

Ash Dispersal Forecast and Civil Aviation Workshop Geneva, Switzerland, 18-20 November 2013 **Data Acquisition Document**

Introduction

The definition of the source term (mainly plume height, erupted mass, particle size distribution) required by VATDM relies on remote sensing and ground-based observations. All data acquisition techniques have advantages and limitations. Optimized strategies for ash-dispersal forecasting should involve integrated data acquisition resulting from the combination of different techniques that could cover a wide spectrum of conditions. As part of the Ash dispersal forecast and civil aviation workshop this document has been compiled that summarizes the main characteristics of selected available techniques in order to facilitate such integration (appendices 1 to ??).

Appendix 1: **AVHRR**

Appendix 2: **GOES-11 Imagery**

Appendix 3: Grimm EDM 107

Grimm Sky OPC Appendix 4:

Appendix 5: Weather-Radar (C band and X band)

Appendix 6: Infrasonic Array

Appendix 7: IR-SO2

Appendix 8: LIDAR

Appendix 9: MISR

Appendix 10: MODIS

Appendix 11: MTSAT

Appendix 12: OMI

Appendix 13: **PLUDIX**

Appendix 14: SEVIRI

Appendix 15: Thermal Camera

Appendix 16: **UV** Camera

Appendix 17: **VOLDORAD**

Instrument Name	AVHRR			
Spectral range	0.65, 3.75, 11, and 12 μm channels are needed by ash detection algorithm; 11, and 12 μm channels are needed by retrieval algorithm. Wen and Rose (1994) method can use just the 11 and 12 μm channels for ash detection and to retrieve volcanic ash mass and effective particle size. Method known since Prata (1989 a, b) and used for ash detection at AVO (Webley et al, 2009). Prata and Grant (2001) provide a good detailed description of how to obtain the cloud retrievals from AVHRR data.			
Record frequency	Twice per day per satellite			
Parameter(s) detected	Automated ash detection, ash cloud h	_		
(e.g., particle/gas	(temperature and pressure), ash mas		_	
concentration, mass, temperature)	(mass/area), ash effective radius, and depth (wavelength dependent)	d ash o	ptical	
Scale of acquisition			Tick	
Scare of acquisition	Proximal (order of a few km)		X	
	Medial (order of 100s of km)		X	
	Distal (order of 1000s of km)		X	
	Other			
YES		NO		
Is it operational for data acquisition at some Institution/VAAC/VO? X		X		
	v all VAACs. Alaska Volcano Observatory has been using			
the 11 and	e 11 and 12 μm channels for ash detection for 15 years			
(Webley e	et al, 2009)			

2. Technical requirements

	YES	NO	Comments
Is it ground based?		X	
Is it satellite based?	X		LEO
Does it require dedicated instrumentation?	X		Data can be acquired through ground receiving stations
Does it require additional technologies for data acquisition/retrieval (e.g., atmospheric data)	X		The retrieval technique requires global NWP data (GFS), global snow maps (IMS), global SST data (OISST). With the Wen and Rose (1994) method, then only channels at 11 and 12 µm (AVHRR channels 4 and 5) are needed

Can data be easily	X	
automatically transferred?		
(e.g., wire, radio, GSM		
telemetry)		

		YES	NO
Can raw data be used with no additional processing?			X
If we are least a second at a the fellowing			
If yes, please complete the following:	0 .		
	Comments	_	
Assumptions required for data	Satellite must be in range of g	ground	
acquisition (e.g., geometry of observations)	receiving station		
Delivery time (e.g., real-time, days,	Near real-time		
weeks, months)			
Uncertainties	Depend on uncertainty in clea	ar sky	
	radiances, calibration, pixel		
	heterogeneity, microphysical	mode	l
	(composition - index of refrac	ction,	
	particle habit, particle distrib	ution	type,
	etc).		
Type of output	Quantitative ash cloud prope	rties ir	ı
	HDF4 format. Can be readily	availal	ole as
	jpeg/png or KML/KMZ, as use	ed by A	AVO.

If additional data processing is necessary, please complete the following:		
	Comments	
Algorithm required for data		
processing (e.g., complex refractive		
index data)		
Assumptions required for data		
processing (e.g., complex refractive		
index data)		
Delivery time of additional		
processing (e.g., real-time, days,		
weeks, months)		
Software requirements		
Uncertainties		
Type of output		

		YES	NO
Is data freely available?		X	
If yes, please specify where it can be	Via direct broadcast (real-tim	e) or	
downloaded:	NOAA (not real-time)		

	Comments
Detection limits	> 0.5 tons/km^2
Saturation	~100 tons/km^2
Particle size	Effective radius sensitivity: 0.5 – 15.0 μm
Weather conditions	Ash layer must be colder than surface
Are there other detection	Ash must be highest cloud layer
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	Cloud layer integrated properties of highest
(i.e., 1D, 2D, 3D)	ash cloud layer
Units	Mass loading (tons/km^2), Ash Height (km),
	Ash effective radius (µm)
Other	

5. Other

References

Pavolonis, M. J., 2010: Advances in extracting cloud composition information from spaceborne infrared radiances: A robust alternative to brightness temperatures Part I: Theory, *J. Applied Meteorol. And Climatology*, **49(9)**, 1992-2012.

Pavolonis, M. J. and J. Sieglaff, 2010: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Volcanic Ash: Detection and Height, Version 2.0., 72 pp.

Pavolonis, Michael J.; Feltz, Wayne F.; Heidinger, Andrew K. and Gallina, Gregory M. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. Journal of Atmospheric and Oceanic Technology, Volume 23, Issue 11, 2006, pp.1422-1444.

Prata, A. J., 1989a. Infrared radiative transfer calculations for volcanic ash clouds, *Geophysical Research Letters*, **16**, 1293-1296.

Prata, A. J., 1989b. Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data, *International Journal of Remote Sensing*, **10**, 751-761.

Prata, A. J., and Grant, I. F., 2001. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt. Ruapehu, New Zealand, *Q. J. R. Meteorol.*, 127.

Heidinger, A. K. and M. J. Pavolonis, 2009: Nearly 30 years of gazing at cirrus

clouds through a split-window. Part I: Methodology. *J.Appl.Meteorol. and Climatology*, **48(6)**, 110-1116.

Heidinger, A.K., M.J. Pavolonis, R. E. Holz, B. A. Baum, and S. Berthier, 2010: A comparison of the sensitivity to cloud pressure offered by the NPOESS/VIRRS and GOES-R/ABI Infrared observations for cirrus cloud remote sensing, *J. Geophys. Research*, **115**, Doi:10.1029/2009JD012152.

Webley, P.W., Dehn, J., Lovick, J., Dean, K.G., Bailey, J.E. and Valcic, L., 2009. Near Real Time Volcanic Ash Cloud Detection: Experiences from the Alaska Volcano Observatory. *Journal of Vol. and Geo. Research: SI on Volcanic Ash Clouds, eds. Larry Mastin and Peter Webley,* **186** (1 – 2), 79 - 90. doi:10.1016/j.jvolgeores.2009.02.010

Wen, S and Rose, W. I., 1994, Retrieval of Particle sizes and masses in volcanic clouds using AVHRR bands 4 and 5, *Journal of Geophysical Research*, **99**, 5421-5431.

