactions between different li-
gands.

The two-state concerted model contrasts sharply with
the Koshland, Némethy, and Filmer (1966) sequential-
type model, for which the conformational transition
caused by ligand binding to an individual subunit results
from an induced-fit mechanism and subsequently (and
thus sequentially) propagates to the neighboring sub-
units within the oligomer. Hence, the KNF sequential
model precludes the occurrence of any allosteric transi-
tion in the absence of ligand.

Crystallographic structure determinations of several
regulatory enzymes (reviewed by Perutz, 1989) have
confirmed that these proteins, like hemoglobin, are in-
deed oligomers and possess a symmetrical organization
primarily with 2-fold symmetry axes (e.g., for threonine
deaminase [Gallagher et al., 1998]) but also 3-fold axes
(e.g., for the transcarbamylases [Lipscomb, 1994; Villeret
et al., 1995]). Moreover, characteristic rearrangements of
the quaternary structures were found associated with
the allosteric transition, mostly due to relative subunit
rotations (see Figure 1B) which, in all reported instances,
preserve the symmetry of the assembly (lwata et al.,
1994, and references therein, for aspartate transcarb-
amylase, phosphorylase B, phosphofructokinase, and
bacterial L-lactate dehydrogenase). Nevertheless, within
these major conformational states, which impose strong
quaternary constraints, local modifications of tertiary
structure have been detected at the subunit level as a
direct consequence of ligation, notably for hemoglobin
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(Perutz, 1989). Steady-state kinetic data for these mo-
lecular species in solution, however, do not significantly
deviate from the predictions of the MWC model. In par-
ticular, the crucial assumption that the state function
R (which describes the fraction of the protein molecules
that has undergone the conformational transition) differs
from the binding function Y (which describes the occu-
pancy of the sites by the ligand) was soon verified with
several systems under equilibrium conditions, such as
aspartate transcarbamylase (Changeux and Rubin, 1968;
Gerhart and Schachman, 1968; Schachman, 1988). De-
spite the claim that asymmetric hybrid conformational
states arise during oxygenation of hemoglobin (Ackers
et al., 1992), the presence of such states was found to
be incompatible with the high degree of cooperativity
observed in equilibrium oxygen binding measurements
(Edelstein, 1996). Moreover, recent rapid binding experi-
ments show that the data are compatible with only two

Heterologous tetramer

Figure 1. Subunit Interactions in Allosteric
Proteins

(A) Isologous association and a heterologous
tetramer reproduced from the article of Mo-
nod et al. (1965). Isologous association arises
when the domain of bonding has a 2-fold axis
of rotation symmetry, as in the case of EGFR
(see Figure 2B), whereas for heterologous as-
sociation each bonded group pair is unique,
with the domain of bonding having no ele-
ment of symmetry.

(B) Symmetry-conserving transition between
R and T states as represented by Iwata et
al. (1994) for the two oligomeric structures
coexisting in the same crystals of L-lactate
dehydrogenase from Bifidobacterium lon-
gum. Projections of the R state tetramer (solid
lines) with a superimposed T state dimer
(dashed lines) viewed down the R axis on the
left and down the P axis on the right. The
allosteric transition is a combination of two
rotations: (1) a 3.8° rotation about an axis
passing through the point marked by &®; and
(2) a 5.8° rotation about the P axis, where the
axis for the 3.8° rotation is 33° away from the
R axis in the plane perpendicular to the P
axis, as shown on the right. The active sites
are indicated by A, and the allosteric sites (to
which binds the effector, fructose-1,6-bis-
phosphate) are indicated by F.

(C) Rotational symmetry for a heteropentam-
eric membrane receptor. The transversal and
longitudinal sections correspond to the mus-
cle-type acetylcholine receptor; for additional
details see Figure 3B.

Calciurn,
Peptides

Non-competitive
blockers

kinetically distinct states, as predicted by the MWC model
(Henry et al., 1997; see also Shibayama et al., 1998).
Nevertheless, even with its success, the model was
never thought to give an exhaustive description of reality
and remains a mechanistic description of a defined mo-
lecular behavior of regulatory proteins.

In addition, two features unsuspected in the original
model have been established by subsequent structural
studies of regulatory enzymes. First, ligand recognition
sites (catalytic and regulatory) are in many cases located
at subunit interfaces, with different interfaces accom-
modating different categories of stereospecific ligands
(see references in lwata et al., 1994); some interfaces
bind pharmacological agents despite the absence of
known endogenous ligands (Perutz et al., 1986). Second,
for hemoglobin, the physiological regulatory ligand 2,3-
diphosphoglycerate (as well as synthetic drugs) binds
at a rather unsuspected location: within the axial cavity
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Figure 2. Topologies and Oligomeric Struc-
tures for Allosteric Membrane Receptors

(A) Stable oligomers.

(B) Transient dimers.

In each case, a transmembrane topology of
a single subunit is shown, with a cross-sec-
tional view (below) at the level of the extracel-
lular ligand binding site, except for GPCR,
which is viewed from an extracellular per-
spective (hence, extracellular loops are rep-
resented by thick lines, intracellular loops by
thin lines).

P2X

EGFR

of the molecule (Perutz et al., 1986). As we shall see,
these new features are of importance for ligand-gated
ion channels.

At the time the MWC model was accepted for publi-
cation, the possibility was mentioned that the “mem-
brane phenomena that together give rise to the recogni-
tion of stereospecific metabolic signals and to their
transmission (e.g., at synapses) might involve mecha-
nisms analogous to those described for allosteric pro-
teins” (Changeux, 1965). This additional hypothesis may
have been considered somewhat farfetched and unnec-
essary, since in the 1960’s no synaptic receptors had
been identified and only pharmacological (Dale, 1953;
Nachmansohn, 1959) or electrophysiological (Katz, 1966)
data were available. However, the progressive extension
of the MWC model to various features of membrane
receptors for neurotransmitters (Changeux et al., 1967,
Karlin, 1967; Changeux, 1969; Edelstein, 1972; Colquhoun,
1973; Jackson et al., 1990; Edelstein et al., 1996) has
provided new concepts (and some reevaluations) of the-
oretical and experimental importance often in relation
with their transmembrane orientation (Figures 1C and
2). First, the receptor proteins exhibit transmembrane

polarity; the regulatory site to which the neurotransmit-
ter binds is exposed to the synaptic side of the mem-
brane (or the cytoplasmic side, in the case of cyclic
GMP [cGMP])); the biologically active site is either a
transmembrane ion channel, a G protein binding site,
or a kinase catalytic site facing the cytoplasmic side
of the membrane; and both sites are assumed to be
topographically distinct, such that the interactions be-
tween the two classes of sites are indirect and thus
mediated by a transmembrane allosteric transition. Sec-
ond, as a consequence of the transmembrane polarity,
only symmetry axes perpendicular to the membrane
plane are acceptable (Changeux, 1969), allowing for the
formation of heterooligomers and thus resulting in a
partial breakdown of symmetry. Third, signal transduc-
tion or activation would be mediated by a “concerted”
cooperative transition between a silent resting state and
an active (open channel, G protein binding, or enzymati-
cally proficient) state, with the intrinsic conformational
equilibrium between oligomeric states (defined by the
L value) established prior to ligand binding; agonists
stabilize the active state and competitive antagonists
the silent state, and partial agonists may nonexclusively
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bind to both (Rubin and Changeux, 1966; Edelstein,
1972). Fourth, membrane receptors undergo, in general,
a cascade of slower, discrete allosteric transitions,
which include refractory regulatory states resulting in
the desensitization or “potentiation” of the physiologi-
cal response (Katz and Thesleff, 1957; Heidmann and
Changeux, 1978, 1979; Neubig and Cohen, 1980; Schles-
singer, 1988; Lefkowitz et al., 1993, 1998; Edelstein et
al., 1996; Weiss and Schlessinger, 1998).

In the following sections various aspects of this up-
dated model will be critically examined.

Transmembrane Oligomers: from Perfect

Symmetry to Pseudosymmetry

Whereas globular allosteric enzymes generally possess
perfect symmetry involving, in general, several axes
(e.g., three dyad axes for L-lactate dehydrogenase) (Fig-
ure 1B), for membrane receptors the exclusive occur-
rence of a single rotational axis perpendicular to the
membrane (Figure 1C) reduces the symmetry properties.
Nevertheless, several different oligomeric structures, all
with rotational symmetry, have been recognized in mem-
brane receptors, from pentamers down to dimers.
Pentamers

The pentameric organization of the nicotinic acetylcho-
line receptor (NAChR), a ~300 kDa protein first identified
from fish electric organ using snake venom « toxins and
solubilization in nondenaturing detergent (Changeux et
al., 1970; reviewed by Changeux, 1981), involves four
different subunits, a1, 81, v, and §, with a rather baroque
stoichiometry of 2:1:1:1 (Reynolds and Karlin, 1978). Mi-
crosequencing analysis and cloning of the different sub-
units soon revealed extensive sequence identities, thus
pointing to a possible pseudosymmetrical organization
of the molecule and further suggesting a divergence
from a common ancestral gene by 4-fold duplication
(Raftery et al., 1980; Noda et al., 1983). This interpreta-
tion was subsequently supported by the identification
of a multigene family of neuronal subunits, a2-a9 and
B2-B4 (Boulter et al., 1986), and the discovery that a
single class of subunits from the ancestral-type genes
(a7-a9) may give rise, in reconstituted systems, to func-
tional homooligomers (Le Novere and Changeux, 1995).
Ancestral-type neuronal nAChR may thus possess a
perfect rotational symmetry (see Figure 3A).

