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A justification for using NMR model-free methods
when investigating the solution structures of rhombic
paramagnetic lanthanide complexes
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The detailed analysis of the 1H NMR hyperfine shifts according to the model-free methods shows that
the semi-rigid monometallic complexes [Ln(L)(NO3)3] (Ln = Eu–Yb) are isostructural in solution. The
associated separation of contact and pseudo-contact contributions to the hyperfine NMR shifts in each
rhombic lanthanide complex at room temperature provides paramagnetic susceptibility tensors whose
principal magnetic axes match the expected symmetry requirements. Moreover, both axial (1cax) and
rhombic (1crh) paramagnetic anisotropies display satisfactory linear dependence on Bleaney’s factors,
a correlation predicted by the approximate high-temperature expansion of the magnetic susceptibility
limited to T−2. Consequently, the simple, and chemically attracting NMR model-free methods are not
limited to axial systems, and can be safely used for the investigation of the solution structures of any
lanthanide complexes. Molecular-based structural criteria for the reliable estimation of paramagnetic
susceptibility tensors by NMR are discussed, together with the assignment of the labels of the crystal-field
and magnetic axes within Bleaney’s approach. Copyright  2006 John Wiley & Sons, Ltd.

Supplementary electronic material for this paper is available in Wiley InterScience in http://www.interscience.wiley.com/
jpages/0749-1581/suppmat/
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INTRODUCTION AND THEORY

The experimental NMR hyperfine shift of a nucleus i
in a paramagnetic complex of a lanthanide j (υexp

ij in
ppm) can be partitioned according to Eqn (1), where
υdia

i contains the underlying diamagnetic shift measured
for the analogous 4f 0 (Ln D La, Y) of 4f14 (Ln D Lu)
electronic configurations, and υbulk

j is the bulk paramagnetic
susceptibility of the solution (υbulk

j D 0 when an internal
reference is used).1

υ
exp
ij D υdia

i C υbulk
j C υ

para
ij �1�

The hyperfine paramagnetic contribution υ
para
ij is thus

easily obtained from the experimental data (Eqn (2)), and it
eventually corresponds to the sum of the contact (through-
bond, υc

ij), and pseudo-contact (through-space, υpc
ij ) effects

brought by the electronic magnetic momentum.2

υ
para
ij D υ

exp
ij � υdia

i D υc
ij C υ

pc
ij �2�

The contact contribution results from the delocalization of
the electronic spin brought by the paramagnetic lanthanide
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j onto the nucleus i, which is mediated by scalar Fermi
interactions.3 It thus reflects the topology and the nature
of the chemical bonds separating the metal from the
nucleus under investigation, and it is given by Eqn (3),
where Ai is the Fermi hyperfine constant of the nucleus
i and hSzij is the thermally averaged spin expectation
value of the lanthanide j, which has been tabulated
at 300 K.3 Although the contact term Fi is small for
lanthanide complexes because of the poor covalency of
the dative metal–ligand bonds (i.e. Ai is small), it becomes
negligible only for nuclei separated by at least three or
four bonds from the metal, and it must therefore be
explicitly considered for low-molecular-weight lanthanide
co-ordination complexes.

υc
ij D Hc

H0 D Ai

h̄�iH0 hSzij D FihSzij �3�

The pseudo-contact contribution results from the dipolar
coupling between the electronic and magnetic momenta,
which depends on (i) the magnitude of the paramagnetic
anisotropy induced by the lanthanide metal ion and (ii) the
geometrical position of the nucleus within the molecular
architecture.2 υpc

ij thus contains the structural information
of interest for determining molecular structures in solution,
and it is expressed in its general form by Eqn (4), where �j

˛ˇ

are the components of the paramagnetic susceptibility tensor
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� j (in cm3 mole�1), NA is Avogadro’s number and ri, �i and
�i are the polar coordinates of the resonating nucleus in an
arbitrary x, y, z Cartesian frame, with the lanthanide metal
ion located at the origin (Fig. 7(b)).4

υ
pc
ij D Hpc

H0

D 1
2NAr3

i




(
�j

zz � 1
3

Tr� j

)
�3 cos2 �i� 1�C��j

xx��j
yy�

�sin2 �i cos 2�i�C 2�j
xy�sin2 �i sin 2�i�

C2�j
xz�sin 2�i cos�i�C 2�j

yz�sin 2�i sin �i�




�4�

Since the paramagnetic susceptibility tensor � j is real
and symmetrical (�j

˛ˇ D �
j
ˇ˛), it can be diagonalized to

give three real eigenvalues �j
U, �

j
V and �

j
W corresponding

to the susceptibilities along the U,V and W directions (i.e.
the eigenvectors). In this special Cartesian frame, often
referred to as the principal magnetic axes system, Eqn (4)
reduces to Eqn (5), where the isotropic part of the tensor
is �j

0 D 1/3Tr� j, and the axial and rhombic paramagnetic
anisotropies, respectively, correspond to �

j
ax D �

j
W � �

j
0

and�j
rh D �

j
U � �

j
V . Obviously, the polar coordinates �

0
i and

�
0
i now refer to those calculated in the principal magnetic

axes system for the nucleus i.2,4

υ
pc
ij D Hpc

H0 D 1
2NAr3

i

[(
�

j
W � 1

3
Tr� j

)
�3 cos2 �

0
i � 1�

C��j
U � �

j
V��sin2 �

0
i cos 2�

0
i�
]

D 1
2NAr3

i

[
�j

ax�3 cos2 �
0
i � 1�C�

j
rh�sin2 �

0
i cos 2�

0
i�
]
�5�

Assuming that the contact contributions υc
ij have been

safely estimated and removed from υ
para
ij to give a suf-

ficient amount of reliable υ
pc
ij (Eqn (2)), Eqn (4) can be

used for the determination of second-rank tensors � j

(multi-linear least-squares fits) if a structural model of
the complex is at hand. Extending this approach to non-
linear least-squares techniques allows the simultaneous
refinement of � j and of the polar coordinates (ri, �i, �i)
by using iterative processes.2,5,6 However, the tuning of
the molecular structure must be restricted to reasonable
changes, which requires (i) an acceptable initial structural
model for the complex in solution and (ii) geometrical
distortions limited by molecular mechanics calculations
and/or by additional structural constraints obtained with
other experimental techniques (NOE, residual dipolar cou-
pling constants). Point (i) is particularly difficult to fulfill
when working with elusive and labile low-molecular-
weight lanthanide complexes. In this context, Bleaney
made a substantial gift to synthetic and co-ordination
chemists when he proposed a high-temperature expan-
sion (kT>ECF) of the paramagnetic susceptibility ten-
sor � j in a power series in the inverse of temperature
T�n, which avoids re-sorting to structural models.7 In
the principal magnetic axes system, which coincides with
that of the crystal-field axes,7 the appropriate Hamilto-
nian operator H combines Zeeman (HZ) and crystal-field
(HCF) contributions (Eqn (6)),8 to give a first term in

T�1 corresponding to the isotropic part of the paramag-
netic susceptibility of the lanthanide ion in its fundamen-
tal 2SC1LJ state (Eqn (7)), whereby the Landé factor is2,7,8

gJ D 3/2 C f[S�S C 1�� L�L C 1�]/2J�J C 1�g.

H D HZ C HCF D gJˇH Ð J C
∑
k,q

Bk
qCk

q �6�

�
j
0 D 1

3
Tr� j D NAg2

Jˇ
2

3kT
J�J C 1� �7�

The second terms in T�2 (Eqns 8–10) correspond to the
anisotropic part of the paramagnetic susceptibility related to
the crystal-field operators Ck

q of rank two (k D 2) associated
with the conventional crystal-field parameters7,8 B2

q (q D 0, 2).