Other comments				
	_	_	_	

Instrument Name	GOES-11 Imager			
Spectral range	0.65, 3.9, 6.7, 11, and 12 µm channels by ash detection algorithm; 11 and 12 channels are needed by retrieval algo and Rose (1994) method can use just 12 µm channels for ash detection and volcanic ash mass and effective partic Method known since Prata (1989 a, b for ash detection at AVO (Webley et a	2 μm rithm the 12 to ret cle size) and	. Wen 1 and crieve e. used	
Record frequency	Varies depending on location from ev minutes to 3 hours		,	
Parameter(s) detected (e.g., particle/gas concentration, mass, temperature)	Automated ash detection, ash cloud he (temperature and pressure), ash mas (mass/area), ash effective radius, and depth (wavelength dependent)	s load	_	
Scale of acquisition			Tick	
•	Proximal (order of a few km)		X	
	Medial (order of 100s of km)		X	
	Distal (order of 1000s of km) X			
Other				
YES NO				
Is it operational for data acquis	Is it operational for data acquisition at some Institution/VAAC/VO? X			
If yes, where? Washington and Anchorage VAACs (maybe Darwin as well)				

2. Technical requirements

	YES	NO	Comments
Is it ground based?		X	
Is it satellite based?	X		GEO
Does it require dedicated instrumentation?	X		Data can be acquired through GVAR
Does it require additional technologies for data acquisition/retrieval (e.g., atmospheric data)	X		The retrieval technique requires global NWP data (GFS), global snow maps (IMS), global SST data (OISST). With the Wen and Rose (1994) method, then only channels at 11 and 12 µm (GOES channels 4 and 5) are needed.
Can data be easily automatically transferred? (e.g., wire, radio, GSM)	X		

		YES	NO
Can raw data be used with no additional processing?			X
If yes, please complete the following:			
	Comments		
Assumptions required for data	GVAR access		
acquisition (e.g., geometry of observations)			
Delivery time (e.g., real-time, days, weeks, months)	Real-time		
Uncertainties	Depend on uncertainty in clea	ar sky	
	radiances, calibration, pixel		
	heterogeneity, microphysical	mode	l
	(composition - index of refrac	ction,	
	particle habit, particle distrib	ution	type,
	etc)		
Type of output	Quantitative ash cloud prope	rties ir	ı
	HDF4 format. Can be readily	availal	ole as
	jpeg/png or KML/KMZ, as us	ed by A	AVO.

If additional data processing is necessary, please complete the following:		
	Comments	
Algorithm required for data		
processing (e.g., complex refractive		
index data)		
Assumptions required for data		
processing (e.g., complex refractive		
index data)		
Delivery time of additional		
processing (e.g., real-time, days,		
weeks, months)		
Software requirements		
Uncertainties		
Type of output		

		YES	NO
Is data freely available?		X	
If yes, please specify where it can be downloaded:	Via GVAR in real-time		

	Comments
Detection limits	> 0.5 tons/km^2
Saturation	~100 tons/km^2
Particle size	Effective radius sensitivity: 0.5 – 15.0 μm
Weather conditions	Ash layer must be colder than surface
Are there other detection	Ash must be highest cloud layer
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	Cloud layer integrated properties of highest
(i.e., 1D, 2D, 3D)	ash cloud layer
Units	Mass loading (tons/km^2), Ash Height (km),
	Ash effective radius (µm)
Other	

5. Other

References

Pavolonis, M. J., 2010: Advances in extracting cloud composition information from spaceborne infrared radiances: A robust alternative to brightness temperatures Part I: Theory, *J. Applied Meteorol. And Climatology*, **49(9)**, 1992-2012.

Pavolonis, M. J. and J. Sieglaff, 2010: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Volcanic Ash: Detection and Height, Version 2.0., 72 pp.

Pavolonis, Michael J.; Feltz, Wayne F.; Heidinger, Andrew K. and Gallina, Gregory M. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. Journal of Atmospheric and Oceanic Technology, Volume 23, Issue 11, 2006, pp.1422-1444.

Prata, A. J., 1989a. Infrared radiative transfer calculations for volcanic ash clouds, *Geophysical Research Letters*, **16**, 1293-1296.

Prata, A. J., 1989b. Observations of volcanic ash clouds in the 10-12 μ m window using AVHRR/2 data, *International Journal of Remote Sensing*, **10**, 751-761.

Prata, A. J., and Grant, I. F., 2001. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt. Ruapehu, New Zealand, *Q. J. R. Meteorol.*, 127.

Heidinger, A. K. and M. J. Pavolonis, 2009: Nearly 30 years of gazing at cirrus clouds through a split-window. Part I: Methodology. *J.Appl.Meteorol. and Climatology*, **48(6)**, 110-1116.

Heidinger, A.K., M.J. Pavolonis, R. E. Holz, B. A. Baum, and S. Berthier, 2010: A

comparison of the sensitivity to cloud pressure offered by the NPOESS/VIRRS and GOES-R/ABI Infrared observations for cirrus cloud remote sensing, *J. Geophys. Research*, **115**, Doi:10.1029/2009JD012152.

Webley, P.W., Dehn, J., Lovick, J., Dean, K.G., Bailey, J.E. and Valcic, L., 2009. Near Real Time Volcanic Ash Cloud Detection: Experiences from the Alaska Volcano Observatory. *Journal of Vol. and Geo. Research: SI on Volcanic Ash Clouds, eds. Larry Mastin and Peter Webley,* **186** (1 – 2), 79 - 90. doi:10.1016/j.jvolgeores.2009.02.010

Wen, S and Rose, W. I., 1994, Retrieval of Particle sizes and masses in volcanic clouds using AVHRR bands 4 and 5, *Journal of Geophysical Research*, **99**, 5421-5431.

Other comments			

Instrument Name	Grimm EDM 107		
Spectral range	Laser wavelength 660 nm		
	9		
Record frequency	Max. 10 samples per minute		
Parameter(s) detected	Particle mass per volume		
(e.g., particle/gas	Number of particles per volume		
concentration, mass,	• •		
temperature)			
Scale of acquisition			Tick
scale of acquisition			TICK
	Proximal (order of a few km)		
	Medial (order of 100s of km)		
	Distal (order of 1000s of km)		
	Other		X
		YES	NO
Is it operational for data acqui	sition at some Institution/VAAC/VO?	X	
If yes, where? on request			

2. Technical requirements

	YES	NO	Comments
Is it ground based?	X		Can be used groundbased and
			airborne
Is it satellite based?		X	
Does it require dedicated		X	
instrumentation?			
Does it require additional		X	
technologies for data			
acquisition/retrieval (e.g.,			
atmospheric data)			
Can data be easily			It could be upgraded to automatical
automatically transferred?			transfer
(e.g., wire, radio, GSM			
telemetry)			

		YES	NO
Can raw data be used with no additional processing?			
If yes, please complete the following:			
	Comments		
Assumptions required for data			
acquisition (e.g., geometry of			
observations)			
Delivery time (e.g., real-time, days,			
weeks, months)			
Uncertainties			
Type of output			

If additional data processing is necessary, please complete the following:				
	Comments			
Algorithm required for data	refractive index, ash particles density			
processing (e.g., complex refractive				
index data)				
Assumptions required for data	refractive index, ash particles density			
processing (e.g., complex refractive				
index data)				
Delivery time of additional	Near real time possible			
processing (e.g., real-time, days,				
weeks, months)				
Software requirements				
Uncertainties				
Type of output				

	YES	NO
Is data freely available?		
If yes, please specify where it can be		
downloaded:		

	Comments
Detection limits	Number: 1 particle/liter; mass: 0.1 μg/m ³ ;
Saturation	Number: 2,000,000 particle/liter
	Mass: PM10: $10,000 \mu g/m^3$;
	PM2.5: 6,500 μg/m ³ PM1: 1,500 μg/m ³
Particle size	0.25 to 32 μm, bigger particle size with
	appropriate sampling inlet
Weather conditions	0 to 40 °C; RH< 95%
Are there other detection	No
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	1D
(i.e., 1D, 2D, 3D)	
Units	Number of particles; μg/m ³
Other	

5. Other

References

- [1] Weber K., Weber S., and Kuttler W., "Flow characteristics and particle mass and number concentration variability within a bus urban street canyon" Atmospheric Environment, vol. 40, pp. 7565-7578, July 2006.
- [2] Weber K., Weber S., and Kuttler W., "Coupling of urban street canyon and backyard particle concentrations" Metrologische Zeitschrift, vo3, no. 17, pp. 251-261, June 2008.