For the receptors with a heteropentameric structure,
two modes of association can then be distinguished. In
the first mode, the different subunits occupy a fixed and
unique position within the heteropentamer (Figure 3B),
as in the case of Torpedo (and most probably muscle)
receptor where the clockwise order of the subunits, as
viewed from the synaptic cleft, is ay—y—a—8—8, with oy
and «, indicating the respective contributions of each
o subunit to the high- and low-affinity sites for d-tubocu-
rarine (Machold et al., 1995). A specific sequence of
subunitinteractions and binding-site formation may also
prevail during assembly (Green and Wanamaker, 1998).
Alternatively, in the second mode, one subunit (or sev-
eral) may be shared between different heterooligomers,
as in the case of the neuronal oligomers composed of
a4, “a”5, and B2 subunits; under these conditions, the
same subunit may occupy several equivalent positions,
with different partners (Figure 3C).

Electron microscopy of negatively stained, purified,
or membrane-bound receptor from Electrophorus or
Torpedo accordingly reveals ring-like (~8 nm diameter)
pseudosymmetrical assemblies (Cartaud et al., 1973)
with a 5-fold rotational axis normal to the plane of the
membrane (Unwin, 1995, 1996, and references therein).
Furthermore, cross-sections in the intramembrane por-
tion reveal five “rods” symmetrically organized around
the central axis and interpreted as the channel-forming
o helices (Unwin, 1995) (see The lon Channel in the Axis
of Symmetry). The electron microscopy data are thus
consistent with a pseudosymmetrical oligomeric organi-
zation of the quaternary structure.

Integration into the membrane favors a “transverse
polarity” in the tertiary organization of each receptor
subunit with several distinct structural and functional
domains (Figure 2A): (1) a large hydrophilic extracellular
N-terminal domain that carries the neurotransmitter
binding sites, the main immunogenic region, and the
glycosylation sites; (2) four membrane-spanning seg-
ments (M1-M4), among which at least M2 lines the ion
channel; and (3) another hydrophilic domain of variable
length (between M3 and M4) exposed to the cytoplasm
and susceptible to phosphorylation at a variety of sites
(reviewed by Devillers-Thiéry et al., 1993). Evidence
for the functional specificity of the extracellular, trans-
membrane, and cytoplasmic domains is provided, in
addition, by the construction of chimeric subunits from
the N-terminal extracellular domain of the o7 nAChR
and the complementary portion of the 5-HT; receptor
subunits, yielding functional homooligomeric channels
that are gated by nicotinic ligands (Eiselé et al., 1993).
The same basic rules of oligomerization of subunits with
homologous transverse polarity may plausibly be ex-
tended to other members of the nAChR family such as
the y-aminobutyric acid (type A) and glycine receptors
(Betz, 1990). Accordingly, the most ancestral oligomeric
forms would be perfectly symmetric pentamers, and the
more evolved forms would incorporate different, though
homologous, subunits resulting in structural and func-
tional diversification (Role and Berg, 1996).

Tetramers

The tetrameric organization of the glutamate receptor
oligomers has only recently been recognized, first on
biochemical grounds (Wu et al., 1996) and then with
functional assays based on electrophysiological re-
cordings of either coexpression of wild-type and mutant
subunits (Laube et al., 1998; Mano and Teichberg, 1998)
or graded antagonist occupancy (Rosenmund et al., 1998).
The tetrameric quaternary structure further strengthens
the analogy with potassium channels for which 4-fold
symmetry has been established by X-ray crystallogra-
phy at 3.2 A resolution (Doyle et al., 1998). Functional
homooligomers may arise from single subunits of gluta-
mate receptors (GluRs), although for NMDA receptors
heterooligomeric assemblies (NR1 and NR2) are re-
quired to obtain joint activation by glutamate and the
coagonist glycine (Laube et al., 1997).

The transmembrane topology of the glutamate recep-
tor subunits was initially thought to resemble that of
NAChR on the basis of hydrophobicity plots (Hollmann
and Heinemann, 1994) but in fact differs dramatically.
The currently accepted disposition involves a two-lobed
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Figure 3. Subunit Organization and Ligand Binding Loops for Nicotinic Receptors

(A) Subunit arrangement of homopentameric receptors. Agonist binding sites are indicated by the dashed circles; all five are equivalent, but

one is enlarged to show the contributions of loops A-F.

(B) Subunit arrangement of muscle-type receptors. Two agonist binding sites are indicated by the dashed circles.

(C) Subunit arrangement of heteropentameric neuronal receptors with 2 or 3 subunit types. Two agonist binding sites are indicated by the
dashed circles. The « in quotation marks indicates that, unlike other a subunits, «5 may not directly contribute to agonist binding.

(D) Alignments corresponding to the ligand binding loops for a selection of Torpedo and chick receptor subunits and for Torpedo acetylcholines-
terase. Complete identity for aligned residues in all sequences shown is indicated by a black bar; extensive but incomplete identity is indicated
by a gray bar. Residues that interact with ligands for at least one of the subunit types of the acetylcholine receptor are indicated by black
diamonds above the alignments, and residues implicated in substrate binding for acetylcholinesterase are indicated by black triangles below
the alignments, along with the secondary structure motifs observed for these regions (Sussman et al., 1991).

synaptic domain carrying the neurotransmitter binding
site (see Paas et al., 1996; Armstrong et al., 1998), three
transmembrane segments (M1, M3, and M4), a cyto-
plasmic reentrant loop (M2) assumed to form the ion
selectivity filter of the channel (as in the case of the
extracellular P region of the K* channel), and a cyto-
plasmic C-terminal domain (Figure 2A). As was noted for
nAChR, functional chimeras between several of these
subunits possessing such transverse polarity can as-
semble into functional homooligomers, supporting a
common transmembrane organization for all members
of the GIuR family (Stern-Bach et al., 1994; Wo and
Oswald, 1994; Kuner et al., 1996; reviewed by Paas,
1998).

A tetrameric organization most probably extends to
the cyclic nucleotide receptors, but with a transmem-
brane topology that includes three additional transmem-
brane domains and a nucleotide binding site facing the
cytoplasm (Zagotta and Siegelbaum, 1996; see also Liu
et al., 1998).

Trimers

An unexpected trimeric organization of the P2X cation
channels gated by extracellular ATP has been recently
established by cross-linking experiments (Nicke et al.,
1998). This receptor family, as represented in Figure 2A,
has two transmembrane regions, M1 and M2 (Newbolt

et al.,, 1998). The ion channel would be contributed
mainly by M2, which would posses some B structure
(Rassendren et al., 1997), in contrast to the mainly
a-helical structure of M2 in the nAChR family.

Dimers

The G protein—coupled receptors (GPCRs) have gener-
ally been viewed as monomeric allosteric proteins. Al-
though the atomic structure of a GPCR has not been
determined, the similarity with bacteriorhodopsin (Hen-
derson et al., 1990) and the low-resolution structure of
rhodopsin (Unger et al., 1997) supports a tertiary organi-
zation of the molecule with seven transmembrane o
helices. The ligand binding site would either be located
between transmembrane helices or within the extracel-
lular domain (Bockaert and Pin, 1998). On the other
hand, the intracellular loop i3 and C-terminal segment
would interact with the G protein. Such transmembrane
“allosteric” interactions were classically assumed to be
mediated by a single receptor unit (Leff, 1995).

Recent experimental evidence, however, suggests
that active forms of the GPCRs can occur as trans-
membrane oligomers (dimers or higher oligomers). For
example, functional complementation has been reported
between two inactive chimeras of muscarinic and adren-
ergic receptors (Maggio et al., 1993), as well as for two
inactive point mutations of the type 1 angiotensin Il
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receptor (Monnot et al., 1996). Dimers have also been
directly observed in several GPCR systems (Hebert et
al., 1996, 1998; Cvejic and Devi, 1997). Moreover, studies
on “split” GPCRs show that portions of the structure
composed of two or more helices can constitute inde-
pendent interlocking folding units (Gudermann et al.,
1997) (see Figure 2B). Such a status of allosteric dimer
(and, in certain cases, heterodimer) for GPCRs is possi-
bly associated with a diversification in their interactions
with different G proteins and kinases, as well as in their
desensitization and sequestration properties (Lefkowitz
et al., 1998).