�
j
W � �

j
0 D � NAˇ

2�1 C pj�	j

60�kT�2
2B2

0 D 2NACjB2
0 �8�

�
j
U � �

j
0 D NAˇ

2�1 C pj�	j

60�kT�2
�B2

0 �
p

6B2
2�

D NACj�
p

6B2
2 � B2

0� �9�

�
j
V � �

j
0 D NAˇ

2�1 C pj�	j

60�kT�2
�B2

0 C
p

6B2
2�

D �NACj�
p

6B2
2 C B2

0� �10�

	j is a numerical coefficient tabulated for each 4fn

configuration,7 the term (1 C pj) reflects the contribution of
thermally populated excited multiplets of the lanthanide
ion, and ˇ is the Bohr magneton. The common numerical
term Cj D �NAˇ2�1 C pj�	j/60�kT�2, often referred to as the
Bleaney’s factor, can be calculated for each lanthanide j at
300 K, and its relative value, scaled to CDy D �100, has been
tabulated (Table 6).2,7 When the crystal-field splitting ECF

produced by the Bk
q parameters is much smaller than kT, the

series is limited to T�2 (i.e. higher order terms are neglected),7

and an adequate modelling of the axial and rhombic
paramagnetic anisotropies, respectively, are obtained by
combining Eqns (8–10) to give �j

ax D �
j
W � �

j
0 D 2NACjB2

0

and �
j
rh D �

j
U � �

j
V D 2

p
6NACjB2

2. These predictions can
be used in Eqn (5) in order to estimate the pseudo-contact
shifts from postulated molecular structures. Moreover, the
consideration of the usual definitions of the geometrical
parameters Gi D �3 cos2 �i � 1�/r3

i and Hi D �sin2 �i cos 2�i�/r3
i

eventually transforms Eqn (5) into Eqn (11), which can be
combined with Eqn (3) to give a simple expression for the
NMR hyperfine paramagnetic shift υpara

ij (Eqn (12), where
Si D B2

0Gi C p
6B2

2Hi�:

υ
pc
ij D Cj�B2

0Gi C
p

6B2
2Hi� D CjSi �11�

υ
para
ij D FihSzij C �B2

0Gi C
p

6B2
2Hi�Cj D FihSzij C SiCj �12�

The two straightforward linear forms (Eqns 13–14)
derived from Eqn (12) are widely used for testing isostruc-
turality for a series of homologous complexes possessing
different lanthanide metal ions, especially for axial sys-
tems possessing at least a threefold axis,2,9 and for which
B2

2 D 0.

υ
para
ij /hSzij D Fi C �B2

0Gi C
p

6B2
2Hi��Cj/hSzij� �13�

υ
para
ij /Cj D Fi�hSzij/Cj�C �B2

0Gi C
p

6B2
2Hi� �14�
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Obviously, deviations from linearity for plots of υpara
ij /hSzij

vs Cj/hSzij (Eqn 13) or υpara
ij /Cj vs hSzij/Cj (Eqn (14)) can

be assigned to structural changes affecting Gi and Hi, if
B2

0,B2
2 and Fi being constant along the lanthanide series,

an assumption that is rarely met for Bk
q parameters.10

This limitation can be overcome by the simultaneous
consideration of three different nuclei i, k and l in the
same complex, which provides three equations analogous
to Eqn (12). Their judicious combination allows the removal
of the two crystal-field parameters B2

0 and B2
2 in the final

equation of a plane (Eqn (15)) perpendicular to the vector
(1, – Cikl, – Dikl�, and separated by a distance Bikl from the
origin in a 3D Cartesian frame, whose orthogonal axes
are defined by υ

para
ij /hSzij, υ

para
kj /hSzij and υ

para
lj /hSzij, with

Rst D Hs/Ht (Eqns 15–18).11

υ
para
ij

hSzij
D Bikl C Cikl

υ
para
kj

hSzij
C Dikl

υ
para
lj

hSzij
�15�

where

Bikl D Fi � FkCikl � FlDikl �16�

Cikl D Rik

(
Gi � GlRil

GkRik � GlRil

)
�17�

and

Dikl D �Ril

(
Gi � GkRik

GkRik � GlRil

)
�18�

Although the simplified two-dimensional crystal-field-
independent equation υ

para
ij /hSzij D Fi � Fk�Gi/Gk�

C �Gi/Gk�υ
para
kj /hSzij, relevant to axial systems (B2

2 D 0), has
been in common use for more than two decades,2,12 its three-
dimensional generalization for rhombic systems shown in
Eqn (15) has been reported only recently when investigating
the solution structures of the trimetallic sandwich com-
plexes [LnxLu3�x(TACI–3H�2�H2O�6]3C in water (x D 1–3,
Fig. 1(a)).11 Isostructurality could be evidenced for the mono
(x D 1) and biparamagnetic (x D 2) complexes along the com-
plete lanthanide series, while a structural change occurred
between Ln D Eu and Ln D Tb when the three metal ions
concomitantly shrinked11 in [Ln3(TACI–3H�2�H2O�6]3C.

However, the dissemination of the NMR crystal-
field-independent method for rhombic systems (Eqn 15)
in co-ordination chemistry requires that Bleaney’s high-
temperature expansion indeed holds for both axial (�ax)
and rhombic (�rh) paramagnetic anisotropies (Eqns (8–11)).
Its experimental validation for purely axial systems (�ax)
was addressed earlier with the calculation of paramagnetic
susceptibilities in ionic LnCl3 and Ln(O3SOEt�3 crystals dis-
playing D3h and C3v symmetries, respectively.14 Comparison
with predictions based on Bleaney’s approach show dis-
crepancies within 20%, which can be further reduced by
introducing the next T�3 terms as correcting factors.14 Related
tests for rhombic anisotropy (�rh) were delayed until
low-symmetry lanthanide complexes with well-established
structures in solution became available. In a seminal paper,
Bertini and co-workers took advantage of the efficient NMR
techniques developed for determining the solution struc-
ture of proteins, for exploring the paramagnetic anisotropies

Figure 1. Schematic structures of the rhombic complexes
(a) [LnLu2(TACI)2�H2O�6]3C (each metallic site is further
coordinated by two equatorial water molecules, which have
been omitted for clarity),11 (b) [Ln�Py2N6Ac4�]�6 and
(c) [Ln(L)�NO3�3] (with the numbering scheme used for 1H NMR
measurements).13

associated with the replacement of one calcium site in
calbindin D9k with a lanthanide metal ion.5 From 1097 exper-
imental pure pseudo-contact shifts, they calculated reliable
diagonal paramagnetic susceptibility tensors � j along the
complete series (Ln D Ce–Yb, except Pm, Gd) by using
Eqns (4) and (5). They demonstrated that �ax indeed
exhibited a satisfactory linear correlation with Bleaney’s
Cj factors, while �rh, although more affected by errors,
also globally followed the same trend.5 Recently, Geraldes
and co-workers concomitantly analysed the solution struc-
ture of the monometallic semi-rigid macrocyclic complexes
[Ln(Py2N6Ac4�]� by using model-free (Eqns (13–14)) and
structure-dependent (Eqns 4–5) methods (Ln D Ce–Dy
except Pm, Gd, Fig. 1(b)).6 The amazing exact linear cor-
relations (correlation factors R2 D 1, Fig. S1, Supporting
Information) between �ax, or �rh and Cj factors strongly
contrast with the average discrepancy of 10–20% expected
between experimental paramagnetic susceptibilities and pre-
dictions derived from Bleaney’s theory limited to5,14 T�2, a
trend earlier noticed by Reuben and Elgavish in their pio-
neering work dedicated to rhombic systems.15 Moreover, the
directions of the principal magnetic axes (i.e. the eigenvec-
tors) calculated for the molecular paramagnetic susceptibility
tensors in [Ln(Py2N6Ac4�]� do not pass through any symme-
try elements of the complexes,6 in contrast with Neumann’s
principle,16 which implies that one direction of the general

Copyright  2006 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2006; 44: 539–552
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quadric must be aligned with the two-fold symmetry axis in
monoclinic systems.