Other comments			

Instrument Name	Grimm Sky OPC		
Spectral range	Laser wavelength 660 nm		
Record frequency	Max. 10 samples per minute		
Parameter(s) detected	Particle mass per volume		
(e.g., particle/gas concentration, mass,	Number of particles per volume		
temperature)			
Scale of acquisition			Tick
_	Proximal (order of a few km)		
	Medial (order of 100s of km)		
	Distal (order of 1000s of km)		
	Other		X
		YES	NO
Is it operational for data acqui	sition at some Institution/VAAC/VO?	X	
If yes, where? on request			

2. Technical requirements

	YES	NO	Comments
Is it ground based?			Can be used groundbased and
			airborne (pressure correction),
			especially designed for aircraft
			measurements
Is it satellite based?		X	
Does it require dedicated		X	
instrumentation?			
Does it require additional		X	
technologies for data			
acquisition/retrieval (e.g.,			
atmospheric data)			
Can data be easily			It could be upgraded to automatical
automatically transferred?			transfer
(e.g., wire, radio, GSM			
telemetry)			

		YES	NO
Can raw data be used with no additiona	al processing?	X	
If yes, please complete the following:			
	Comments		
Assumptions required for data			
acquisition (e.g., geometry of			
observations)			
Delivery time (e.g., real-time, days,			
weeks, months)			
Uncertainties			
Type of output			

If additional data processing is necessary, please complete the following:	
	Comments
Algorithm required for data	refractive index, ash particles density
processing (e.g., complex refractive	
index data)	
Assumptions required for data	refractive index, ash particles density
processing (e.g., complex refractive	
index data)	
Delivery time of additional	Near real time possible
processing (e.g., real-time, days,	
weeks, months)	
Software requirements	
Uncertainties	
Type of output	

	YES	NO
Is data freely available?		
If yes, please specify where it can be		
downloaded:		

	Comments
Detection limits	Number: 1 particle/liter; mass: 0.1 μg/m ³ ;
Saturation	Number: 2,000,000 particle/liter
	Mass: PM10: $10,000 \mu g/m^3$;
	PM2.5: 6,500 μg/m ³ PM1: 1,500 μg/m ³
Particle size	0.25 to 32 μm, bigger particle size with
	appropriate sampling inlet
Weather conditions	0 to 40 °C; RH< 95%
Are there other detection	No
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	1D
(i.e., 1D, 2D, 3D)	
Units	Number of particles; μg/m ³
Other	

5. Other

References	
Other comments	

Instrument Name	Doppler weather radar at C band w	ith	
	horizontal single polarization (WR-C)		
	Mobile Doppler weather radar at X		with
	dual polarization capability (WR-X)		
Spectral range	WR-C: Regular 240 km, but can be pu	t to ma	ax
	480 km.		
	WR-X: Regular 60 km, but can be put	to max	x 120
	km.		
Record frequency	5 min frequency during volcanic erup	tion,	
	otherwise 15 min frequency.		
Parameter(s) detected	WR-C: Horizontally-polarized reflecti	vity (d	lBZ)
(e.g., particle/gas	of particles (hydrometeors, ash and o	thers)	
concentration, mass,	WR-X: Horizontally-polarized reflectivity (dBZ)		
temperature)	of particles (hydrometeors, ash and others);		
	differential reflectivity (dB); different	ial-	
	polarization phase shift; copolar corre	elatior	ı
	coefficient; linear cross-polarization r	atio (d	dB)
Scale of acquisition			Tick
	Proximal (order of a few km)		X
	Medial (order of 100s of km)		X
	Distal (order of 1000s of km)		
Other			
YES		NO	
Is it operational for data acquisition at some Institution/VAAC/VO? x			
If yes, where? IMO uses radar data and it is VO, AVO has used for volcanic			nic
eruptions, Anchorage VAAC for Alaska			

2. Technical requirements

	YES	NO	Comments
Is it ground based?	X		
Is it satellite based?			
Does it require dedicated	X		
instrumentation?			
Does it require additional		X	Depends on the retrieved product;
technologies for data			thermal state of the atmosphere
acquisition/retrieval (e.g.,			may be a useful information.
atmospheric data)			
Can data be easily	X		
automatically transferred?			
(e.g., wire, radio, GSM			
telemetry)			

3. Data acquisition and delivery

		YES	NO
Can raw data be used with no additional processing?			X
If yes, please complete the following:			
	Comments		
Assumptions required for data			
acquisition (e.g., geometry of			
observations)			
Delivery time (e.g., real-time, days,			
weeks, months)			
Uncertainties			
Type of output			

If additional data processing is necessary, please complete the following:	
	Comments
Algorithm required for data processing (e.g., complex refractive index data)	Commercial and research software packages are available for data processing or equivalent (e.g., Selex-Gematronic Rainbow software or VARR software).
Assumptions required for data processing (e.g., complex refractive index data)	Particle refractive index at C or X band together with particle density and fallout velocity.
Delivery time of additional processing (e.g., real-time, days, weeks, months)	Near real-time (few minutes after volume scan completition).
Software requirements	For example: Rainbow5.
Uncertainties	Ambiguity between ash clouds and rain clouds in mixed weather
Type of output	Graphical output, volume data.

	YES	NO
Is data freely available?		X
If yes, please specify where it can be		
downloaded:		

4. Limitations

	Comments
Detection limits	Topographical blocking, range/height (Earth curvature), particle size distribution, refractive index and density uncertainties.
Saturation	·
Particle size	Particle less than 100 microns may be not detectable, but it depends on signal-to-noise

	level. WR-X may be more sensitive with respect to WR-C, since its radar-plume distance may be reduced thanks to its mobility.
Weather conditions	Rain/Snow/Ice conditions might alter the ash signal.
Are there other detection conditions? (e.g., day/night, clear sky/clouds)	No
Vertical resolution (i.e., 1D, 2D, 3D)	3D.
Units	WR-C: dBZ and height; range. WR-X: dBZ and height; range; dB, degrees, dB.
Other	

5. Other

References

Harris, D.M. and W.I. Rose, Estimating particle sizes, concentrations and total mass of ash in volcanic clouds using weather radar. J. Geophys. Res., 88, pp. 10969-10983, 1983.

Lacasse, C., Karlsdóttir, S., Larsen, G., Soosalu, H., Rose, W.I., Ernst, G.G.J., Weather radar observations of the Hekla 2000 eruption cloud, Iceland. Bull. Volcanol. 66, pp. 457-473, 2004.

Marzano F.S., S. Barbieri, G. Vulpiani and W.I. Rose, Volcanic cloud retrieval by ground-based microwave weather radar, IEEE Trans. Geosci. Rem. Sens., ISSN: 0196-2892, vol. 44, n.11, pp. 3235-3246, 2006.

Marzano F.S., S. Barbieri, E. Picciotti and S. Karlsdóttir, Monitoring sub-glacial volcanic eruption using C-band radar imagery. IEEE Trans. Geosci. Rem. Sensing, 58, pp. 403-414, 2010.

Marzano F.S., M. Lamantea, M. Montopoli, S. Di Fabio and E. Picciotti, The Eyjafjöll explosive volcanic eruption from a microwave weather radar perspective. Atmosph. Chemistry and Physics, 11, pp. 9503–9518, 2011.

Marzano F.S., M. Lamantea, M. Montopoli, B. Oddsson and M.T. Gudmundsson, Validating sub-glacial volcanic eruption using ground-based C-band radar imagery. IEEE Trans. Geosci. Rem. Sens., ISSN: 0196-2892, 50, pp. 1266-1282, 2012.

Other comments

Information about the C-band doppler radar located close to Keflavík airport, Iceland (adapted from Lacasse et al., 2004):

	C-band Ericsson radar system
T	EWIS. Updated to doppler radar,
Type	first week of April 2010. Software
	from Selex-Gematronic.
Location	64º01'35"N, 22º38'09"W
Operational since	January 1991
Height of antenna	47 m above sea level
Peak transmitted	245.2 kW
power	ZTJ.Z KVV
Beam width	0.9º
Elevation angle	0.5⁰
Pulse duration	2.15 μm
Wavelength	5 cm
Pulse repetition rate	250 ± 2 Hz
Maximum range	480 km
Actual gain of antenna	44.9 dB

Information about X-band dual-polarization Doppler weather radars and their potential for ash plume monitoring can be obtained from:

Marzano F.S., E. Picciotti, G. Vulpiani and M. Montopoli, Synthetic Signatures of Volcanic Ash Cloud Particles from X-band Dual-Polarization Radar. IEEE Trans. Geosci. Rem. Sens., ISSN: 0196-2892, 50, 193-211, 2012.