The cell surface receptors with tyrosine kinase activity
have long been reported to behave as transmembrane
allosteric dimers resulting from the isologous associa-
tion of two receptor units with an axis of dyad symmetry
perpendicular to the membrane (Schlessinger, 1988).
Activation in response to growth factors is indeed asso-
ciated with the presence of dimers that catalyze auto-
phosphorylation and activation of the kinase domains
for phosphorylation of other substrates on their cyto-
plasmic face (Schlessinger and Ullrich, 1992). The trans-
membrane organization includes, in this case as well,
distinct domains for ligand binding, spanning of the
bilayer, and kinase activity on the cytoplasmic side (Fig-
ure 2B).

Dimerization was suggested by in vitro measurements
(Lemmon et al., 1997) to occur exclusively upon ligand
binding (Weiss and Schlessinger, 1998). On the other
hand, the ligand may stabilize a preexisting population
of unliganded dimers, as suggested by fluorescence
resonance energy transfer microscopy on A431 human
epidermoid carcinoma cells (Gadella and Jovin, 1995).

In conclusion, the perfect symmetry found with ances-
tral-type receptors is replaced by pseudosymmetrical
organizations associated with heterooligomerization and
diversification of their functional properties.

The Neurotransmitter Binding Site

at Protein Interfaces

As found for classical allosteric enzymes, the binding
sites for regulatory ligands are often located at the
boundary between individual polypeptide chains. In the
case of the nAChR, labeling studies with native or re-
duced Torpedo receptor and affinity ligands with broad
side-chain reactivity (e.g., « toxins, p-N,N-[dimethyl-
amino]-benzenediazonium fluoroborate [DDF], and other
compounds), as well as site-directed mutagenesis ex-
periments, have all revealed the contribution of the two
o subunits present within the receptor oligomer (see
Figure 3B) together with the adjacent vy or & subunits
(Oswald and Changeux, 1982; reviewed by Devillers-
Thiéry et al., 1993; Karlin and Akabas, 1995; Hucho et
al., 1996; Taylor et al., 1998). The large N-terminal extra-
cellular domain contributes to the acetylcholine binding
pocket by two distinct components that bridge the
boundary between subunits: the principal component
that consists of three loops designated A, B, and C on
the « subunit; and the complementary component that
consists of loops designated D, E, and F (as summarized
in Figure 3D) present on the other side of the subunit
interface (reviewed by Corringer et al., 1995; Chiara and

Cohen, 1997; Martin and Karlin, 1997). The labeled resi-
dues from loops A, B, and C are conserved from a1l to
a8 subunits (except for a5); those from loops D, E, and
F may vary.

For the homooligomeric receptors such as a7 or a8,
there are five identical sites per receptor molecule (Cou-
turier et al., 1990; Palma et al., 1996), and each subunit
contributes to both a principal and a complementary
component (Figure 3B). A homolog of loop D Trp is
indeed present in the a7 sequence and has been shown
by mutagenesis to contribute to the binding of nicotinic
agonists (Corringer et al., 1995). For the heterooligo-
meric receptors such as Torpedo and muscle receptor,
the association of the a subunits with the vy and & sub-
units introduces nonidentical contacts, and only two of
the five possible interfaces (see Figure 3B) participate
in the high-affinity binding of nicotinic ligands. These
features represent a significant departure from classical
allosteric enzymes, for which the number of binding
sites generally equals the number of identical subunits
or protomers. Furthermore, differences in the comple-
mentary component account for nonequivalent func-
tional properties of the two binding sites. The site at the
a/d interface, for instance, binds a-conotoxin with a 10%-
fold preference over the site at the o/vy interface (Sine
etal., 1995a), whereas the site at the a/y interface prefer-
entially binds d-tubocurarine relative to the site at the
o/d interface (Chiara and Cohen, 1997).

These two nonidentical but homologous binding sites
may nevertheless establish cooperative homotropic in-
teractions, although with a relatively low Hill coefficient
(ny = 1.5). Homopentameric a7 receptor displays a co-
operativity even (relatively) lower (with ny = 1.3 for five
active sites), as anticipated for a very high value for L
(Edelstein and Bardsley, 1997). The mutation L254Q,
which in homomeric a7 causes, among other effects, a
decrease of L, results in a value of ny = 4.6 (Bertrand
et al., 1993).

A distance of ~6.7 nm has been estimated by energy
transfer between two fluorescent labeled « toxins bound
to the two acetylcholine binding sites of Torpedo recep-
tor, thus demonstrating the allosteric mode of their inter-
action and further indicating that a portion of the toxin
resides near the outer perimeter of the receptor mole-
cule (Johnson et al., 1984; see Hucho et al., 1996, for «
toxin binding).

By analogy, the concept that neurotransmitter binding
sites occupy subunit boundaries has been extended to
GABA, receptor homo- and heterooligomers, with the
additional hypothesis that synthetic drugs such as the
benzodiazepines bind at the “free” o/ interface, which
does not accommodate the neurotransmitter (Galzi and
Changeux, 1995; Sigel and Buhr, 1997).

In the case of the tetrameric glutamate receptors, no
evidence exists for the presence of a glutamate binding
site at the boundary between subunits (Paas, 1998).
To date, the available data support a location of the
glutamate binding pocket at the interface between two
distinct protein domains or “lobes” (Kuusinen et al.,
1995; Paas et al., 1996; Chen and Gouaux, 1997; Laube
et al., 1997; Armstrong et al., 1998; Lampinen et al.,
1998) from the same subunits, although some contribu-
tions from the neighboring subunit cannot be excluded
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(Honer et al., 1998). Considerable flexibility may thus
exist within each subunit by shearing and/or pivot move-
ments of one lobe with respect to the other (Paas, 1998).
Concerning allosteric effectors such as cyclothiazide, it
has been suggested that residues implicated in their
binding (Partin et al., 1996) may be at subunit interfaces,
since they lie over 25 A from the ligand binding site
(Armstrong et al., 1998).

For G protein-linked receptors, the ligand binding do-
main does not necessarily occur at the boundary be-
tween subunits. On the other hand, this may be the case
for tyrosine kinase receptors. For example, reaction of
epidermal growth factor (EGF) receptors with two EGF
molecules causes dimerization by a mechanism that has
been interpreted within an allosteric framework (Schless-
inger, 1988; Weiss and Schlessinger, 1998). Ligands may
bind to sites located at the interface between subunits,
thus stabilizing dimer formation, as supported for human
growth hormone receptor (Wells, 1996).

In conclusion, the location of neurotransmitter binding
sites at proteininterfaces, between subunits (or between
well-defined lobes within subunits), can be viewed as a
general property of membrane receptors, which, as in
the case of classical regulatory enzymes, renders these
sites particularly sensitive to changes in the three-dimen-
sional structure of the molecule. The restriction of the
symmetry to rotational axes perpendicular to the mem-
brane, together with the ability to form pseudosymmet-
rical heterooligomers accompanied by a decrease in the
number of functional binding sites, may account for
the observed low cooperativity between sites, yet with
the possible benefit of an increase of intrinsic affinity or
gain of physiological properties (see Corringer et al.,
1998).

The lon Channel in the Axis of Symmetry

Early structural studies of hemoglobin led to the idea
that the axial cavity of the molecule could serve as a
model system for an ion channel that would open and
close upon ligation of oxygen, with 2,3-diphosphoglyc-
erate behaving as a channel blocker. Convergent experi-
mental evidence from several different approaches in-
deed supports the view that the ion path, which is the
analog of the catalytic site in regulatory enzymes, coin-
cides with this axial cavity of the nicotinic receptor oligo-
mer, the pore domain serving the quadruple function of
selectivity filter for ion permeability, “catalyst” for ion
transport, gate, and specific site for pharmacological
agents.

The first identification of amino acids belonging to the
ion channel (Giraudat et al., 1986, 1987; Hucho et al.,
1986; Revah et al., 1990; reviewed by Changeux, 1990;
Hucho et al., 1996) was provided by the affinity labeling
of the native protein in situ with chlorpromazine and
other noncompetitive “channel blockers.” The amino
acids labeled by four structurally different channel
blockers in Torpedo receptor all belong to the second
transmembrane segment (M2) in each of the subunits,
with a quasisymmetrical organization of the channel
comprising “rings” of homologous amino acids labeled
by these blockers on all subunits (Hucho et al., 1986;
Giraudat et al., 1987; Devillers-Thiéry et al., 1993). Muta-
genesis experiments provide additional support for such

an axial disposition. Mutations within M2 indeed reduce
the residence time, or the open channel block, caused
by the lidocaine derivative QX222 (Leonard et al., 1988)
and alter the intrinsic conductance of the channel (Imoto
et al., 1988), as well as the selectivity of the pore for
nonphysiological ions (Villarroel and Sakmann, 1992) or
for Ca?", while preserving Na* and K* permeability (Ber-
trand et al., 1993). Even more remarkable is the conver-
sion of a7 from a cation-selective to an anion-selective
channel by two mutations in the intermediate (Glu —
Ala) and upper valine (Val — Thr) rings, together with
the insertion of a Pro (or Ala) at the N-terminal end of
M2 (Galzi et al., 1992).