In this contribution, we thus aim at eventually justify-
ing the combined use of the crystal-field-dependent one-
nucleus (Eqns 12–14) and crystal-field-independent three-
nuclei (Eqns 15–18) model-free methods for unravelling
the solution structures of rhombic lanthanide complexes
in solution. For this purpose, we focus on the semi-rigid,
rhombic, nine-coordinate complex [Ln(L)(NO3�3] with C2-
symmetry, for which a single hemidendritic structure has
been firmly established in the solid state (X-ray diffraction on
monocrystals),13 in mesophases (small-angle X-ray diffrac-
tion techniques)13 and in solution (ESI-MS, high-resolution
emission spectroscopy, diffusion-NMR)13 for Ln D Eu–Lu
(Fig. 1(c)). We can therefore safely consider the molecular
structure of the rigid core obtained by X-ray techniques
as a reliable structural model for the determination of
(i) the experimental paramagnetic susceptibility tensors � j

and (ii) the directions of the principal magnetic axes. Com-
parison with symmetry predictions brought by Neumann’s
principle16 provides an acceptable test for the use of Bleaney’s
approach in rhombic complexes.

RESULTS AND DISCUSSION
Assignment of the hyperfine paramagnetic shifts
d

para
ij in the complexes [Ln.L/.NO3/3]

(Ln = Eu–Lu, Y)
The lipophilic complexes [Ln(L)�NO3�3] (Fig. 1(c)) have been
investigated in non-coordinating CD2Cl2 in order to avoid
the fixation of extra-solvent molecules in the first co-
ordination sphere in going from Ln D Lu to Ln D Eu. The
1H NMR spectra of the diamagnetic complexes [Ln(L)�NO3�3]
(Ln D Lu,Y) reflect a dynamically averaged C2v symmetry,
which implies the meridional tri-co-ordination of the pla-
nar aromatic tridentate binding unit to trivalent lanthanides,
LnIII, the metallic environment being completed by three
bidentate nitrate anions, as found in the crystal structure
of [Yb(L)(NO3�3] (Fig. 7(a)).13 Moreover, H–13 gives a sin-
gle signal in the 1H NMR spectra, which results from fast
rotation on the NMR timescale about the carbonyl bridges
connecting the orthogonal terminal gallic acid residues to the
benzimidazole rings. This mechanism provides fast exchange
between the two stable C2 and Cs isomers of the complexes
[Ln(L)�NO3�3], in which the bridging carbonyl groups con-
nected to the perpendicular gallic acids residues adopt either
parallel or antiparallel arrangements, respectively (Fig. 1(c)
for a schematic representation of the C2 isomer).17b The
six different CH aromatic signals in the resulting dynami-
cally averaged complexes with C2v symmetry can be easily
assigned to H-1, H-2, H-6, H-7, H-9 and H-13 by using
bidimensional 1H–1H-COSY and 1H–1H-NOESY correla-
tion spectra (Fig. 2(b), Table 1). The ethyl groups attached
to the benzimidazole side arms display additional A2X3

spin systems arising from enantiotopic methylene protons
related by a symmetry plane, while the terminal lipophilic
dodecyloxy chains provide intricate clumps of signals in the
1.0–4.0 ppm range (Fig. 2(b)). Except for the broadening of
the signals resulting from the coupling between the electronic
and nuclear magnetic momenta,2,18 the 1H NMR spectra

of the analogous paramagnetic complexes [Ln(L)�NO3�3]
(Ln D Eu–Yb, except Gd) exhibit similar characteristics
spread over a larger domain owing to contact (Eqn 3) and
pseudo-contact (Eqn 4) contributions (Fig. 2(a), (c)). Since our
main goal focuses on the use of a structural model for deter-
mining the paramagnetic susceptibility tensors, we consider
the 1H NMR signals of the CH aromatic protons H-1, H-2,
H-6, H-7, H-9 and H-13 because of their unambiguous loca-
tion in pseudo-C2 crystal structures or in molecular models.17

In agreement with previous observations,13 the monometal-
lic complexes [Ln(L)�NO3�3] exist as single species in solution
for the small LnIII (Ln D Tb–Lu, Y), while significant amounts
of the dimers [Ln2(L)2(NO3�6], in intermediate exchange on
the NMR timescale 2[Ln(L)(NO3�3]⇀↽[Ln2(L)2(NO3�6], can be
detected for larger metals (Ln D Pr–Eu). For Ln D Eu, the
mole fraction of the dimer accounts for ca 10%,13 which
has negligible influence on the chemical shifts of the signals
of the major species, because exchange processes occurring
between two highly unequally populated sites weakly affect
NMR spectra.19 However, for Ln D Nd (Sm is neglected for
its faint paramagnetism), the dimer/monomer ratio becomes
sizeable (>0.5) and only exchange-broadened signals can be
detected at room temperature, which prevents definitive
assignment. We have therefore limited our investigation to
Ln D Eu–Lu, for which the monomeric structure with C2v

symmetry is unique and well-defined in solution.
The assignment of the signals arising from the H-1 to

H-13 protons in the paramagnetic complexes [Ln(L)(NO3�3]
(Ln D Eu–Yb, except Gd) relies on the extra-nuclear
relaxation induced by the electronic spin of the metal. For

Table 1. Experimental (υexp
ij /ppm) and calculated (υcalc

ij /ppm)
1H NMR shifts computed with the crystal-field-dependent
one-nucleus methods (Eqn 12) for [Ln(L)(NO3�3] (CD2Cl2,
298 K)a

Compound H-1 H-2 H-6 H-7 H-9 H-13

[Lu(L)�NO3�3] υ
exp
ij 8.5 8.2 7.7 7.4 8.1 7.5

[Y(L)�NO3�3] υ
exp
ij 8.5 8.2 7.7 7.4 8.1 7.5

[Yb(L)�NO3�3] υ
exp
ij 7.8 8.5 10.5 10.3 27.3 8.5

[Yb(L)�NO3�3] υcalc
ij 9.6 9.5 10.7 10.3 27.2 8.8

[Tm(L)�NO3�3] υ
exp
ij 1.0 0.5 12.9 13.2 40.3 9.3

[Tm(L)�NO3�3] υcalc
ij 10.9 10.9 14.4 13.9 51.0 10.3

[Er(L)�NO3�3] υ
exp
ij 11.7 11.7 9.2 9.5 22.0 8.4

[Er(L)�NO3�3] υcalc
ij 9.0 7.2 8.4 9.0 18.2 8.1

[Ho(L)�NO3�3] υ
exp
ij 12.4 7.8 �5.9 �3.8 �64.0 3.1

[Ho(L)�NO3�3] υcalc
ij 3.9 �1.2 �7.0 �4.3 �69.9 2.3

[Dy(L)�NO3�3] υ
exp
ij �17.3 �21.2 �21.2 �16.9 �160.7 �4.4

[Dy(L)�NO3�3] υcalc
ij �0.3 �8.2 �20.0 �15.4 �144.2 �2.6

[Tb(L)�NO3�3] υ
exp
ij 11.1 �1.8 �17.8 �13.1 �123.0 �1.0

[Tb(L)�NO3�3] υcalc
ij 0.2 �7.8 �18.6 �14.0 �134.7 �2.0

[Eu(L)�NO3�3] υ
exp
ij 7.5 6.5 8.0 9.2 17.7 8.2

[Eu(L)�NO3�3]ž υcalc
ij

b b b b b b

a Chemical shifts calculated by using Eqns 2 and 12, with Fi and
Si collected in Table 2.
b No prediction can be made because Fi and Si for Ln D Eu are
not available (see text and Table 2).
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Figure 2. 1H NMR spectra of (a) [Yb(L)�NO3�3], (b) [Y(L)�NO3�3] and (c) [Dy(L)�NO3�3] (CD2Cl2, 298 K).