Instrument Name	INFRASONIC ARRAY		
Spectral range	0.001 Hz – 50 Hz		
Record frequency	100 sps		
Parameter(s) detected	Acoustic pressure of infrasonic waves	S	
(e.g., particle/gas concentration, mass,	Infrasonic waves back-azimuth		
temperature)			
Scale of acquisition			Tick
-	Proximal (order of a few km)		X
	Medial (order of 100s of km)		X
	Distal (order of 1000s of km)		
Other			
		YES	NO
Is it operational for data acquis	Is it operational for data acquisition at some Institution/VAAC/VO?		
If yes, where?			

2. Technical requirements

	YES	NO	Comments
Is it ground based?	X		
Is it satellite based?		X	
Does it require dedicated	X		Small aperture (<500m) infrasonic
instrumentation?			array
Does it require additional	X		Weather station
technologies for data			
acquisition/retrieval (e.g.,			
atmospheric data)			
Can data be easily	X		
automatically transferred?			
(e.g., wire, radio, GSM			
telemetry)			

Can raw data be used with no addition		X		
If yes, please complete the following:				
Comments				
Assumptions required for data				

acquisition (e.g., geometry of	
observations)	
Delivery time (e.g., real-time, days, weeks, months)	
Uncertainties	
Type of output	

If additional data processing is necessary, please complete the following:					
	Comments				
Algorithm required for data	Progressive Multi-Channel Correlation				
processing (e.g., complex refractive	(PMCC) algorithm				
index data)					
Assumptions required for data	Plane wavefront propagation				
processing (e.g., complex refractive					
index data)					
Delivery time of additional	Real-time				
processing (e.g., real-time, days,					
weeks, months)					
Software requirements	Matlab				
Uncertainties	Source distance				
Type of output	Acoustic pressure, source backazimuth				

	YES	NO
Is data freely available?		X
If yes, please specify where it can be downloaded:		

	Comments
Detection limits	From mPa to MPa, depending on the sensors
	and the distance from the source
Saturation	Depending on the sensors
Particle size	
Weather conditions	Wind noise can affect and reduce the array
	sensitivity
Are there other detection	No
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	
(i.e., 1D, 2D, 3D)	
Units	Pressure [Pa], Back-azimuth [deg]
Other	

5. Other

References

Ripepe, M., E. Marchetti, (2002). Array tracking of infrasonic sources at Stromboli volcano, Geophys. Res. Lett. 29, 2076.

Ripepe, M., S. De Angelis, G. Lacanna and B. Voight, (2010). Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat, Geophys. Res. Lett., 37.

Other comments			

Instrument Name		Broadband IR SO ₂ sensors – MODIS, ASTER, SEVIRI			
Spectral range		8-12 microns.			
Record frequency		Varies from 15 mins (SEVIRI) to at least several days (ASTER)			
Parameter(s) dete (e.g., particle/gas concentration, ma temperature)		SO ₂ burden, vertical distribution (experimental for everything but ASTER)			
Scale of acquisition			Tick		
Proximal (order of a few km)		X			
		Medial (order of 100s of km)		X	
		Distal (order of 1000s of km)		X	
Other					
	YES			NO	
Is it operational fo	Is it operational for data acquisition at some Institution/VAAC/VO? X				
If yes, where? Through EUMETSAT and NASA portals/db					

2. Technical requirements

	YES	NO	Comments
Is it ground based?		X	
Is it satellite based?	X		
Does it require dedicated instrumentation?		X	
Does it require additional technologies for data acquisition/retrieval (e.g., atmospheric data)	X		
Can data be easily automatically transferred? (e.g., wire, radio, GSM telemetry)		X	Direct broadcasting requires specialist equipment (London VAAC has, obviously) as data volumes are considerable

	YES	NO	
Can raw data be used with no additiona		X	
If yes, please complete the following:			
Comments			

Assumptions required for data	Need met. data (sometimes) and some a
acquisition (e.g., geometry of observations)	priori information (typically height)
Delivery time (e.g., real-time, days,	NRT
weeks, months)	
Uncertainties	Multispecies interference, clouds, met.
	data.
Type of output	SO ₂ maps

If additional data processing is necessary, please complete the following:			
	Comments		
Algorithm required for data			
processing (e.g., complex refractive			
index data)			
Assumptions required for data			
processing (e.g., complex refractive			
index data)			
Delivery time of additional			
processing (e.g., real-time, days,			
weeks, months)			
Software requirements			
Uncertainties			
Type of output			

		YES	NO
Is data freely available?		X	
If yes, please specify where it can be downloaded:	NASA portals, e.g. WIST, geon	etcast	

	Comments
Detection limits	Ca. 1 gm ⁻² (typical for a 3km plume)
Saturation	1000 gm ⁻²
Particle size	NA
Weather conditions	Clouds prevent retrieval
Are there other detection	Day/night
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	At best, +/- 1 km for height.
(i.e., 1D, 2D, 3D)	
Units	gm ⁻²
Other	

5. Other

References

Prata, A.J., G.J.S. Bluth, C. Werner, V.J. Realmuto, S.A. Carn, and I.M. Watson, 2010, Gas Emissions from Volcanoes, in *Monitoring Volcanoes in the North Pacific: Observations from Space*, eds. K.G. Dean and J. Dehn, ISBN: 978-3-540-24125-6, Springer-Praxis Books (in press).

Thomas, H.E., Watson, I.M., 2010, Observations of volcanic emissions from space: current and future perspectives. Natural Hazards, doi: 10.1007/s11069-009-9471-3

Watson, I.M., Schneider, D.J., Saunders, R., Thoradson, T., Thomas, H.E., Zehner, C., Rose, W.I., and Prata A.J., 2010, Chapter 1. Are we making best use of existing observing systems to address the problems created by the Eyjafjöll eruption?, in 'Monitoring volcanic ash from space, ESA-EUMETSAT workshop on the 14th April to 23rd May eruption of Eyjafjöll volcano, South Icelend', ed. Kluas Zehner, STM-280: 10-25

Other comments				
	_	_	_	

Instrument Name	LIDAR			
Spectral range	UV-VIS-nearIR			
Record frequency	Variable			
Parameter(s) detected	Aerosol layer geometrical properties			
(e.g., particle/gas	Aerosol extinction coefficient			
concentration, mass,	Aerosol backscatter			
temperature)	Optical depth			
	PBL height			
	Linear particle and volume depolarization ratio			
	Possible (but not in all cases): mass			
	concentration profile and microphysical			
	properties			
Scale of acquisition	Tick			
	Proximal (order of a few km)			
	Medial (order of 100s of km)			
	Distal (order of 1000s of km)			
	Other X			
		YES	NO	
Is it operational for data acqui	sition at some Institution/VAAC/VO?		X	
If yes, where?				