The pattern of labeled amino acids supports the con-
clusion that M2 is at least partially an « helix, an organi-
zation that the cysteine substitution method largely con-
firms (Akabas et al., 1994). Consistent with the electron
microscopy observations on the transmembrane do-
main (Unwin, 1996), the channel lumen would thus ap-
pear to be lined by the five homologous M2 « helices,
with the exception of a short segment at the cytoplasmic
end possibly contributing to the gating (Wilson and Kar-
lin, 1998) and to the selectivity filter of the channel (Cor-
ringer et al., submitted). Asymmetries do exist at the
level of the channel lumen in the labeling patterns by
affinity reagents (Galzi et al., 1991; Blanton et al., 1998),
and mutations to prolines of homologous residues on
different subunits have differential effects on the func-
tional properties of the receptor (Chen and Auerbach,
1998). Additional contributions from M1 or other mem-
brane-spanning domains (Li et al., 1994; Akabas and
Karlin, 1995; Campos-Caro et al., 1997; Ortiz-Miranda
et al., 1997) may originate from the funnel shape of the
channel (Hucho et al., 1996).

The axial cavity thus possesses a strategic role in
both ion transport and quaternary architecture through
the combined effects of its pseudosymmetrical and
stratified organization, including a pore-helix arrange-
ment that participates in intersubunit contacts. A few
amino acid changes, or even the replacement of an
isoleucine by an alloleucine (Kearney et al., 1996), indeed
suffice to modify its conformational transitions (see be-
low), in addition to the characteristic transport proper-
ties of the channel.

The spatial relationship between the nicotinic agonist
binding sites and the ion channel explored by fluores-
cence energy transfer measurements gives distances
ranging between 2 and 4 nm, when using ethidium as
a ligand of the high-affinity site for channel blockers
(Herz etal., 1989). The cooperative interactions between
acetylcholine binding sites, as well as their interaction
with the ion channel, thus take place between topo-
graphically distinct (or distant) sites and constitute typi-
cal allosteric interactions.

While extension of the functional organization of the
nNAChR channel to the other members of the family (Betz,
1990; Eiselé et al., 1993) is likely to be correct, it may
not necessarily hold for the other known ligand-gated
ion channels built from rather different transmembrane
domains (Figure 2A). The similarity found between the
glutamate receptor channel and the three-dimensional
organization of a K" channel (Doyle et al., 1998) suggests
that a common structural scheme, with a large water-
filled cavity lined by « helices with exposed hydrophobic
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amino acids and a selectivity filter in the pore loop, might
adequately fit the channel for receptors in the glutamate
family (Kuner et al., 1996), but with the pore region on
the intracellular side compared to the extracellular side
for the K* channel. The possibility exists that such a
scheme, which applies as well to the cyclic nucleotide—
gated ion channels, with the pore loop on the extracellu-
lar side (Sun et al., 1996), also fits the nAChR data but
with the pore region on the intracellular side (Corringer
et al., submitted).

A Constellation of Allosteric Sites

The concept of allosteric site is not restricted to the
binding of a single category of regulatory ligand. In he-
moglobin, for example, in addition to the axial site for
2,3-diphosphoglycerate, multiple binding sites for pro-
tons regulate oxygen binding and release (Edelstein,
1975). In the case of the nAChR, a large number of
effectors control the functional properties at the level
of the N-terminal extracellular domain, of the transmem-
brane segment, and of the cytoplasmic loop (Figure 1C)
(reviewed by Changeux, 1990; Hucho et al., 1996). Con-
cerning the N-terminal domain, bound Ca?* ions behave
as positive effectors of neuronal (but not muscular) nico-
tinic receptors with a major Ca?* binding site involving
part of loop F of the acetylcholine binding site (a7 resi-
dues 161-172; see Figure 3D) (Galzi et al., 1996a). Addi-
tional regulatory sites for ATP, substance P, physostig-
mine, and steroids have been recognized, although their
physiological significance is far from clear (see refer-
ences in Hucho et al., 1996). lvermectin, a powerful anti-
helminthic drug, behaves as a strong positive allosteric
effector of neuronal a7 receptor by interacting at a site
that remains unidentified (Krause et al., 1998). Mutagen-
esis and photolabeling experiments have shown that the
various transmembrane segments interact with the
membrane bilayer, thus forming a “lipid belt” (Giraudat
et al., 1985; Blanton and Cohen, 1994), with a specific
regulatory role noted for phosphatidic acid and choles-
terol (Bhushan and McNamee, 1993). Finally, the cyto-
plasmic domain is the potential target for a distinct
group of ligands, notably protein kinases (Huganir and
Greengard, 1990; Raymond et al., 1993).

A similar global picture, though with many differences
in detail, accounts for other ligand-gated ion channels
and other membrane receptors, which may thus “inte-
grate” signals from the outside of the cell and from the
cytoplasm, in particular through phosphorylation (Sheng
and Wysznyski, 1997), as well as from the lipid bilayer
(Schwartz and Rosenkilde, 1996; Paas, 1998). It can be
extended to the recognition of pharmacological agents
that may occupy binding sites for physiological ligands
but also interact with protein domains, interfaces, or
crevices that do not match any recognized regulatory
signal, as noted above (see The Neurotransmitter Bind-
ing Site at Protein Interfaces) for benzodiazepines or
cyclothiazides at subunit interfaces in GABA, or gluta-
mate receptors. Models for such interactions are the
various anti-sickling drug complexes revealed by Perutz
et al. (1986) on the hemoglobin molecule.

In addition, receptors may interact with proteins that
lead to clustering or immobilization from either the syn-
aptic or cytoplasmic side. Examples are the 43K-rapsyn

that anchors nAChR at the neuromuscular junction (see
references in Duclert and Changeux, 1995), gephyrin
that stabilizes glycine receptors at neuronal postsynaptic
sites (Kirsch and Betz, 1998), and various PDZ-domain
proteins in the PSD-95/SAP90 family that interact with
glutamate receptors (Kornau et al., 1995; Kennedy, 1997;
Sheng, 1997) and other PDZ binding proteins (Kim et al.,
1998; Niethammer et al., 1998, and references therein).
These interactions maintain the various receptor pro-
teins immobilized at a cellular location where they are
directly accessible to the high local concentrations of
neurotransmitter released by the nerve ending. The
phosphorylation reactions of specific sites on cyto-
plasmic domains are of particular interest, since they
may selectively affect such interactions with cytoskele-
tal functions (Sheng and Wysznyski, 1997) and also play
a role in synaptic plasticity (Raymond et al., 1993; Levi-
tan, 1994; Kirsch and Betz, 1998), particularly in postsyn-
aptic aspects of long-term potentiation (LTP) (McHugh
et al., 1996; Rotenberg et al., 1996; Barria et al., 1997)
or long-term depression (LTD) (Nakazawa et al., 1995).

Allosteric Transitions of Membrane Receptors
Revealed by Physicochemical Techniques

The structural changes that mediate the “indirect” inter-
actions responsible for the activation and desensitiza-
tion of membrane receptors by neurotransmitters have
been explored in vitro by various physicochemical tech-
niques under rapid mixing or static conditions. In the
case of the much studied nAChR, these methods ex-
ploited the initial observation that membrane fragments
(forming closed “microsacs”) purified from electric or-
gans in their native form (or reconstituted from purified
receptor protein and lipids) respond to nicotinic agonists
by an “activation” of ionic fluxes (Kasai and Changeux,
1970) that were subsequently correlated with the bind-
ing of fluorescent agonists (Heidmann et al., 1983).

Contributions from many research groups as reviewed
in detail elsewhere (see references in Changeux, 1990)
demonstrate that the system can be represented by
rapid chemical kinetics of channel opening (in the milli-
second range), as well as fast (in the 0.1 second range)
and slow (in the minute range) desensitization pro-
cesses. The slow phase leads to complete desensitiza-
tion, and, at very low concentrations of agonist, desensi-
tization can occur without significant activation. The
kinetic data are consistent with a minimal allosteric
model (Heidmann and Changeux, 1980; Neubig and Co-
hen, 1980) involving discrete B, A, |, and D states, where
B is the resting low-affinity state, A is the active open
channel state, and | and D are desensitized states with
high and very high affinity for agonists, respectively. In
addition, a significant fraction (~20%o) of the high-affin-
ity, desensitized state is present in the absence of ago-
nist (Heidmann and Changeux, 1979).