fast-relaxing paramagnetic lanthanides (Ln D Ce–Yb, except
Gd), the increase of the longitudinal nuclear relaxation
rates 1/Tpara

1i D 1/Texp
1i � 1/Tdia

1i is dominated by dipolar
electron–nucleus interactions modelled with Eqn (19).2,4,18

1
Tpara

1i

D 1
Ttransient

1i

C 1
Tstatic

1i

D 4
3

( µ0

4�

)2 �Iµ2
effˇ

2

r6
i


e C 6
5

( µ0

4�

)2 �2
I µ4

effˇ
4H2

0

r6
i �3kT�2

(

r

1 C ω2
I 


2
r

)

D Ej

(
1
r6

i

)
�19�

Since both transient and static (i.e. Curie spin) dipolar
contributions depend on r�6

i for a given complex at fixed
temperature, we expect a linear correlation between 1/Tpara

1i

and r�6
i for H-1 to H-13 in each [Ln(L)(NO3�3] complex.

Plots of 1/Tpara
1i (obtained by using Texp

1i and Tdia
1i collected in

Table S1, Supporting Information) vs r�6
i (the C2v –averaged

rYb –H�i distances are measured in the crystal structure of
[Yb(L)�NO3�3]13 and used without correction of the CH
distances for the solution structure,20 Table S2, Supporting

Information) lead to the unambiguous assignment of H-1 to
H-13 given in Table 1, since a single permutation provides
a straight line with a positive slope for each lanthanide
(Fig. 3). Again, it is worth mentioning here that the successful
use of the average distance computed for the four protons
H-13 taken in the pseudo-C2 crystal structure confirms the
exchange mechanism occurring in the NMR timescale, which
is responsible for the detection of dynamically averaged C2v

symmetry. The paramagnetic contributions υpara
ij (Table S3,

Supporting Information) are then easily obtained by using
Eqn (2) with υexp

ij taken from Table 1, and υdia
i ([Lu(L)(NO3�3])

for Ln D Er–Yb and υdia
i ([Y(L)(NO3�3]) for Ln D Eu–Ho.

Application of the model-free methods for
calculating pseudo-contact contributions d

pc
ij and

for addressing isostructurality in the rhombic
complexes [Ln.L/.NO3/3](Ln = Eu–Yb)
Plots of υpara

ij /hSzij vs Cj/hSzij (Eqn 13) or υpara
ij /Cj vs hSzij/Cj

(Eqn 14) for H-6, H-7, H-9 and H-13 show satisfactory linear
correlations for Ln D Tb–Yb, while Ln D Eu systematically
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Figure 3. Plots of 1/Tpara
1i vs r�6

i according to Eqn (19) for H-1
to H-13 in [ Ln(L)�NO3�3] (CD2Cl2, 298 K, ri is taken from the
crystal structure of [Yb(L)�NO3�3]).13

exhibits large deviations (Figs 4 and S2, Supporting Informa-
tion). This behaviour, often referred to as the gadolinium
break effect,21 can be traced back to the abrupt increase
of Bleaney’s factors Cj between the first part of the series
(Ln D Ce(4f1�–Gd(4f7), 0 < jCjj < 4.0) and the second part
(Ln D Tb(4f8)–Yb(4f13), 22<jCjj < 100).2,12c – f The associated
amplification of the pseudo-contact contribution υpc

ij (Eqn 11)
drastically sensitizes υpara

ij to minor structural changes accom-
panying the lanthanide contraction in going from Ln D Eu to
Ln D Tb, without implying significantly different structures
for these two cations (Ln D Gd is not amenable to NMR
measurements owing to its slow electronic relaxation).22

Multi-linear least-squares fits of the paramagnetic shifts υpara
ij

for Ln D Tb–Yb with Eqn (12) allow the separation of contact
(υc

ij, Eqn (3)) and pseudo-contact (υpc
ij , Eqn (11)) contributions

for H-6 to H-13 in [Ln(L)�NO3�3] (Table 2).

Table 2. Computed values for contact (Fi) and
pseudo-contact Si D B2

0Gi C p
6B2

2Hi terms and agreement
factors (AFi) for protons in the complexes [Ln(L)(NO3�3]
(Ln D Tb–Yb, CD2Cl2, 298 K)a

Protons Fi Si AFi

H-1 �0.10(33) 0.06(11) 0.87
H-2 �0.26(28) 0.09(9) 0.76
H-6 �0.34(3) 0.18(1) 0.08
H-7 �0.24(3) 0.16(1) 0.07
H-9 �1.62(32) 1.06(11) 0.11
H-13 �0.11(3) 0.07(1) 0.15

a Fi and Si are obtained by multi-linear least-squares fits of υpara
ij

vs hSzij and Cj (Eqn 12). AFi are calculated with Eqn (20).

Figure 4. Plots of (a) υpara
ij /hSzij vs Cj/hSzij (Eqn 13) and (b)

υpara
ij /Cj vs hSzij/Cj (Eqn 14) for H-7 in [Ln(L)(NO3�3] (CD2Cl2,

298 K).

The decreasing magnitude of the absolute contact
terms jFH – 9j>jFH – 6j>jFH – 7j>jFH – 13j reflects the increasing
topological separation between the incriminated proton and
the paramagnetic metal (4, 5, 6 and 9 bonds, respectively),
while the absolute magnitude of the pseudo-contact term
Si D B2

0Gi C p
6B2

2Hi is dominated by its through-space
r�3 dependence with rH – 9<rH – 6 ³ rH – 7<rH – 13 (Table S2,
Supporting Information). The chemical shifts υcalc

ij computed
with Eqns 2 and 12, and by using Fi and Si collected in
Table 2, closely match the original experimental data υ

exp
ij

(Ln D Tb–Yb, Table 1), as confirmed by the calculated
Wilcott agreement factors (Eqn 20, 0.07 < AFi < 0.15,
Table 2).23

AFi D

√√√√√√√√

∑
j

�υ
exp
ij � υcalc

ij �
2

∑
j

�υ
exp
ij �2

�20�

For the pyridine protons H-1 and H-2, the dispersion
about the best least-squares lines for plots of υpara

ij /hSzij vs
Cj/hSzij (Eqn 13) or υpara

ij /Cj vs hSzij/Cj (Eqn 14) is considerable
(Figs 5 and S2, Supporting Information) and the fitted contact
Fi and pseudo-contact Si terms are of very limited quality
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Figure 5. Plots of (a) υpara
ij /hSzij vs Cj/hSzij (Eqn 13) and (b)

υpara
ij /Cj vs hSzij/Cj (Eqn 14) for H-2 in [Ln(L)�NO3�3] (CD2Cl2,

298 K).

(0.76 < AFi < 0.87, Table 2). These observations closely par-
allel those previously reported for related pyridine protons in
the axial complexes with D3 symmetry9,24, [Ln(pyridine-2,6-
dicarboxylate)3]3 – . A detailed dynamic structural analysis
in solution has established that the bound pyridine rings
display oscillations out of the plane of the coordinating
ONO atoms (dihedral angles 30–40°), which affect the aver-
age geometrical Gi parameters.24 Moreover, the amplitude
of these flip-flop processes decreases along the lanthanide
series owing to the shrinking of the Ln–Ligand bonds.24