2. Technical requirements

	YES	NO	Comments
Is it ground based?	X		
Is it satellite based?	X		CALIPSO at moment ADM-Aeolus and EarthCARE in the future
Does it require dedicated instrumentation?	X		
Does it require additional technologies for data acquisition/retrieval (e.g., atmospheric data)	X		Ancillary data (such as radiosoundings) are useful but not necessary
Can data be easily automatically transferred? (e.g., wire, radio, GSM telemetry)	X		

		YES	NO	
Can raw data be used with no additional processing?				
If yes, please complete the following:	Raw data (actually with just a processing) can provide information about the distribution in space of the aerosol/cloud fields. The we call quicklook data		n time	
	Comments			
Assumptions required for data acquisition (e.g., geometry of observations)	Geometry could be important on the specific lidar techniqu	•	nding	
Delivery time (e.g., real-time, days, weeks, months)	Real-time (possible, to be implemented and probably not for final QA products			
Uncertainties	Depending on lidar experime	ntal se	etup	
Type of output	Profile data (typically netcdf format)			

If additional data processing is necessary, please complete the following:			
	Comments		
Algorithm required for data	Elastic Backscatter (Klett, Iterative)		
processing (e.g., complex refractive	Extinction (Raman signal 1st derivative)		
index data)	Raman backscatter (Combined		
	Raman/elastic method)		
Assumptions required for data	Elastic backscatter (lidar ratio profile)		
processing (e.g., complex refractive	Atmospheric standard model when no		
index data)	correlative radiosounding is available		
Delivery time of additional	Hours (possible but it taks some effort		
processing (e.g., real-time, days,	to be implemented); Days (possible in		
weeks, months)	most of the cases); Months (complete		
	QA products)		
Software requirements	Dedicated software		
Uncertainties	Depending on lidar experimental setup,		
	integration time and vertical resolution.		
	Typically below 5% for backscatter and		
	below 10% for extinction		
Type of output	Profile data (NetCDF typically)		

		YES	NO
Is data freely available?		X	X
If yes, please specify where it can be downloaded:	Data access depend on the difference systems. Regarding lidar networks, ma EARLINET data are available www.earlinet.org	ninly y	

	Comments
Detection limits	Depending on the measured parameter
	(typically AOD ≤ 0.01)
Saturation	Very rare, depending on experimental setup
Particle size	Variable depending on laser wavelengths
	(typically 100 nm – 2 micron)
Weather conditions	No measurements in case of rain, fog, low
	clouds
Are there other detection	Daytime measurements are usually with a
conditions? (e.g., day/night,	worse SNR
clear sky/clouds)	
Vertical resolution	From 1D to 3D, depending on the lidar system.
(i.e., 1D, 2D, 3D)	The most common is 1D with variable vertical
	resolution (typically from 3.75m to 60m raw
	data vertical resolution)
Units	Depend on the parameter:
	Geometrical properties (i.e. base, top) [m]
	Extinction [m-1]
	Backscatter [m-1 sr-1]
	Lidar ratio [sr]
	Optical depth
	Angstrom exponent
	Depolarization ratio
	PBL height [m]
Other	Covered altitude range depends on the system
	design

5. Other

References

www.earlinet.org (see Publication)
www-calipso.larc.nasa.gov/resources/publications.php

Other comments

Instrument Name	Multiangle Imaging Spectroradiometer (MISR)			
Spectral range	4 bands (blue, green, red, and near-in	frared	l)	
Record frequency	Global coverage time: every 9 days, with repeat coverage between 2 and 9 days depending on latitude			
Parameter(s) detected	Plume height, Wind Speed, Optical De		_	
(e.g., particle/gas	Angstrom exponent, Single-Scattering Albedo,			
concentration, mass,	Tau Fraction by Particle-Type.			
temperature)				
Scale of acquisition	Tick			
	Proximal (order of a few km)			
	Medial (order of 100s of km)		X	
	Distal (order of 1000s of km)			
	Other			
YES			NO	
Is it operational for data acquir	sition at some Institution/VAAC/VO?		X	
If yes, where?				

2. Technical requirements

	YES	NO	Comments
Is it ground based?		X	
Is it satellite based?	X		
Does it require dedicated instrumentation?		X	
Does it require additional technologies for data acquisition/retrieval (e.g., atmospheric data)		X	
Can data be easily automatically transferred? (e.g., wire, radio, GSM telemetry)		X	

	YES	NO		
Can raw data be used with no additional processing?				
If yes, please complete the following:				

	Comments
Assumptions required for data	
acquisition (e.g., geometry of	
observations)	
Delivery time (e.g., real-time, days,	
weeks, months)	
Uncertainties	
Type of output	

If additional data processing is necessary, please complete the following:				
	Comments			
Algorithm required for data processing (e.g., complex refractive index data)	The stereo height retrieval technique used in the MINX (MISR INteractive eXplorer) software depends on the identification or matching in non-nadir cameras of a scene viewed by the nadir camera. This is accomplished by performing many cross-correlations between the pairs of camera views as the scenes are shifted relative to each other.			
Assumptions required for data processing (e.g., complex refractive index data)	MINX assumes that the motion of ash particles in a plume is in a horizontal plane and in the direction specified by the user when digitizing.			
Delivery time of additional processing (e.g., real-time, days, weeks, months)	Days			
Software requirements	The MINX software			
Uncertainties	About 0.5 km for the plume height			
Type of output	From MINX - *.txt; *.jpg; *.png			

		YES	NO
Is data freely available?		X	
If yes, please specify where it can be	http://l0dup05.larc.nasa.gov	/MISR	/cgi-
downloaded:	bin/MISR/main.cgi		

	Comments			
Detection limits	If the dominant visual components of the scene			
	are features on the ground, the correlation			
	process used in MINX will match to the ground			
	rather than to ash in the atmosphere. Further,			
	vertical particle motion and local changes in			
	wind direction can produce a large scatter in			

	height and wind values or can prevent MINX from finding a solution.
Saturation	
Particle size	< 10 μm
Weather conditions	Clouds may prevent volcanic ash detection
Are there other detection	No low optical density of the plume; absence of
conditions? (e.g., day/night,	bright scenes.
clear sky/clouds)	
Vertical resolution	Stereoscopic height retrieval
(i.e., 1D, 2D, 3D)	
Units	m
Other	

5. Other

References

http://www-misr.jpl.nasa.gov/index.cfm;

Nelson, D. L., Y. Chen, R. A. Kahn, D. J. Diner, , and D. Mazzoni (2008), Example applications of the MISR INteractive explorer (MINX) software tool to wildfire smoke plume applications, Proc. SPIE Vol. 7089, 708908 (Aug. 27, 2008). http://www.openchannelfoundation.org/orders/index.php?group_id=366.

Other comments			

Instrument Name MODIS						
Spectral range 0.65, 3.75, 7.3, 8.5, 11, and 12 µm channel needed by ash detection algorithm; 11, 1 13.3 µm channels are needed by retrieval algorithm. Wen and Rose (1994) method just the 11 and 12 µm channels for ash d and to retrieve volcanic ash mass and efficiency particle size. Method known since Pratab) and used for ash detection at AVO (Weal, 2009).			1, 12, a eval hod ca h dete l effect ata (19	n use ction ive		
Record frequency		Twice daily per satellite				
Parameter(s) detected		Automated ash detection, ash cloud height				
(e.g., particle/gas		(temperature and pressure), ash mass loading				
concentration, ma	SS,	(mass/area), ash effective radius, and ash optical				
temperature)		depth (wavelength dependent)				
Scale of acquisition	 n			Tick		
_		Proximal (order of a few km)		X		
		Medial (order of 100s of km)		X		
		Distal (order of 1000s of km)		X		
		Other				
			YES	NO		
			X			
If yes, where?	Direct broadcast MODIS data are available at the Anchorage					
	VAAC and will be available at the Darwin VAAC (MODIS is					
	also likely available at other VAAC's and VO's). Alaska					
	Volcano Observatory has been using the 11 and 12 μm					
	channels for ash detection since 2001 (Webley et al, 2009).					

2. Technical requirements

	YES	NO	Comments
Is it ground based?		X	
Is it satellite based?	X		LEO
Does it require dedicated instrumentation?	X		An X-band receiver is needed to download direct broadcast data
Does it require additional technologies for data acquisition/retrieval (e.g., atmospheric data)	X		The retrieval technique requires global NWP data (GFS), global snow maps (IMS), global SST data (OISST). With the Wen and Rose (1994) method, then only channels at 11 and 12 µm (MODIS channels 31 and 32) are needed.

Can data be easily	X	
automatically transferred?		
(e.g., wire, radio, GSM		
telemetry)		

		YES	NO	
Can raw data be used with no additional processing?			X	
If yes, please complete the following:				
	Comments			
Assumptions required for data	Satellite must be in range of direct			
acquisition (e.g., geometry of observations)	broadcast receiving station			
Delivery time (e.g., real-time, days,	MODIS direct broadcast data	are		
weeks, months)	available in near real-time			
Uncertainties	Depend on uncertainty in clear sky			
	radiances, calibration, pixel			
	heterogeneity, microphysical model			
	(composition - index of refraction,			
	particle habit, particle distribution type,			
	etc)			
Type of output	Quantitative ash cloud properties in			
	HDF4 format. Can be readily available as			
	jpeg/png or KML/KMZ, as used by AVO.			