Numerous changes in the physicochemical properties
of the receptor proteins accompany these functional
transitions, as reflected by measurements of intrinsic flu-
orescence (Bonner et al., 1976; Grinhagen and Changeux,
1976), chemical reactivity toward a variety of probes
including bifunctional cross-linking reagents (Watty et
al., 1997) and Raman spectroscopic properties (Aslanian
et al., 1993), all of which are selectively modified in the
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presence of nicotinic agonists or antagonists. Cryoelec-
tron microscopy reveals symmetrical changes in the
shape and orientation of the five transmembrane rods,
interpreted as M2 « helices and viewed as representing
the ion channel in its open and closed conformations
(Unwin, 1995). On the other hand, prolonged exposure
of Torpedo receptors to agonist promotes a honsym-
metrical quaternary reorganization of the entire mole-
cule, with one subunit more tangentially inclined and
another subunit displaced away from the axis of symme-
try of the molecule (these subunits, initially interpreted
as vy and 3, respectively [Unwin et al., 1988], most likely
correspond to & and B [Machold et al., 1995]). In any
case, it is clear that desensitization involves extensive
changes in quaternary organization that may require
longer times for the transition to take place than for
channel opening.

Consistent with nonsymmetrical quaternary transi-
tions, photoaffinity labeling of the acetylcholine binding
area with DDF shows an increase in the contribution of
the 3 subunit to the “intersubunit” contact under condi-
tions of stabilization of the desensitized state (by a non-
competitive blocker, meproadifen), while that of the v
subunit decreases (Galzi et al., 1991). In addition, the
relative contributions of loops A and B in the a subunit
increase up to 6-fold, a finding consistent with a tighter
binding of the nicotinic ligands to the D state (Galzi
et al., 1991). Also, the pattern and reaction kinetics of
photolabeling of the M2 channel domain by several non-
competitive blockers may change upon equilibration
with carbamylcholine (White and Cohen, 1992; Blanton
et al., 1998). Major changes of tertiary and quaternary
structure in the intersubunit binding domain for nicotinic
agonists, as well as in the channel crevice, take place
in the course of activation and desensitization, thus pro-
viding molecular correlates for the cascade of allosteric
transitions affecting the receptor protein.

Despite more limited in vitro structural information,
the above scheme offers a plausible representation of
the conformational transitions mediated by other mem-
bers of the nAChR family (Betz, 1990), as well as by other
families of ligand-gated ion channels. It was speculated
above (see The Neurotransmitter Binding Site at Protein
Interfaces) that changes in the relative position of the
lobes of the glutamate binding site of ionotropic gluta-
mate receptors move en bloc with channel elements
within a given subunit (Paas, 1998; see also Krupp et
al., 1998), but this mechanism needs confirmation. It is
premature to mention a possible reorganization of the
quaternary structure of GPCR upon ligand binding. On
the other hand, in the case of light activation of rhodop-
sin, a rigid body movement of the helices M3 and M6
relative to one another would take place upon light acti-
vation, mediating the interaction a distance between
retinal and transducin (Farrens et al., 1996).

All-or-None Channel Gating and the MWC Model

Our knowledge of the dynamics of ligand binding and
enzyme activation by classical allosteric proteins arises
primarily from studies of molecular populations. A unique
opportunity is offered by ligand-gated ion channels to
follow the behavior of single molecular species directly
and with high resolution by patch-clamp recordings of

channel openings (Neher and Sakmann, 1976). The MWC
formalism can thus be extended to ligand-gated ion
channels by implementing kinetic mechanisms that
cover awide time range and involve multiple transitions,
including activation as a rapid (millisecond) but transient
process and desensitization occurring on a time scale
(0.1 second to minute) that is much slower than generally
observed for the conformational changes in allosteric
enzymes (Hammes and Wu, 1974).

First, the identification of at least four distinct confor-
mational states requires a minimal scheme with confor-
mational transitions between the B, A, |, and D states
interconverting in a “tetrahedral” pattern (Heidmann and
Changeux, 1980) (Figure 4A). The dynamics of the inter-
conversions ranging from milliseconds to minutes es-
sentially lead to the selection of a predominant kinetic
pathway (Edelstein et al., 1996) that simplifies to the
linear cascade B, = A, = |, = D, (Figure 4B).

Second, within the linear cascade, numerous individ-
ual rate constants must be assigned, since interconver-
sion rates for the transitions between each pair of states
vary with the number of ligands bound. However, ac-
cording to linear free energy relations, the variations of
these sets of rate constants obey a scaling factor that
may be fixed by a transition state position parameter
(Figure 4C). The resulting values are fully consistent with
the experimental observations, and in all cases channel
opening is predicted for nonliganded receptors. Such
“spontaneous” all-or-none openings have been recorded
at a low frequency (Jackson, 1986; Jackson et al., 1990),
and, in agreement with the model, their frequency dra-
matically increases for certain mutants (as described in
Extremely Pleitropic Mutations and Pathology). On the
other hand, Auerbach et al. (1996) have noted minimal
voltage dependence of spontaneous openings compared
to the openings of liganded receptors.

Third, the complete set of rate constants obtained
using the linear free energy relations yields an adequate
fit of the various kinetic properties of activation and desen-
sitization for muscle and neuronal receptors (Edelstein
et al., 1996). Moreover, this novel formalism suggests
new experimental tests based upon measuring single
binding events (Edelstein et al., 1997b). Single channel
measurements on muscle receptors contributed valu-
able information about ion channel properties and their
ligand gating (Sakmann et al., 1980; Colquhoun and Sak-
mann, 1985). However, the linked events of ligand bind-
ing have so far only been inferred indirectly from single
channel recordings, since parallel observations on the
relevant binding steps have not been possible. Develop-
ments in the field of fluorescence correlation spectros-
copy (Eigen and Rigler, 1994; Edman et al., 1996; Rauer
et al., 1996; Schwille et al., 1997) now place such mea-
surements in the realm of possibilities for the near future
and offer new tests for the assumptions of the allosteric
model.

Fourth, measurements of single binding events could
in principle resolve conflicts concerning the degree of
equivalence of the two ligand binding sites in single
channel recordings of muscle nicotinic receptors (Ed-
monds et al., 1995). For example, wild-type human mus-
cle receptors expressed in HEK cells have been interpre-
ted in terms of ligand binding affinities varying from a
350-fold difference for the affinity of the two sites in the
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Figure 4. Interconversion Pathways and

Models

(A) Tetrahedral model for interactions be-
tween four conformational states, B, A, |, and
D. The abbreviations “T” and “R” used in the
original MWC model were replaced by “B”
and “A,” respectively, for ligand-gated chan-
nels (Edelstein et al., 1996), in order to avoid
confusions arising from “R” being tradition-
ally used to designate the low-affinity “rest-
ing” state of receptors but the high-affinity
state of allosteric enzymes and hemoglobin.
(B) Linear model resulting from kinetic path-
way selection on the basis of the hierarchy
of reaction rates (Edelstein et al., 1996); the
kinetic pathways that can be ignored are indi-
cated by the dotted lines.

(C) Linear free energy relations permitting in-
terconversion rates for the B and A states to
be fixed by a transition state parameter, ®p.
The B and A states each bind ligand with a
characteristic intrinsic affinity that leads to
the energy ladders for molecules with 0, 1, or
2 ligands bound (indicated by the subscript),
with the step sizes indicated by AGg and AG,,
respectively. The two rate constants of inter-
conversion of the fully liganded forms, B, —
A; and A, — B,, fix the height of the transition
state barrier, TS,. The position, 84p, on a hypo-
thetical scale from O to 1 (shown at the top of
the panel), characterizes the transition state
such that the more the transition state resem-
bles A, the closer ®p is to 0. The rates for
the unliganded and singly liganded forms are
then determined by the heights of the transi-
tion state barriers TS; and TS,, which are at
steps above TS, fixed by AGF in terms of ®p,
AGg, and AG, according to the relationship
indicated (Edelstein and Changeux, 1998).
When applied to the detailed kinetic studies
on muscle receptors, a value of ®p = 0.2 was
obtained (Edelstein et al., 1996), indicating
that with each ligand binding step the in-
crease inthe B — Arate is considerably larger
(~~250-fold) than the decrease in the A — B
rate (~4-fold).

(D) The ligand binding and interconversion
reactions for the linear model based on the
MWC-type principles. For the purely sequen-
tial model, the states within the dashed rect-
angle would not be considered. In addition,
the “cyclic pathway” invoked to explain re-
covery from a strong, desensitizing agonist
pulse without passage via the open state
(Katz and Thesleff, 1957; Franke et al., 1993)
is presented by the dashed double line.