For the rhombic complexes [Ln(L)�NO3�3], this distortion
simultaneously alters both Gi and Hi geometrical param-
eters, and we predict that the global pseudo-contact term
Si D B2

0Gi C p
6B2

2Hi will vary along the lanthanide series
for H-1 and H-2. Consequently, υpara

ij reflects these structural
variations, which are amplified by the large Cj factors for
Ln D Tb–Yb and therefore the poor correlations observed
with Eqns 13–14 for H-1 and H-2 (Fig. 5). It is worth not-
ing that this flip-flop mechanism does not significantly
affect the position of the coordinated nitrogen atom of the
pyridine ring, as previously discussed24 for [Ln(pyridine-2,6-
dicarboxylate)3]3 – . Consequently, the crystal-field parame-
ters B2

0 and B2
2 do not vary according to the strict electrostatic

model used in the crystal-field theory.10b

Isostructurality along the lanthanide series Ln D Eu–Yb
has been eventually addressed by using the three-nuclei
crystal-field-independent methods (Eqns 15–18),11 in which
Bleaney’s Cj factors are removed. Since the structural param-
eters Cikl (Eqn 17) and Dikl (Eqn 18) correspond to compli-
cated non-linear functions of the geometrical parameters
Gi,Gk,Gl,Hi,Hk and Hl, there is no straightforward trans-
formation for deducing Cikl and Dikl with a specific ikl order,
from the five other permutations (ilk, kil, kli, lik and lki).
The analysis of 6! D 720 ordered H-i, H-k, H-l triplets
(and 720 associated planes according to Eqn (15)) is there-
fore required for testing isostructurality when using the six
available 1H NMR signals obtained for H-1, H-2, H-6, H-7,
H-9 and H-13. However, it has been previously shown25

that the structural information contained in the 20 ordered
triplets H-i, H-k, H-l with i < k < l is sufficient for reli-
ably investigating isostructurality. Three-dimensional plots
of υpara

ij /hSzij vs υ
para
kj /hSzij and υ

para
lj /hSzij for the selected

triplets H-i, H-k, H-l (Ln D Eu–Yb) show the experimental
points to be systematically arranged in a single plane, in
agreement with the existence of a unique structure with
C2v symmetry for [Ln(L)(NO3�3] in solution (Figs 6 and
S3, Supporting Information). The best least-squares planes
characterized by Bikl,Cikl and Dikl (Table S4, Supporting Infor-
mation) are obtained by minimizing the sum of the squares
of the orthogonal distances of the experimental points
aobs

j D �υ
para
ij /hSzij, υ

para
kj /hSzij, υ

para
lj /hSzij� to the plane along

the lanthanide series.11,25 The quality of the fit for a H-i, H-k,
H-l triplet along a series of n lanthanide metals (Ln D Eu–Yb,
n D 7) can be estimated with the average agreement factors
AFikl defined in Eqn (21), where jjaobs

j � acalc
j jj is the distance

separating the experimental points aobs
j for a lanthanide j from

the related calculated points acalc
j in the best plane (Table S4,

Supporting Information).25

AFikl D 1
3

√√√√√√√√

∑
j

jjaobs
j � acalc

j jj2

∑
j

jjaobs
j jj2

�21�

The small AFikl values (10�3 � AFikl � 8 ð 10�3) found
for the 16 planes that do not contain simultaneously H-1
and H-2 (planes 5–20 in Table S4, Supporting Informa-
tion) compare well with those previously reported for the
rhombic sandwich complexes [LnLu2(TACI-3H)2�H2O�6]3C

(1.1 ð 10�3 � AFikl � 6.1 ð 10�3, Fig. 1(a)),11 in agreement
with the existence of an isostructural series for [Ln(L)�NO3�3]
(Ln D Eu–Yb, Fig. 6(a),(b)). However slightly larger devia-
tions 6 ð 10�3 � AFikl � 3 ð 10�2 are detected for the four
planes obtained for the triplets H-1, H-2, H � l (l D 6, 7,
9, 13, Table S4), an observation graphically illustrated in
Fig. 6(c), in which deviations from the best least-squares
plane can be detected. However, these minor variations of
Gi and/or Hi along the Ln D Eu–Yb series remain very
limited, and we conclude that [Ln(L)�NO3�3] indeed exhibits
isostructurality for Ln D Eu–Yb despite some minor struc-
tural variations along the second part of the lanthanide
series, which can be assigned to the oscillation of the
coordinated pyridine ring, as previously established24 for
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Figure 6. 3D plots of υpara
ij /hSzij vs υpara

kj /hSzij and υpara
lj /hSzij for (a),(b) H-2, H-6, H-7, and (c),(d) H-1, H-2, H-6 in [Ln(L)�NO3�3]

(CD2Cl2, 298 K). (a),(c) Views of the best plane from profile showing the deviations of the experimental points from the best
least-squares red plane (rhombs are used to highlight planes orthogonal to the best plane). (b),(d) Views perpendicular to the best
red plane showing the location of the points within the plane (the blue lines are only guides for the eyes and rhombs are used to
highlight the best plane).

[Ln(pyridine-2,6-dicarboxylate)3]3 – . Consequently, a single
set of Gi and Hi (and obviously Si) geometrical parame-
ters for each proton H-1 to H-13 can be reasonably used
for characterising the solution structure of the complexes
[Ln(L)�NO3�3] (Ln D Eu–Yb), assuming that those obtained
for H-1 and H-2 correspond only to average values dis-
playing significant uncertainties (Table 2). The contact con-
tribution υc

ij D FihSzij (Eqn 3) can be then calculated for each
proton in [Ln(L)�NO3�3] (Ln D Tb–Yb) by using the Fi terms
collected in Table 2. The reliability of this approach is further
confirmed by the satisfactory correlations found between the
experimental Bexp

ikl parameters obtained by fitting Eqn (15) for

the 20 least-squares planes and Bcalc
ikl computed with Eqn (16)

by using the Fi terms collected in Table 2 (slope D 1.1334,
R2 D 0.9972, Fig. S4, Supporting Information). Finally, appli-
cation of Eqn (2) by using υ

para
ij (taken from Table S3) and

υc
ij D FihSzij leads to the pseudo-contact contributions υpc

ij

collected in Table 3.
For Ln D Eu, the minor change of the crystal-field param-

eters B2
0 and B2

2, responsible for its non-alignment with the
rest of the investigated series (Ln D Tb–Yb, Fig. 4), prevents
the calculation of reliable Fi by using multi-linear least-
squares techniques, and no pseudo-contact contribution can
be obtained.
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Table 3. Pseudo-contact shifts υpc
ij (ppm) for H-1, H-2, H-6,

H-7, H-9 and H-13 in [Ln(L)�NO3�3] (Ln D Tb–Yb, CD2Cl2,
298 K)

H-1 H-2 H-6 H-7 H-9 H-13

[Yb(L)�NO3�3] �0.4 0.9 3.7 3.5 23.3 1.3
[Tm(L)�NO3�3] �6.7 �5.6 8.0 7.7 45.5 2.7
[Er(L)�NO3�3] 4.7 7.4 6.8 5.7 38.8 2.7
[Ho(L)�NO3�3] 6.1 5.3 �6.0 �5.9 �35.4 �1.9
[Dy(L)�NO3�3] �23.0 �22.2 �19.3 �17.6 �122.5 �8.7
[Tb(L)�NO3�3] 5.8 �1.9 �14.8 �13.0 �79.5 �4.9