If additional data processing is necessary, please complete the following:				
	Comments			
Algorithm required for data				
processing (e.g., complex refractive				
index data)				
Assumptions required for data				
processing (e.g., complex refractive				
index data)				
Delivery time of additional				
processing (e.g., real-time, days,				
weeks, months)				
Software requirements				
Uncertainties				
Type of output				

			NO
Is data freely available?		X	
If yes, please specify where it can be	be Via direct broadcast (real-time) or NASA		
downloaded:	(not real-time)		

	Comments
Detection limits	> 0.5 tons/km^2
Saturation	~100 tons/km^2
Particle size	Effective radius sensitivity: 0.5 – 15.0 μm
Weather conditions	Ash layer must be colder than surface
Are there other detection	Ash must be highest cloud layer
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	Cloud layer integrated properties of highest
(i.e., 1D, 2D, 3D)	ash cloud layer
Units	Mass loading (tons/km^2), Ash Height (km),
	Ash effective radius (μm)
Other	

5. Other

References

Pavolonis, M. J., 2010: Advances in extracting cloud composition information from spaceborne infrared radiances: A robust alternative to brightness temperatures Part I: Theory, *J. Applied Meteorol. And Climatology*, **49(9)**, 1992-2012.

Pavolonis, M. J. and J. Sieglaff, 2010: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Volcanic Ash: Detection and Height, Version 2.0., 72 pp.

Pavolonis, Michael J.; Feltz, Wayne F.; Heidinger, Andrew K. and Gallina, Gregory M. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. Journal of Atmospheric and Oceanic Technology, Volume 23, Issue 11, 2006, pp.1422-1444.

Prata, A. J., 1989a. Infrared radiative transfer calculations for volcanic ash clouds, *Geophysical Research Letters*, **16**, 1293-1296.

Prata, A. J., 1989b. Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data, *International Journal of Remote Sensing*, **10**, 751-761.

Prata, A. J., and Grant, I. F., 2001. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt. Ruapehu, New Zealand, *Q. J. R. Meteorol.*, 127.

Heidinger, A. K. and M. J. Pavolonis, 2009: Nearly 30 years of gazing at cirrus

clouds through a split-window. Part I: Methodology. *J.Appl.Meteorol. and Climatology*, **48(6)**, 110-1116.

Heidinger, A.K., M.J. Pavolonis, R. E. Holz, B. A. Baum, and S. Berthier, 2010: A comparison of the sensitivity to cloud pressure offered by the NPOESS/VIRRS and GOES-R/ABI Infrared observations for cirrus cloud remote sensing, *J. Geophys. Research*, **115**, Doi:10.1029/2009JD012152.

Webley, P.W., Dehn, J., Lovick, J., Dean, K.G., Bailey, J.E. and Valcic, L., 2009. Near Real Time Volcanic Ash Cloud Detection: Experiences from the Alaska Volcano Observatory. *Journal of Vol. and Geo. Research: SI on Volcanic Ash Clouds, eds. Larry Mastin and Peter Webley,* **186** (1 – 2), 79 - 90. doi:10.1016/j.jvolgeores.2009.02.010

Wen, S and Rose, W. I., 1994, Retrieval of Particle sizes and masses in volcanic clouds using AVHRR bands 4 and 5, *Journal of Geophysical Research*, **99**, 5421-5431.

Other comments				
	_	_	_	

Instrument Name	MTSAT		
Spectral range	0.65, 3.9, 6.7, 11, and 12 µm channels are needed by ash detection algorithm; 11 and 12 µm channels are needed by retrieval algorithm. Wen and Rose (1994) method can use just the 11 and 12 µm channels for ash detection and to retrieve volcanic ash mass and effective particle size. Method known since Prata (1989 a, b) and used for ash detection at AVO (Webley et al, 2009).		Wen land rieve
Record frequency	Varies depending on location from ev minutes to every 3 hours	ery 15	
Parameter(s) detected (e.g., particle/gas concentration, mass, temperature)	Automated ash detection, ash cloud height (temperature and pressure), ash mass loading (mass/area), ash effective radius, and ash optical depth (wavelength dependent)		_
Scale of acquisition			Tick
1	Proximal (order of a few km)		X
	Medial (order of 100s of km)		X
	Distal (order of 1000s of km)		X
	Other		
YES NO		NO	
Is it operational for data acquisition at some Institution/VAAC/VO? X			
If yes, where? Tokyo, Darwin, and Washington VAACs. Alaska Volcano Observatory and Kamchatka Volcano Emergency Response Team (KVERT) has been using the 11 and 12 μm channels for ash detection (Webley et al, 2009).			

2. Technical requirements

	YES	NO	Comments
Is it ground based?		X	
Is it satellite based?	X		GEO
Does it require dedicated instrumentation?	X		Data can be acquired through direct dissemination from JMA or through JDDS
Does it require additional technologies for data acquisition/retrieval (e.g., atmospheric data)	X		The retrieval technique requires global NWP data (GFS), global snow maps (IMS), global SST data (OISST). With the Wen and Rose (1994) method, then only channels at 11 and 12 µm (MTSAT channels IR1 and IR2) are needed.

Can data be easily	X	
automatically transferred?		
(e.g., wire, radio, GSM		
telemetry)		

		YES	NO
Can raw data be used with no additional processing?			X
If yes, please complete the following:			
V 1	Comments		
Assumptions required for data acquisition (e.g., geometry of observations)	Direct dissemination or JDDS	acces	S
Delivery time (e.g., real-time, days, weeks, months)	Real-time		
Uncertainties	Depend on uncertainty in clea	ar sky	
	radiances, calibration, pixel		
	heterogeneity, microphysical	mode	l
	(composition - index of refrac	ction,	
	particle habit, particle distrib	ution	type,
	etc)		
Type of output	Quantitative ash cloud proper	rties ir	ı
	HDF4 format. Can be readily a	availal	ole as
	jpeg/png or KML/KMZ, as use	ed by A	AVO.

If additional data processing is necessary, please complete the following:		
	Comments	
Algorithm required for data		
processing (e.g., complex refractive		
index data)		
Assumptions required for data		
processing (e.g., complex refractive		
index data)		
Delivery time of additional		
processing (e.g., real-time, days,		
weeks, months)		
Software requirements		
Uncertainties		
Type of output		

		YES	NO
Is data freely available?		X	
	Via direct dissemination in re	al-tim	e
downloaded:			

	Comments
Detection limits	> 0.5 tons/km^2
Saturation	~100 tons/km^2
Particle size	Effective radius sensitivity: 0.5 – 15.0 μm
Weather conditions	Ash layer must be colder than surface
Are there other detection	Ash must be highest cloud layer
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	Cloud layer integrated properties of highest
(i.e., 1D, 2D, 3D)	ash cloud layer
Units	Mass loading (tons/km^2), Ash Height (km),
	Ash effective radius (µm)
Other	

5. Other

References

Pavolonis, M. J., 2010: Advances in extracting cloud composition information from spaceborne infrared radiances: A robust alternative to brightness temperatures Part I: Theory, *J. Applied Meteorol. And Climatology*, **49(9)**, 1992-2012.

Pavolonis, M. J. and J. Sieglaff, 2010: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Volcanic Ash: Detection and Height, Version 2.0., 72 pp.

Pavolonis, Michael J.; Feltz, Wayne F.; Heidinger, Andrew K. and Gallina, Gregory M. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. Journal of Atmospheric and Oceanic Technology, Volume 23, Issue 11, 2006, pp.1422-1444.

Prata, A. J., 1989a. Infrared radiative transfer calculations for volcanic ash clouds, *Geophysical Research Letters*, **16**, 1293-1296.

Prata, A. J., 1989b. Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data, *International Journal of Remote Sensing*, **10**, 751-761.