(E) A schematic description of the conforma-
tional states for a protein with four subunits

with two tertiary states (open squares and open circles), and with ligand binding or voltage activation indicated by the closed symbols. The
two-state model (Monod et al., 1965) corresponds to the vertical columns at the left and right extremes; the sequential model (Koshland et
al., 1966) corresponds to the descending diagonal. Other states within and below the diagonal (in the shaded triangle) correspond to a model
for voltage-gated Shaker channels (Zagotta et al., 1994). In addition, specific states (see The Intrusion of “Intermediate States” in Nonnicotinic
Channels) are indicated as follows: #proposed subconductance states for drk1 channels (Chapman et al., 1997), §proposed subconductance
states for Shaker channels (Zheng and Sigworth, 1997), *probable full conductance states for all models, and fpossible alternative subconduc-
tance states in the context of the MWC model.

B state in one study (Sine et al., 1995b) to identical
affinities for the two sites in another study (Wang et al.,
1997a). Simulations based on the allosteric model show
that the same single channel data can be represented
by mechanistic schemes with equivalent or with non-
equivalent binding affinities at the two sites, but much

different single binding properties are predicted in the
two cases. Independent measurements of single bind-
ing events would thus provide critical data capable of
distinguishing between the two modes (Edelstein et al.,
1997b). In addition, the formalism incorporating non-
equivalent sites readily accommodates the differences
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in affinity for competitive antagonists that lead to Hill
coefficients apparently lower than 1. Such values arise
in fact from the heterogeneity of nonequivalent binding
sites and should be distinguished from the so-called
“negative cooperativity” that implies destabilizing inter-
actions between identical sites (Koshland et al., 1966).

Fifth, simulations of recovery after a strong, desensi-
tizing pulse indicate that the kinetic pathway for return
to B, can pass sufficiently rapidly through A, (Edelstein
et al., 1996) that the “silent” channels observed during
recovery may be accounted for without postulating a
separate recovery pathway (see Figure 4D) that provides
the basis of the “cyclic” mechanism (Katz and Thesleff,
1957; Franke et al., 1993).

The novel kinetic formulation of the allosteric model
adequately fits most of the known dynamic properties
of the nicotinic receptor, and it gives rise to a number
of original predictions related to the notion that not all
binding events lead to channel opening and not all chan-
nel opening events are the result of ligand binding. As
a result, gating of the ion channel cannot be viewed
solely as a ligand-triggered process but as reflecting an
intrinsic structural transition of the receptor molecule,
which may even occur in the absence of ligand. More-
over, at low agonist concentrations, desensitized states
can be stabilized under conditions of negligible channel
opening. Overall, these concepts bring new insights into
the still rather enigmatic molecular mechanisms of chan-
nel opening and desensitization.

The Intrusion of “Intermediate States”

in Nonnicotinic Channels

At variance with the MWC model, the KNF or sequential
model (Koshland et al., 1966) does not impose any re-
strictions on the conformational states accessible to the
regulatory oligomer in relation to its quaternary organi-
zation. Each subunit can change its tertiary structure
upon ligand binding, thereby affecting through “induced
fit” the chemical reactivity of the neighboring subunits.

Nicotinic receptors, in agreement with the two-state
MWC model, exhibit a single discrete conductance state
that generally does not vary with the nature of the ago-
nist, nor with its concentration (but see Revah et al.,
1991; Camacho et al., 1993; Kuryatov et al., 1997; Zhang
and Karlin, 1998). The very high resolution of the electro-
physiological techniques, however, reveals that other
ligand-gated channels may exhibit, in addition, multiple
subconductance states that contrast with the simple
predictions of the MWC scheme. Among such receptors,
two categories of phenomena are observed.

In the first category, typified by glycine receptors,
multiple conductance states are prevalent (Bormann et
al., 1993), but their distribution does not depend on
agonist concentration (Twyman and Macdonald, 1991).
The simplest interpretation of such deviations is that
discrete fluctuations occur in the steric organization of
a few amino acid residues within the open channel state,
independent of binding site occupancy and subunit in-
teractions. Only a limited number of side chain confor-
mations (rotamers) are indeed accessible to residues
belonging to « helices (Dunbrack and Karplus, 1994),
some combinations of which may be “frozen” in the

channel-lining pore during the transition to the open
state. In other words, these fluctuations would arise from
local, sequence-dependent variations in conformation
within the channel for certain receptor subunits (such
as glycine receptor a1), without basically departing from
the all-or-none openings predicted by the MWC model
and mediated by changes in the quaternary organization
of the molecule.

A more serious challenge to the fully concerted scheme
is the occurrence of subconductance states that have
been found to vary with the nature of the agonist, as
typified by AMPA-type glutamate receptors expressed
in HEK cells (Swanson et al., 1997b) or studied in vivo
(Cull-Candy and Usowicz, 1987; Jahr and Stevens, 1987;
Jonas and Sakmann, 1992; Wyllie et al., 1993), including
changes accompanying the induction of LTP (Benke et
al., 1998). Subconductance states have also been re-
ported for GIuR6/GIuR3 chimeric receptors by following
the changes upon slow dissociation of the competitive
antagonist 6-nitro-7-sulphamoyl-benzo(F)quinoxalined-
ion and were interpreted as corresponding to partially
liganded receptors (Rosenmund et al., 1998) (despite
the fact that occupancy of two binding sites was found
to be necessary to reach the first subconductance
state). Ruiz and Karpen (1997) also reported a progres-
sion of subconductance states related to ligand binding
for retinal rod cGMP-gated channels, although such states
were not reported in the studies of similar channels by
Liu et al. (1998). Such agonist-dependent subconduc-
tance states to some extent resemble the patterns re-
ported for drkl voltage-gated receptors (Chapman et
al., 1997). They may possibly reflect common channel
gating mechanisms, distinct from those found within the
nAChR family, with an increased flexibility (Figure 4E)
in the relationship between the ligand binding site and
the ion channel involving a specialized pore device
(MacKinnon, 1995; Zagotta and Siegelbaum, 1996).

Figure 4E represents all possible conformational states
accessible in theory to a tetrameric oligomer with sub-
units possessing two tertiary conformational states
(squares versus circles), each subject to ligand binding
or voltage-activated transitions (from open to closed).
Among these various possibilities, an especially inter-
esting one is that the subconductances states arise from
local changes in subunits that reside within a common
allosteric quaternary state, for instance the A state (dis-
tributed in the vertical column at the right in Figure 4E).
These substates, which have so far been neglected in
current models for K™ channels, would then be analo-
gous to the tertiary-level contributions to the H* Bohr
effect in hemoglobin (Edelstein, 1975). Indeed, the equiva-
lent of a pH effect on current-voltage relationships has
recently been produced for Shaker channels by intro-
ducing a histidine into the segment S4 responsible for
voltage sensitivity (Starace et al., 1997). Each agonist
molecule bound to the homologous tetrameric receptor
(as each individual Bohr proton for hemoglobin) would
then produce local conformational changes that modu-
late activity without causing a major transition to another
quaternary conformational state. An extensive data set
has recently been interpreted in terms of a model involv-
ing three sequential and two concerted transitions
(Schoppa and Sigworth, 1998), but models based on a
cascade of concerted transitions equally fit the data.
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Moreover, it should be noted that spontaneous open
states have been reported for cGMP and NMDA recep-
tors (Picones and Korenbrot, 1995; Tibbs et al., 1997;
Turecek et al., 1997), but, as already noted, such states
are not allowed in the strict observance of the KNF-type
model. Analysis of the spontaneous openings and their
possible subconductance states may thus offer useful
clues for distinctions between the different models.

This discussion reveals the difficulty in interpreting
high-resolution electrophysiological data in terms of
molecular models that rely upon stereochemical infor-
mation for membrane proteins. The various attempts to
model the conformational transitions of these molecules
emphasize the distinction between major discrete qua-
ternary transitions, which would be common to both
pentameric and tetrameric receptors (e.g., B and A
states), and local reorganizations at the subunit level
more directly linked to ligand (or voltage) gating (which
apparently would be more probable in tetrameric recep-
tors). How fractional ligand binding may exert “partial”
effects on the quaternary organization is unclear at this
stage. Ultimately, structural studies at atomic resolution
should provide access to an objective description of
these subconductance states and to the distinction be-
tween those corresponding to a local flexibility within a
common quaternary “open” state and those represent-
ing more complex patterns of mixed conformational
states.

Extremely Pleiotropic Mutations and Pathology

A specific prediction of the occurrence of allosteric inter-
actions is that mutations occurring at pivotal locations
in the pathway between the ligand binding site and the
biologically active site may dramatically affect their
properties or their relationships. In hemoglobin, for ex-
ample, the mutation Kansas (BN102T) confers a low oxy-
gen affinity and low Hill coefficient because the R state is
destabilized, whereas the mutation Chesapeake («R92L)
displays a high oxygen affinity and a low Hill coefficient
because the T conformation is destabilized (Edelstein,
1971). “Gain-of-function” mutations may apply to the
conversion of allosteric inhibition to activation in regula-
tory enzymes, such as threonine deaminase (Sanchez
and Changeux, 1966) or phosphofructokinase (Lau and
Fersht, 1987).