Determination of the principal magnetic axes and
of the paramagnetic susceptibility tensors for
[Ln(L)(NO3)3] (Ln = Tb–Yb) in solution
For low-molecular-weight lanthanide complexes, the num-
ber of available pure pseudo-contact shifts (i.e. paramagnetic
shifts not affected by contact contributions) is too limited to
allow the use of multi-linear least-square techniques for cal-
culating the associated paramagnetic susceptibility tensors
� j with Eqn (4). The complexes [Ln(L)�NO3�3] illustrate this
limitation well, and the pseudo-contact shifts υpc

ij collected
in Table 3 indeed result from the application of Eqns (2)
and (12), which assume that Bleaney’s approach holds. With
these data in hand, we can however determine paramagnetic
susceptibility tensors � j for each complex [Ln(L)�NO3�3]
(Ln D Tb–Yb, CD2Cl2, 298 K) by using Eqn (4) in order to
locate the principal magnetic axes obtained with this assump-
tion, and to compare them with Neumann’s prediction. An
arbitrary Cartesian molecular x, y, z frame is selected, in
which the y direction is aligned with the two-fold axis of the
complexes [Ln(L)�NO3�3] (Fig. 7(a), LnIII is located at the ori-
gin). The two other axes x and z must obey the right-handed
criterion of the vectorial product Ez D Ex ð Ey, and we choose
to fix x in the plane of the tridentate binding unit and z
perpendicular to it (Fig. 7(a)). The polar coordinates ri, �i and
�i for each proton H-1, H-2, H-6, H-7, H-9 and H-13 are then
calculated according to Fig. 7(b) by using either the crystal
structure of [Yb(L)�NO3�3] as structural model,13 or an ideal-
ized version of it, in which the aromatic planes are slightly
twisted to adopt exact C2 symmetry (model 1, Table S5 and
Fig. S5, Supporting Information). For both models, we do not
adopt the CH bond distances found in the crystal structure
for solution structures.20 Since the deviation of the crys-
tal structure of [Yb(L)�NO3�3]13 from C2 symmetry is very
limited (Fig. S5, Supporting Information), we will focus on
it for the rest of our discussions (related data for model
1 can be found in Tables S7–S9 and Figs S7–S8, Support-
ing Information). Multi-linear least-squares fits of Eqn (4) for
each lanthanide give �j

zz � �
j
0, �

j
xx � �

j
yy, �

j
xy, �

j
xz and �j

yz, from
which the six independent components �j

˛ˇ of the symmet-
ric second-rank paramagnetic tensor � j can be obtained by
considering �j

0 computed with Eqn (7) for each lanthanide
(Table 4). The determination of �j

zz is straightforward from
the first term �

j
zz � �

j
0, while the sum �

j
xx C �

j
yy D 3�j

0 � �
j
zz

can be combined with the second term �
j
xx � �

j
yy to give the

final components �j
xx and �j

yy. Although the accuracy of �j
˛ˇ

components is limited (Table 4), the recalculated pseudo-
contact shifts satisfactorily match the original experimental
data (Table S6, Supporting Information).

Diagonalization of each experimental � j tensor provides
a set of three real eigenvalues �j

U, �
j
V and �j

W corresponding
to the susceptibilities along the directions of the principal
magnetic axes U,V and W, i.e. the eigenvectors (Table 5).
The inspection of the cosine directors of the eigenvectors in
[Ln(L)�NO3�3] (Table 5) shows that the principal magnetic
axes U,V,W closely match the original x, y, z molecular
frame with U close to x,V close to y and W close to z.
An exact relationship between the molecular x, y, z frame
(Fig. 7(a)) and the principal magnetic axes U,V,W is given
by the well-known Euler angles �E, �E and  E.26 Although
these angles are widely used in paramagnetic NMR,2,6,27

their definition is not unambiguous. In this paper we

Figure 7. (a) Selected arbitrary molecular x, y, z Cartesian
frame for [Ln(L)�NO3�3] (CD2Cl2, 298 K), and (b) related polar
coordinates calculated for the protons H-1 to H-13 in
[Ln(L)�NO3�3].
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Table 4. Components of the paramagnetic susceptibility tensor �j (cm3 mole�1) obtained with Eqn (4) by using the crystal structure
of [Yb(L)�NO3�3] as model (Cartesian x, y, z molecular frame in Fig. 7(a), CD2Cl2, 298 K)

Ln Tb Dy Ho Er Tm Yb

103 ð �0
a 39.6539 47.5568 47.2071 38.5210 23.9882 8.6322

103 ð �zz –�0 2.55(15) 6.33(33) 0.57(8) 1.93(6) 0.91(9) 0.75(5)
103 ð �xx –�yy �3.47(20) �1.32(45) �2.19(11) 0.62(8) 2.69(13) 0.83(7)
103 ð �xy 0.02(10) 0.09(21) �0.01(5) �0.02(4) 0.00(6) �0.01(3)
103 ð �xz 1.03(29) 2.02(63) 0.29(15) �0.61(11) �0.50(19) �0.23(9)
103 ð �yz 0.17(41) 0.41(91) 0.04(22) �0.12(15) �0.07(27) �0.05(13)

a Calculated with Eqn (7).

follow the criteria proposed by Goldstein,26 in which the
molecular Cartesian x, y, z frame is transformed into that
of the principal magnetic axes U,V,W according to three
successive rotations: (i) a precession �E about the z axis,
(ii) a nutation �E about the line of nodes and (iii) a rotation
 E about the W axis (Fig. S6, Supporting Information). The
associated total transposed rotation matrix can be compared
with that of the normalized eigenvectors (Eqn (22)), thus
leading to �E D arctan(–Wx/Wy), �E D arccos (Wz) and
 E D arctan (Uz/Vz) (Table 5).26


 Ux Vx Wx

Uy Vy Wy

Uz Vz Wz


 D Transpose�RotW� E� Ð Nutn��E� Ð Precz��E�� D


 cos� E� cos��E�� sin� E� cos��E� sin��E� � sin� E� cos��E�� cos� E� cos��E� sin��E� sin��E� sin��E�

cos� E� sin��E�C sin� E� cos��E� cos��E� � sin� E� sin��E�C cos� E� cos��E� cos��E� � sin��E� cos��E�
sin� E� sin��E� cos� E� sin��E� cos��E�


 �22�

The small nutation angles (9 � �E � 27°, Table 5),
combined with the almost opposite �E ³ –  E angles

Table 5. Eigenvalues �j
U, �

j
V and �j

W (cm3 mole�1), cosine
directors of the normalized eigenvectors U,V,W along the
directions of the original x, y, z Cartesian frame and Euler
angles �E, �E and  E(°) transforming the x, y, z Cartesian frame
into U,V,W in [Ln(L)�NO3�3] (the crystal structure of
[Yb(L)�NO3�3] is used as model, CD2Cl2, 298 K)

Ln Tb Dy Ho Er Tm Yb

103 ð �U 36.456 43.343 45.783 39.909 25.880 9.458
103 ð �V 40.104 45.034 48.027 39.177 23.129 8.597
103 ð �W 42.402 54.293 47.811 36.477 22.956 7.842

Ux 0.9844 0.9821 0.9893 0.9834 0.9847 0.9899
Uy 0.0038 �0.0041 0.0049 �0.0020 0.0050 0.0016
Uz �0.1759 �0.1886 �0.1459 �0.1813 �0.1740 �0.1414
Vx �0.0166 �0.0045 0.0250 �0.0064 �0.0777 �0.0112
Vy 0.9973 0.9990 0.9790 0.9989 0.9070 0.9977
Vz �0.0716 �0.0450 0.2024 �0.0457 �0.4138 �0.0669
Wx 0.1752 0.1885 0.1439 0.1812 0.1557 0.1410
Wy 0.0734 0.0450 �0.2039 0.0461 0.4210 0.0678
Wz 0.9818 0.9810 0.9684 0.9824 0.8936 0.9877