Prata, A. J., and Grant, I. F., 2001. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt. Ruapehu, New Zealand, *Q. J. R. Meteorol.*, 127.

Heidinger, A. K. and M. J. Pavolonis, 2009: Nearly 30 years of gazing at cirrus clouds through a split-window. Part I: Methodology. *J.Appl.Meteorol.* and *Climatology*, **48(6)**, 110-1116.

Heidinger, A.K., M.J. Pavolonis, R. E. Holz, B. A. Baum, and S. Berthier, 2010: A comparison of the sensitivity to cloud pressure offered by the NPOESS/VIRRS and GOES-R/ABI Infrared observations for cirrus cloud remote sensing, *J. Geophys. Research*, **115**, Doi:10.1029/2009JD012152.

Webley, P.W., Dehn, J., Lovick, J., Dean, K.G., Bailey, J.E. and Valcic, L., 2009. Near Real Time Volcanic Ash Cloud Detection: Experiences from the Alaska Volcano Observatory. *Journal of Vol. and Geo. Research: SI on Volcanic Ash Clouds, eds. Larry Mastin and Peter Webley,* **186** (1 – 2), 79 - 90. doi:10.1016/j.jvolgeores.2009.02.010

Wen, S and Rose, W. I., 1994, Retrieval of Particle sizes and masses in volcanic clouds using AVHRR bands 4 and 5, *Journal of Geophysical Research*, **99**, 5421-5431.

Other comments		

Instrument Name		OMI		
Spectral range		0.30-0.35 microns		
Record frequency		Daily at low latitudes; ~3x daily at hig	gh lati	tudes
Parameter(s) dete	ected	SO ₂ burden, SO ₂ altitude, Aerosol Inde	ex	
(e.g., particle/gas		(indicates presence of ash and relativ	e	
concentration, ma	SS,	abundance), ash mass loading (under	•	
temperature)		development)		
Scale of acquisitio	n			Tick
		Proximal (order of a few km)		
		Medial (order of 100s of km)		X
		Distal (order of 1000s of km)		X
		Other		
			YES	NO
Is it operational for data acquisi		sition at some Institution/VAAC/VO?	X	
If yes, where?	NOAA process near real-time SO ₂ data; Finnish			
	Meteorological Institute (FMI) receives direct broadcast OMI			OMI
	data and process in Very Fast Delivery (VFD) system within			hin
	15 minutes	of overpass.		

2. Technical requirements

	YES	NO	Comments
Is it ground based?		X	
Is it satellite based?	X		
Does it require dedicated		X	Direct broadcast (DB) Aura data can
instrumentation?			be accessed via receiving station
Does it require additional		X	
technologies for data			
acquisition/retrieval (e.g.,			
atmospheric data)			
Can data be easily	X		FTP
automatically transferred?			
(e.g., wire, radio, GSM			
telemetry)			

	YES	NO
Can raw data be used with no additional processing?	X	

If yes, please complete the following:	
	Comments
Assumptions required for data	OMI has several SO ₂ retrievals as a
acquisition (e.g., geometry of observations)	function of cloud height
Delivery time (e.g., real-time, days,	DB data can be processed in ~15 mins;
weeks, months)	near real time (NRT) data available
	within 1-3 hours
Uncertainties	Instrument issues/low light levels
Type of output	SO ₂ maps, Aerosol Index maps

If additional data processing is necessary, please complete the following:		
	Comments	
Algorithm required for data	Complex refractive index at UV	
processing (e.g., complex refractive	wavelengths required for ash retrievals	
index data)		
Assumptions required for data		
processing (e.g., complex refractive		
index data)		
Delivery time of additional	SO ₂ altitude currently available next day;	
processing (e.g., real-time, days,	operational implementation planned	
weeks, months)		
Software requirements		
Uncertainties		
Type of output		

		YES	NO
Is data freely available?		X	
If yes, please specify where it can be	http://so2.gsfc.nasa.gov		
downloaded:	http://disc.sci.gsfc.nasa.gov//	Aura/	data-
	holdings/OMI/omso2_v003.s	html	

	Comments
Detection limits	0.4 DU SO ₂ (latitude dependent)
Saturation	100-200 DU for operational SO ₂ retrievals;
	offline SO ₂ retrievals produce unsaturated data
Particle size	
Weather conditions	Broadly weather independent
Are there other detection	Day time only
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	2D only (SO ₂ altitude retrievals currently a
(i.e., 1D, 2D, 3D)	research product)

Units	DU (SO ₂), g m ⁻² (ash loading)
Other	Note that most of the above information also
	applies to the UV Suomi NPP OMPS instrument,
	operational since 2011.

References

Carn, S.A., A.J. Krueger, N.A. Krotkov, K. Yang, and K. Evans, 2009, Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation. *Natural Hazards*, 51(2), 325-343, doi:10.1007/s11069-008-9228-4.

Krotkov, N.A., Carn, S.A., Krueger, A.J., Bhartia, P.K., and Yang, K., 2006, Band Residual Difference algorithm for retrieval of SO₂ from the Aura Ozone Monitoring Instrument (OMI). *IEEE Trans. Geosci. Remote Sensing, AURA Special Issue*, 44(5), 1259-1266, doi:10.1109/TGRS.2005.861932.

Yang, K., X. Liu, N.A. Krotkov, A.J. Krueger and S.A. Carn, 2009, Estimating the altitude of volcanic sulfur dioxide plumes from space-borne hyper-spectral UV measurements, *Geophys. Res. Lett.*, 36, L10803, doi:10.1029/2009GL038025.

Other comments		

Instrument Name	PLUDIX		
Spectral range	X-band microwave (9.5 GHz)		
Record frequency	Up to 1 sample per minute		
Parameter(s) detected	Settling velocities of ash particles (rav	w data	1)
(e.g., particle/gas	Particle size		
concentration, mass,	Number of particles		
temperature)			
Scale of acquisition			Tick
	Proximal (order of a few km)		
	Medial (order of 100s of km)		
	Distal (order of 1000s of km)		
	Other		Point
		YES	NO
Is it operational for data acquis	sition at some Institution/VAAC/VO?		X
If yes, where?			

2. Technical requirements

	YES	NO	Comments
Is it ground based?	X		
Is it satellite based?		X	
Doos it require dedicated	X		Pludix + PC + Power supply
Does it require dedicated instrumentation?	Λ		Fludix + PC + Power Supply
mistrumentation:			
Does it require additional		X	
technologies for data			
acquisition/retrieval (e.g.,			
atmospheric data)			
Can data be easily	X		
automatically transferred?			
(e.g., wire, radio, GSM			
telemetry)			

		YES	NO
Can raw data be used with no additional processing?			
If yes, please complete the following:			
	Comments		
Assumptions required for data	Terminal velocity model		

acquisition (e.g., geometry of observations)	Density of the particles
Delivery time (e.g., real-time, days, weeks, months)	Real-time
Uncertainties	
Type of output	Doppler spectra, particle settling velocity, Particle size

If additional data processing is necessary, please complete the following:	
	Comments
Algorithm required for data	Terminal velocity model
processing (e.g., complex refractive	Mie backscattering coefficients
index data)	algorithm
Assumptions required for data	Ash refractive index
processing (e.g., complex refractive	particles density and spherical shape
index data)	terminal velocity model
Delivery time of additional	Near-real-time
processing (e.g., real-time, days,	
weeks, months)	
Software requirements	Matlab
Uncertainties	Real density of particles
Type of output	Particle size vs particle number

	YES	NO
Is data freely available?		X
If yes, please specify where it can be		
downloaded:		

	Comments
Detection limits	Variable threshold concentration depending on
	the size of particles
Saturation	No
Particle size	From 0.5 to 10 mm
Weather conditions	Absence of precipitations (meteorological)
Are there other detection	No
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	1D
(i.e., 1D, 2D, 3D)	
Units	Velocity of the particles
	Power Spectral density
Other	

References

Prodi, F., Tagliavini, A. and Pasqualucci, F., 2000. Pludix: an X-band sensor for measuring hydrometeors size distributions and fall rate. *Proc. of the 13th ICCP*, pp. 338–339.