In the case of membrane receptors, novel insights are
provided by site-directed mutations in the homopen-
tameric «7 neuronal nicotinic receptor that produce dra-
matic pleiotropic alterations of functional properties. For
example, point mutations were introduced at one of
three sites of the M2 segment (Thr-244, Leu-247, or Val-
251—the first two of which are homologs of chlorproma-
zine-labeled amino acids [Revah et al., 1990] in Tor-
pedo). Each mutation plausibly located on successive
turns of the o helix generates a receptor that, when
expressed in oocytes, displays an apparent affinity for
acetylcholine (ACh) up to 200-fold higher than for wild
type, no longer desensitizes, and possesses high and
low conductance states (Revah et al., 1991; Devillers-
Thiéry et al., 1992). Moreover, a competitive antagonist
of the wild-type receptor, dihydro-B-erythroidine (DHBE),
becomes a full agonist (with 10-fold higher apparent
affinity than ACh) for L247T receptors but only a partial

agonist for T244Q and V251T receptors. These gain-of-
function mutations, as well as others responsible for
congenital myasthenic syndromes (Sine et al., 1995b;
Edelstein et al., 1997a; Léna and Changeux, 1997; Engel
et al., 1998) occur primarily in M2 (see Figure 6A) but
also in other domains such as loop B of the agonist
binding site (Corringer et al., 1998). Their mechanistic
interpretation poses a serious challenge to the KNF-
type sequential models for channel activation. On the
other hand, the MWC-type model provides simple and
plausible explanations on the basis of changes in the
equilibrium between conformations (L phenotype, o7
V251T and T244Q), in addition to (or as an alternative
to) changes in the ligand binding constant (K phenotype,
o7 Y92F and W148F) or ion channel conductance (y
phenotype, a7 L247T) of individual conformational states
(Galzi et al., 1996b).

One of the most striking mutant phenotypes observed
for receptors implicated in congenital myasthenic syn-
drome is produced by the M2 mutation eT264P (Ohno
et al., 1995). In single channel recordings, the profiles
of open channel dwell times display three peaks, instead
of the single peak for wild-type receptors. The standard
sequential-type model (Figure 4D), which does not in-
clude non- or mono-liganded open states, fails to ac-
commodate these data. On the other hand, they are
adequately represented by the allosteric scheme in
terms of a decrease of L (from 9 X 10° to 100) that
facilitates the B— Atransition. As a consequence, signif-
icant channel opening is predicted for receptors with
no ligand or one molecule of ligand bound (Edelstein et
al., 1997a), and the three peaks for the mutant receptors
are readily interpreted as reflecting non-, mono-, and
biliganded molecules (with reasonable agreement be-
tween theory and experiment; see Figure 5). These simu-
lations also illustrate that the distinct single binding
events would outnumber the single ionic events for the
wild type, while the reverse would be true for the myas-
thenic mutant. Abundant spontaneously open channels
that nicotinic antagonists selectively close are observed
in the double mutant a7 L247T-V251T (Bertrand et al.,
1997). Pleiotropic phenotypes also occur after homolo-
gous mutations in the 5-HT; (Yakel et al., 1993) and
GABA, (Chang et al., 1996; Pan et al., 1997) receptors.
Moreover, in the case of the glycine receptor a1l subunit,
mutations at the extracellular extremity of M2 at position
R271 (Shiang et al., 1993; Langosh et al., 1994; Rajendra
et al., 1994) are responsible for startle disease (for addi-
tional startle mutations, see Shiang et al., 1995) and
might also affect L, but with the mutation increasing its
value above the wild-type level (Galzi et al., 1996b).

With respect to tetrameric receptors, pleiotropic changes
in the physiological and pharmacological properties of
tetrameric receptors also follow mutations within the
neurotransmitter binding site (Mano et al., 1996; Laube
etal., 1997; Krupp et al., 1998) and within the membrane
domains (Sommer et al., 1990; Villarroel et al., 1998),
although their interpretation in terms of the MWC model
remains to be established (see Paas, 1998).

Concerning GPCRs, “constitutive” mutations at vari-
ous loci distributed within the receptor molecules result
in a dramatically enhanced activation of the G protein-
linked biological activity in the absence of agonist (Lef-
kowitz et al., 1993). The MWC model applied to “mono-
meric” GPCRs provides a simple explanation of these
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Figure 5. Stochastic Simulations and Open Channel Dwell Times for Normal and Myasthenic Mutant eT264P Receptors

time

(A) Simulations of binding and ionic events for human wild-type muscle receptors expressed in HEK cells using parameters (Edelstein et al.,
1997a) based on experimental observations (Milone et al., 1997). The single binding simulations are based on a theory that incorporates
multiple conformational transitions (Edelstein et al., 1997b).

(B) Simulations as in (A), but for eT264P mutant muscle receptors expressed in HEK cells using parameters (Edelstein et al., 1997a) based on
experimental observations (Ohno et al., 1995).

(C) Dwell time profiles predicted by the MWC-type model and experimental data points for wild-type receptors. The individual points (open
circles) are obtained from the kinetic rate constants presented in the legend to Figure 8b of the article by Milone et al. (1997) to represent
activation over a wide range of ACh concentrations.

(D) Dwell time profiles predicted by the MWC-type model and experimental data points for eT264P mutant receptors. The individual points
(open circles) are presented for the sum of the three components of the experimentally observed open channel dwell times corresponding
to the published values of Ohno et al. (1995) for 0.3 wM ACh of 1, = 150 ps, a, = 0.67; 1, = 1.8 ms, a, = 0.16; and 7, = 69.5 ms, a, = 0.17,
where 1; and a; are the mean open time and relative amplitude, respectively, for each component. The data for wild-type and mutant receptors
were simulated with values of BAL, of 9 X 10° and 100, respectively (Edelstein et al., 1997a). For eT264P, compatibility with linear free energy
relations yields mean open times of 1, = 151 ps, 7, = 3.8 ms, and 7, = 59.5 ms. Although most single channel openings are solitary events,
possible contributions from multiple events (bursts) have not been included; therefore, these mean open times should be considered as upper
limits, particularly for T,. However, a majority of A, channel openings involve passage to A; prior to closure by passage to B;, and the
contributions of these events, as well as closure by passage directly from A, to B,, have been included, as indicated by XA,. The simulations
correspond to 10 bins for each integer interval of log t, with peak heights based on the number of events occurring in a total time t of 1 s.

gain-of-function function mutants and also accounts for
the role of “inverse agonists” that reduce both the con-
stitutive activity of such mutants and the much smaller
spontaneous activity of wild-type receptors (Hebert et
al., 1996). Many of these mutations provoke genetic
diseases and confer oncogenic properties (Spiegel,
1996). For example, constitutive mutations of the lutein-
izing hormone receptor cause familial male precocious
puberty (Shenker et al., 1993). These mutations are dis-
tributed throughout the primary structure, although with
a prevalence in M6 (Figure 6B).

Mutations of tyrosine kinase receptors conferring high
activity in the absence of ligand have also been recog-
nized for over a decade (Downward et al., 1984) and
become oncogenic via dimerization and autophos-
phorylation (Huang et al., 1997). Mutant erythropoietin
receptors with a single point mutation in the extracellular
domain form active dimers in the absence of erythropoi-
etin (Watowich et al., 1992). In this respect, the tyrosine
kinase and cytokine receptors share with the other

classes of allosteric receptors the ability to undergo
spontaneous transitions to an active state, in accord
with the MWC model.

The wide occurrence of gain-of-function or constitu-
tive mutations in membrane receptors as in classical
regulatory enzymes also supports the concept that, from
an evolutionary point of view, these regulatory mole-
cules may derive from ancestral unregulated molecules
via a selective inhibition of their biological function, pos-
sibly as a consequence of oligomerization. Regulatory
ligands would then “relax” these inhibitions via quater-
nary changes of the molecular structure. In any case,
these few examples illustrate the usefulness of the MWC
model for the interpretation of rather paradoxical gain-
of-function mutations whose pathological effects con-
trast with those of the standard null mutations.

Concluding Comments
When, about 30 years ago, the extension of the MWC
model to membrane receptors was proposed, it was, as
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Figure 6. Gain-of-Function Mutations Associated with Pathologies
of Nicotinic and G Protein-Coupled Receptors

(A) The congenital myasthenic syndrome mutations of the neuro-
muscular junction acetylcholine receptor with gain-of-function
properties. The individual mutations are aligned with respect to the
corresponding position in chick a7 NAChR; references to the original
articles and the basis for their functional characterization as gain
of function were published previously (Edelstein et al., 1997a).