�E 112.73 103.43 35.21 104.27 159.70 115.68
�E 10.95 11.18 14.45 10.78 26.67 9.00
 E �112.14 �103.42 �35.79 �104.14 �157.20 �115.31

(Table 5) indicate that the original arbitrary x, y, z molecular
frame is very close to that of the principal magnetic axes
U,V,W (Fig. 8(a)), in complete agreement with Neumann’s
principle,16 which requires that one principal magnetic
axis (V) coincides with the two-fold symmetry axis y of
the molecule (Fig. 7(a)). This systematic alignment of one
principal magnetic axis of the paramagnetic susceptibility
tensors, calculated with the pseudo-contact shifts of Table 3,
with the two-fold symmetry axis of the [Ln(L)�NO3�3]
complexes is a strong support for the satisfactory modelling

of rhombic paramagnetic susceptibility by using Bleaney’s
approach. The only minor deviations of V from the pseudo-
C2 axis (y axis, maximum deviation for Ln D Tm, Fig. 8(b))
can be assigned to (i) the lack of crystallographic two-fold
axis in the crystal structure of [Yb(L)�NO3�3] and (ii) the
errors affecting the pseudo-contact contributions, which
consequently, limit the accuracy of the components of the
tensor � j (Table 4).

Among the three usual graphical representations of
second-rank tensors (quadric representations, magnitude
ellipsoids and indicatrices),28 we decided to use a magnitude
ellipsoid defined by �U/�j

U�
2 C �V/�j

V�
2 C �W/�

j
W�

2 D 1 for
each calculated diagonal paramagnetic susceptibility tensors
� j.16a Its surface corresponds to the magnitude of the
magnetization M along this direction produced by a unit
magnetic field (H0 D 1), which is a useful guideline for
chemists because the norm of M along the U,V and W axes
exactly corresponds to�j

U, �
j
V and�j

W , respectively (Fig. 8(b)).
Comparisons between the magnetic anisotropies �j

ax

and �
j
rh, and Bleaney’s factors Cj along the series

Ln D Tb – Yb require the eventual assignment of the princi-
pal magnetic axes U,V,W to the molecular crystal-field axes
XCF,YCF,ZCF (pertinent to B2

0 and B2
2). Although there is no

special criteria for performing this assignment according to
the magnetic theory, the common use in crystal-field theory
requires a specific choice compatible with 0 < B2

2 < jB2
0j.10,29

This implies some permutations in the attribution of the
magnetic axis along the Ln D Tb – Yb series because the sign
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Figure 8. (a) 3D representation of the magnitude ellipsoids of
�Dy in the principal magnetic axes system U,V,W highlighting
the Euler angles �E, �E and  E connecting the latter frame with
the original molecular x, y, z Cartesian frame (n: line of nodes).
(b) Magnitude ellipsoids for the paramagnetic susceptibility
tensors � j in the principal magnetic axes system U,V,W for
[Ln(L)�NO3�3] by using a common scaling factor (Ln D Tb–Yb,
CD2Cl2, 298 K, crystal structure of [Yb(L)�NO3�3] used as
model).

of Cj inverts between Tb, Dy, Ho (Cj < 0) and Er, Tm, Yb
(Cj > 0, Eqns (8)–(10)).7 Bertini and co-workers already con-
sidered this problem and they arbitrarily assumed a unique
constant value for B2

0 < 0, and thus assigned the ZCF direc-
tion of the crystal-field frame to the principal magnetic axis
for which �

j
ax D �

j
ZCF

� �
j
0 > 0 for Ln D Tb, Dy, Ho and

�
j
ax D �

j
ZCF

� �
j
0 < 0 for Ln D Er, Tm, Yb.5 Following the

same criteria, a careful comparison of the eigenvalues �j
U, �

j
V

and �j
W collected in Table 5 with �j

0 (Table 4) shows that ZCF

can be assigned to the W principal magnetic axis. According
to this original choice, U can be assigned to XCF and V to YCF

for providing a right-handed Cartesian frame XCF,YCF,ZCF.
The resulting computed axial �j

ax D �
j
ZCF

� �
j
0 D �

j
W � �

j
0

and rhombic �j
rh D �

j
XCF

� �
j
YCF

D �
j
U � �

j
V paramagnetic

anisotropies are summarized in Table 6 and their correlations
with Bleaney’s factors depicted in Fig. 9.

As expected from previous discussions analysing high-
temperature Bleaney’s approximation,8,14 the correlations
�

j
ax vs Cj and �

j
rh vs Cj are not perfect and we

indeed observe significant deviations from the linear pre-
dictions �j

ax D �
j
W � �

j
0 D 2NAB2

0Cj and �j
rh D �

j
U � �

j
V D

2
p

6NAB2
2Cj derived with Eqns (8)–(10). However, the cor-

relation coefficients remain satisfactory (Fig. 9), which con-
firms that Bleaney’s approach is a valuable approximation
for the investigation of solution structures by using the
model-free methods. The ratio of the slopes corresponds to
slopeax/sloperh D B2

0/
p

6B2
2 D �1.37, which translates into

Figure 9. Correlations between Bleaney’s factors Cj and
(a) axial �j

ax D �j
ZCF

� �j
0 D �j

W � �j
0 and (b) rhombic

�j
rh D �j

XCF
� �j

YCF
D �j

U � �j
V paramagnetic anisotropies

observed in [Ln(L)�NO3�3] (Ln D Tb–Yb, CD2Cl2, 298 K, crystal
structure of [Yb(L)�NO3�3] used as model).
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Table 6. Axial �j
ax D �j

ZCF
� �j

0 D �j
W � �j

0 and rhombic

�j
ax D �j

XCF
� �j

YCF
D �j

U � �j
V paramagnetic anisotropies

(cm3 mole�1) obtained for [Ln(L)�NO3�3] (the crystal structure
of [Yb(L)�NO3�3] is used as model, CD2Cl2, 298 K), and
Bleaney’s CJ factors (scaled to CDy D �100)a

Ln Tb Dy Ho Er Tm Yb

103 ð�ax 2.75 6.74 0.60 �2.04 �1.03 �0.79
103 ð�rh �3.65 �1.69 �2.24 0.73 2.75 0.86
Cj

7 �86 �100 �39 33 53 22

a The typical relative errors on�j
ax and�j

rh are within 5–10%.

an average ratio B2
2/B

2
0 D �0.29. Indeed ZCF � W coincides

with the largest paramagnetic susceptibility component for
Ln D Tb, Dy and Ho, and with the smallest component for
Ln D Er, Tm, Yb (Table 5). There is however, no obvious jus-
tification for our arbitrary assignment of ZCF to W, and the
two other possibilities (ZCF � V and ZCF � U) can be consid-
ered. Satisfying linear �j

ax vs Cj and �j
rh vs Cj correlations

are systematically observed (except for �j
ax vs Cj when

ZCF � U, Figs S9 and S10, Supporting Information), and the
best linear dependences are found with ZCF along V for axial
anisotropy (R2 D 0.9947), and with ZCF along U for rhombic
anisotropy (R2 D 0.943, Table 7). Interestingly, the quality of
the axial correlation (i.e. �j

ax vs Cj) systematically increases
with the absolute sum of the axial geometrical parameters∑

i jGij, while the same trend is observed for �j
rh vs Cj with

the absolute sum of the rhombic
∑

i jHij parameters, calcu-
lated for the three possible assignments of the crystal-field
axes (Table 7). This observation relies on the straightforward
rules that protons for which Gi ³ 0 (�i is close to the magic
angle 54.7 ° and/or ri is very large) do not significantly
contribute to the experimental determination of �j

ax, while
those for which Hi ³ 0 (�i is close to zero and/or �i is close
to 45° C k180° and/or ri is very large) do not contribute to
�

j
rh. The low correlation coefficient found for �j

ax vs Cj

when ZCF � U thus originates from the small value of
∑

i jGij
(Table 7), which provides an anomalous negative paramag-
netic axial anisotropy for Ln D Dy, while those of Ln D Tb
and Ho are positive (Fig. S10(a), Supporting Information).