(B) The gain-of-function mutations of the human luteinizing hormone
receptor responsible for familial male precocious puberty (Shenker
etal., 1993; Latronico et al., 1995; Laue et al., 1995); other references
are available from Online Mendelian Inheritance in Man (http://
www.ncbi.nlm.nih.gov/Omim; OMIM number 152790).

noted above, viewed by skeptics as adding one unlikely
hypothesis on top of another. In the following years,
structural and dynamic studies with hemoglobin and
globular regulatory enzymes brought detailed experi-
mental validation of the original scheme (Perutz, 1989;
Iwataetal., 1994; Henry et al., 1997; see also Janin, 1989;
Maddox, 1990). Moreover, several membrane receptors
for neurotransmitters were biochemically identified (e.g.,
Changeux, 1981; Karlin, 1991) and several of them cloned
and sequenced (e.g., Lefkowitz etal., 1988; Numa, 1989).
The wealth of data derived from expression of cloned
genes and electrophysiological recordings on native
and recombinant proteins has nevertheless provided
only a fraction of the information necessary for a critical
evaluation of the MWC model (Jackson et al., 1990;
Colguhoun and Sakmann, 1998; Green et al., 1998). The
references to the most fully understood three-dimen-
sional structural properties of allosteric proteins (Perutz,
1989; Iwata et al., 1994) and the modeling of protein
conformational transitions, as presented here, illustrate
that the mechanistic understanding of signal transduc-
tion by neurotransmitter receptors must integrate three-
dimensional protein biochemistry and stereochemical
analysis of conformational transitions, together with bio-
physical and electrophysiological recordings, within a

multidisciplinary framework analogous to that which led
to their initial identification (Changeux, 1981). While a
number of chemical and functional “signatures” can al-
ready be identified, more definitive tests of the currently
available models must await high-resolution structural
information and dynamics, particularly to distinguish be-
tween fully concerted transitions in quaternary structure
and more locally induced conformational changes.

Investigations at the level of the three-dimensional
structure of receptors are certain to open a new era of
research. Insights into their three-dimensional structure
have been recently presented for the ligand binding
pocket of GIuR2 receptors from a crystal structure with
bound kainate (Armstrong et al., 1998). The general fold-
ing pattern is similar to homology models proposed us-
ing the three-dimensional coordinates of bacterial per-
iplasmic binding proteins as templates (Paas et al., 1996;
Sutcliffe et al., 1996; Laube et al., 1997, Swanson et
al., 1997a; Paas, 1998). Similarly, for the binding site of
cGMP receptors, a reasonable model can be based on
the known structure of the bacterial catabolite-activat-
ing protein (Weber and Steitz, 1987). Model building
based on proteins that resemble receptors in the acetyl-
choline nicotinic family have been hampered by the
weak homologies for the proteins so far structurally
identified, plastocyanin and pseudoazurin (Tsigelny et
al., 1997) and the biotin repressor (Gready et al., 1997).
Similar limitations apply to the model for the transmem-
brane region based on the structure of an enterotoxin
(Ortells and Lunt, 1996). On the other hand, a small
region of similarity exists between ligand binding resi-
dues of NAChR and substrate binding residues of acetyl-
cholinesterase (Figure 3D). This similarity may provide
some additional clues to the structure in this region,
since the three-dimensional structure of acetylcholines-
terase has been established (Sussman et al., 1991). In
contrast to the limited progress in structural studies
on ligand-gated channels, K*-specific channels have
recently benefited from a spectacular advance (Doyle
et al., 1998).

The three-dimensional organization of GPCRs has
considerably benefited from high-resolution cryoelec-
tron microscopy of bacteriorhodopsin (Henderson et al.,
1990) and vertebrate rhodopsin (Unger et al., 1997). The
assembly of GPCR into symmetrical oligomers remains,
however, to be documented on the basis of three-dimen-
sional structural observations. The three-dimensional
structures of the kinase domains for several proteins in
the family of EGF receptor protein tyrosine kinases have
been resolved (Hubbard et al., 1994; Mohammadi et al.,
1996, 1997), but the overall transmembrane organization
of the functional dimers remains to be identified (Hub-
bard et al., 1998).

While the detailed organizational plan must await
structural determinations at the atomic level, many of
the properties of ligand-gated channels reviewed here
can be satisfactorily integrated into a mechanistic
scheme based on an MWC-type model of concerted
allosteric transitions, with a cascade of multiple fast and
slow transitions. In ligand-gated channels, the principle
of symmetry in quaternary structure is satisfied for
homooligomeric forms, with pseudosymmetry among
“equivalent” protomers prevailing for the heterooligo-
meric cases. Yet, the transmembrane polarity and the
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correlative limitations to single axes of symmetry normal
to the membrane restrict the symmetry properties, re-
sulting in less quaternary constraint and lower coopera-
tivity. The presence of ligand binding sites at protein
interfaces follows the pattern observed for allosteric
enzymes, but heterooligomerization introduces a large
potential for specific variations of physiological signifi-
cance. In addition, subtle structural differences within
the ion channel may lead to the significant differences
in conductance and ion specificity observed among di-
verse receptor forms. Finally, among the tetrameric re-
ceptors, multiple conformational states at the level of
individual subunits have been invoked, although without
structural demonstration, including a series of transi-
tions for Shaker channels involving both movements of
individual subunits as well as concerted steps (Liu et
al., 1998; Schoppa and Sigworth, 1998).

Extensions of the allosteric model to GPCRs and
growth factor receptor kinases illustrate some common
features of these membrane protein systems. In addi-
tion, such comparisons serve to emphasize that both
ligand-gated channels and GPCRs can participate in
signal transduction involving either high concentration
“pulse” or “leak” release of neurotransmitter. The latter
may be especially important for many neuronal neuro-
transmitter-gated ion channels (e.g., GABA, receptors
[Nusser et al., 1998] as well as a7 nAChRs [Zhang et
al., 1996]) that function at extrasynaptic locations. Con-
versely, the GPCRs generally function in response to
the arrival of agonist in the leak mode, but responses
inthe pulse mode may occur for metabotropic glutamate
receptors at certain synapses (Nakanishi, 1994; Salt and
Eaton, 1996).

With respect to functional diversity, the common prin-
ciples of protein architecture and conformational dy-
namics reviewed here lead to a broad spectrum of
properties derived from the various modes of subunit
assembly and a capacity for “molecular integration”—in
particular coincidence detection—of diverse signals via
the multiple allosteric sites carried by individual receptor
molecules with transmembrane polarity (Heidmann and
Changeux, 1982). The molecular diversity produces spe-
cialized functions, as yet only poorly understood, that
associate particular receptor oligomers with discrete
neuronal and synaptic distributions. As these distinct
roles and distributions emerge, a wealth of novel targets
should be identified for future pharmacological agents
designed for specific receptors or neuronal networks.
As exemplified by the interpretations of gain-of-func-
tion mutations for both ligand-gated ion channels and
GPCRs, the MWC model also provides a useful frame-
work to understand human pathologies (Lefkowitz et al.,
1993; Léna and Changeux, 1997).

When the interplay of both ligand-gated and GPCRs
are considered (see, for example, Wang et al., 1997b),
the combinatorial arrangements of receptors reach very
large proportions. Many such receptor-receptor interac-
tions (Fuxe and Agnati, 1991) underlie the fine-tuning
associated with modulation of synaptic transmission
through changes of receptor efficacy. The particular role
of phosphorylation has been noted (see Huganir and
Greengard, 1990) and may underlie aspects of synaptic
memory mechanisms, possibly involving coincidence

detection in systems involving NMDA receptors (Wig-
strom and Gustafsson, 1985) and calcium-stimulated
phosphorylation (Bliss and Collingridge, 1993; Lisman
et al., 1997) or transmembrane interactions involving
extracellular zinc and cytoplasmic factors (Ascher,
1998). Calcium permeability of nAChR could lead to
similar phenomena, with subsequent phosphorylation
events shifting the receptor population between respon-
sive and desensitized states (Edelstein and Changeux,
1998). Combinations of these processes may generate
more subtle learning rules, such as a sliding threshold
mechanism (Bienenstock et al., 1982; Mayford et al.,
1995; Kirkwood et al., 1996; Edelstein and Changeux,
1998). Future research directions in this area are indi-
cated by investigations using transgenic mice that per-
mit the evaluation of changes in the allosteric properties
of receptors to be correlated with behavioral responses
(Picciotto et al., 1995, 1998; Chen and Tonegawa, 1997;
Maldonado et al., 1997; Milner et al., 1998). Ultimately,
decoding the complex network of interactions among
these various receptors may lead to an understanding
of the conformational transitions associated with varia-
tions in synaptic strength, thereby constituting allosteric
learning models (Heidmann and Changeux, 1982; De-
haene and Changeux, 1989, 1997). After 30 years, allo-
steric receptors are thriving, and future applications can
be expected in physiology, cognitive sciences, and
medicine.
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