In principle, specific choices for the magnetic axes
could be made in order to have the ZCF axis always
in the direction of the largest magnetic susceptibility
component for all lanthanide ions. However, such an

approach would have made comparisons with Bleaney’s Cj

along a series of lanthanides physically meaningless, and it is
not further considered in this context.5 Finally, an estimation
of the uncertainties affecting the eigenvalues �j

U, �
j
V and

�
j
W, which result from the limited accuracy of the non-

diagonal tensor � j obtained with Eqn (4) (Table 4), shows
that the paramagnetic susceptibilities �

j
U, �

j
V and �

j
W are

known within 2% for [Ln(L)(NO3)3] (Table S10, Supporting
Information). This translates into a maximum of 5–10%
errors affecting the differences calculated for �j

ax and �j
rh

(Table 6). In these conditions, the correlations �j
ax vs Cj

and �j
rh vs Cj obtained by using either the crystal structure

of [Yb(L)�NO3�3] (Fig. 9) or the idealized complex of C2

symmetry (Fig. S8, Supporting Information) as models are
identical within experimental errors.

CONCLUSION

Our analysis of the directions of the principal magnetic
axes and of the associated diagonal molecular paramagnetic
susceptibility tensors for the semi-rigid [Ln(L)�NO3�3] com-
plexes (Ln D Tb � Yb) in solution experimentally confirms
that Bleaney’s approach, which simultaneously models�j

ax

and �
j
rh at room temperature with a power series in the

inverse of temperature T�n limited to n D 2, is acceptable
for predicting pseudo-contact shifts in simple co-ordination
complexes possessing polarizable O- and N-donor atoms.
This observation extends the previous seminal results of
Bertini and coworkers,5 who reached the same conclusion
when analysing large amounts of pure pseudo-contact shifts
in a paramagnetic protein in which the paramagnetic lan-
thanides are ligated by less polarizable carboxylate and
carbonyl groups.30 For small co-ordination complexes, pure
pseudo-contact contributions are rarely detected and the con-
tact contribution must be estimated prior to determining the
paramagnetic susceptibility tensor. Kemple et al. originally
proposed to introduce the necessary contact shifts υc

ij as extra-
fitted parameters, a method that becomes rapidly unrealistic
for small complexes, in which the amount of available NMR-
active nuclei is very limited.4a The alternative strategy, based
on the use of the Bleaney-based crystal-field-dependent one-
nucleus method (Eqn (12)) for obtaining υc

ij,
6,27 finds here

a strong support with the experimental determination of
magnetic axes in [Ln(L)�NO3�3] at room temperature, which
matches symmetry requirements. Consequently, the simple
model-free methods (crystal-field-dependent Eqns (13)–(14)

Table 7. Correlation coefficients (R2) for the linear dependences of axial �ax vs Cj and rhombic �rh vs Cj, and absolute sums of
the geometrical factors

∑
i jGij and

∑
i jHij for the three possible assignments of ZCF to one of the principal magnetic axes U,V and

W in [Ln(L)�NO3�3] (the crystal structure of [Yb(L)�NO3�3] is used as model, CD2Cl2, 298 K)

Orientation Correlations R2 ∑
i jGij

∑
i jHij

ZCF � W �ax D �W � �0 D f �Cj� 0.8173 7.36E-02 –
ZCF � V �ax D �V � �0 D f �Cj� 0.9947 9.51E-02 –
ZCF � U �ax D �U � �0 D f �Cj� 0.0965 5.55E-02 –
ZCF � W �rh D �U � �V D f �Cj� 0.8146 – 4.87E-02
ZCF � V �rh D �W � �U D f �Cj� 0.6227 – 2.49E-02
ZCF � U �rh D �V � �W D f �Cj� 0.9243 – 5.00E-02
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and crystal-field-independent Eqns (15)–(18)) can be safely
used for testing isostructurality in rhombic systems, as is usu-
ally done for axial systems. However, two limitations should
be carefully considered when using model-free methods
prior to determining pseudo-contact shifts and paramag-
netic susceptibility tensors. Firstly, the contact contributions
υc

ij D FihSzij are obtained with Eqn (12) thanks to multi-linear
least-squares fits, which are only available when at least
three lanthanides belong to an isostructural series (in which
B2

0 and B2
2 do not vary significantly). For [Ln(L)�NO3�3], the

Ln D Tb–Yb series matched the above criterion, but we
were unable to obtain reliable pseudo-contact shifts for the
europium complex [Eu(L)�NO3�3] because it does not belong
to the same series (Fig. 4). Secondly, the quality and accuracy
of the calculated paramagnetic anisotropies �j

ax and �
j
rh

depend on the location of the magnetically active nuclei with
respect to the directions of the principal magnetic axes. The
best results are obtained when the absolute sums

∑
i jGij and∑

i jHij are a maximum.

EXPERIMENTAL

Spectroscopic measurements
Samples for NMR spectroscopy were prepared by dis-
solving the complexes [Ln(L)�NO3�3] (Ln D Eu–Lu, Y,
10�2 mole dm�3� in deuterated dichloromethane at 298 K.13

1H NMR spectra were recorded on an AVANCE 400 Bruker
spectrometer. The residual signal of CDHCl2 was used as an
internal reference, and chemical shifts are given in ppm vs
TMS. The determination of longitudinal relaxation times (T1)
used the inversion–recovery technique.

Calculations and computational details
Multi-linear least-squares fits were performed with Microsoft
EXCEL software. The best least-squares planes according
to the three-nuclei method (Eqn (15)) were obtained by
minimizing M, where M is the sum along the lanthanide
series (Ln D Eu–Yb) of the square of the orthogonal distances
to the plane.31 As a plane is defined by its distance to the
origin and by its unit normal, En, we add to M the condition:
ϕ D �En Ð En�� 1 D 0 multiplied by a so-called Lagrangian
multiplier �.32 After equating all the partial derivatives with
respect to nx,ny, nz and � to zero, a system of equations is
found that can be solved by using a software for symbolic
computation,33 thus leading to the best least-squares plane.
Diagonalization of the paramagnetic susceptibility tensor
as well as Euler angle computations and 3D graphical
representations (best planes and magnitude ellipsoids) were
performed with Maple8 software.33

Supplementary material
Supplementary electronic material for this paper is available
in Wiley InterScience at: http://www.interscience.wiley.
com/jpages/0749-1581/suppmat/
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SYNOPSIS

The determination of the molecular paramagnetic suscepti-
bility tensors associated with the semi-rigid rhombic com-
plexes [Ln(L)�NO3�3] (Ln D Tb–Yb) in solution demonstrates
that both axial and rhombic paramagnetic anisotropies
can be satisfyingly modelled with simple Bleaney’s high-
temperature approximation. Chemists are thus welcome
to safely use NMR model-free methods for investigating
the solution structure of any lanthanide-containing co-
ordination and supramolecular complexes.
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