Scollo S, Coltelli M, Prodi F, Folegani S, Natali S (2005) Terminal settling velocity measurements of volcanic ash during the 2002–2003 Etna eruption by an X-band microwave rain gauge disdrometer. Geophys Res Lett 32, Art. No. L10302. DOI 10.1029/2004GL022100

Other comments		

Instrument Name	SEVIRI		
Spectral range	0.65, 3.75, 7.3, 8.5, 11, and 12 μm chaneded by ash detection algorithm; 1 13.3 μm channels are needed by retrialgorithm. Wen and Rose (1994) metigust the 11 and 12 μm channels for as and to retrieve volcanic ash mass and particle size. Method known since Prab).	1, 12, a eval hod ca h dete l effect	and in use ection cive
Record frequency	Every 15 minutes		
Parameter(s) detected (e.g., particle/gas concentration, mass, temperature)	Automated ash detection, ash cloud h (temperature and pressure), ash mas (mass/area), ash effective radius, and depth (wavelength dependent)	s load	_
Scale of acquisition			Tick
_	Proximal (order of a few km)		X
	Medial (order of 100s of km)		X
	Distal (order of 1000s of km)		X
	Other		
		YES	NO
Is it operational for data acquisition at some Institution/VAAC/VO? X			
If yes, where? London and	l Toulouse VAACs		

2. Technical requirements

	YES	NO	Comments
Is it ground based?		X	
Is it satellite based?	X		GEO
Does it require dedicated instrumentation?	X		Data can be acquired through EUMETCast
Does it require additional technologies for data acquisition/retrieval (e.g., atmospheric data)	X		The retrieval technique requires global NWP data (GFS), global snow maps (IMS), global SST data (OISST). With the Wen and Rose (1994) method, then only channels at 11 and 12 µm (SEVIRI channels 9 and 10) are needed.
Can data be easily automatically transferred? (e.g., wire, radio, GSM telemetry)	X		

		YES	NO
Can raw data be used with no additional processing?			X
If yes, please complete the following:			
	Comments		
Assumptions required for data acquisition (e.g., geometry of observations)	EUMETCast access		
Delivery time (e.g., real-time, days, weeks, months)	Real-time		
Uncertainties	Depend on uncertainty in clear radiances, calibration, pixel heterogeneity, microphysical (composition - index of refractions)	mode	
	particle habit, particle distrib etc)	ution	type,
Type of output	Quantitative ash cloud proper HDF4 format. Can be readily a jpeg/png or KML/KMZ.		

If additional data processing is necessary, please complete the following:		
	Comments	
Algorithm required for data		
processing (e.g., complex refractive		
index data)		
Assumptions required for data		
processing (e.g., complex refractive		
index data)		
Delivery time of additional		
processing (e.g., real-time, days,		
weeks, months)		
Software requirements		
Uncertainties		
Type of output		

		YES	NO
Is data freely available?		X	
If yes, please specify where it can be downloaded:	Via EUMETCast		

	Comments
Detection limits	> 0.5 tons/km^2
Saturation	~100 tons/km^2
Particle size	Effective radius sensitivity: 0.5 – 15.0 μm
Weather conditions	Ash layer must be colder than surface
Are there other detection	Ash must be highest cloud layer
conditions? (e.g., day/night,	
clear sky/clouds)	
Vertical resolution	Cloud layer integrated properties of highest
(i.e., 1D, 2D, 3D)	ash cloud layer
Units	Mass loading (tons/km^2), Ash Height (km),
	Ash effective radius (µm)
Other	

5. Other

References

Carboni, E., Tirelli, C., Buongiorno, M.F., Pugnahi, S., Corradini, S., Spinetti, C. and Gangale, G., 2008. Mt. Etna tropospheric ash retrieval and sensitivity analysis using moderate resolution imaging spectroradiometer measurements. APPRES, 2(1): 023550-023550-023520.

Francis, P. N., M. C. Cooke, and R. W. Saunders (2012), Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajökull eruption, *J. Geophys. Res.,* **117**, D00U09, doi:10.1029/2011JD016788.

Heidinger, A. K. and M. J. Pavolonis, 2009: Nearly 30 years of gazing at cirrus clouds through a split-window. Part I: Methodology. *J.Appl.Meteorol. and Climatology*, **48(6)**, 110-1116.

Heidinger, A.K., M.J. Pavolonis, R. E. Holz, B. A. Baum, and S. Berthier, 2010: A comparison of the sensitivity to cloud pressure offered by the NPOESS/VIRRS and GOES-R/ABI Infrared observations for cirrus cloud remote sensing, *J. Geophys. Research*, **115**, Doi:10.1029/2009JD012152.

Pavolonis, M. J., 2010: Advances in extracting cloud composition information from spaceborne infrared radiances: A robust alternative to brightness temperatures Part I: Theory, *J. Applied Meteorol. And Climatology*, **49(9)**, 1992-2012.

Pavolonis, M. J. and J. Sieglaff, 2010: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Volcanic Ash: Detection and Height, Version 2.0., 72 pp.

Pavolonis, Michael J.; Feltz, Wayne F.; Heidinger, Andrew K. and Gallina, Gregory

M. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. Journal of Atmospheric and Oceanic Technology, Volume 23, Issue 11, 2006, pp.1422-1444.

Prata, A. J., 1989a. Infrared radiative transfer calculations for volcanic ash clouds, *Geophysical Research Letters*, **16**, 1293-1296.

Prata, A. J., 1989b. Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data, *International Journal of Remote Sensing*, **10**, 751-761.

Prata, A.J. and Prata, A.T., 2012. Eyjafjallajökull volcanic ash concentrations determined using Spin Enhanced Visible and Infrared Imager measurements. Journal of Geophysical Research: Atmospheres, 117(D20): D00U23.

Wen, S and Rose, W. I., 1994, Retrieval of Particle sizes and masses in volcanic clouds using AVHRR bands 4 and 5, *Journal of Geophysical Research*, **99**, 5421-5431.

Other comments			
	_		_

Instrument Name		THERMAL CAMERA		
Spectral range		7.5 – 13 μm wavelength spectral radiation		
Record frequency		up to 200 fps		
Parameter(s) detec	ted	Spectral radiation		
(e.g., particle/gas		Temperature		
concentration, mas	S,			
temperature)				
Scale of acquisition				Tick
		Proximal (order of a few km) X		X
		Medial (order of 100s of km)		
		Distal (order of 1000s of km)		
		Other		
			YES	NO
Is it operational for	al for data acquisition at some Institution/VAAC/VO? X			
If yes, where?	INGV Catan	Catania (Etna), LGS Firenze (Montserrat, Stromboli),		
	HVO (Kilau	uea) to name a few		

2. Technical requirements

	YES	NO	Comments
Is it ground based?	X		
Is it satellite based?		X	
	**		ml l pa p
Does it require dedicated	X		Thermal camera + PC + Power
instrumentation?			supply
Doos it require additional		X	
Does it require additional technologies for data		Λ	
acquisition/retrieval (e.g.,			
atmospheric data)			
Can data be easily	X		
automatically transferred?			
(e.g., wire, radio, GSM			
telemetry)			

		YES	NO
Can raw data be used with no additional processing?		X	
If yes, please complete the following:			
	Comments		

Assumptions required for data acquisition (e.g., geometry of observations)	Target emissivity and atmospheric correction, if we want temperature data; and pixel size if we want dimensional data".
Delivery time (e.g., real-time, days, weeks, months)	Real-time
Uncertainties	
Type of output	Thermal images

If additional data processing is necessary, please complete the following:		
	Comments	
Algorithm required for data processing (e.g., complex refractive index data) Assumptions required for data processing (e.g., complex refractive index data)	Multiple-temperature-thresholds image analysis for plume time evolution analysis, particle velocimetry Field of view and distance from the target, target emissivity. camera pointing and tilt angle, difference in height between camera and target; atmospheric conditions (T and humidity)	
Delivery time of additional processing (e.g., real-time, days, weeks, months)	Hours	
Software requirements	Matlab	
Uncertainties	Size of thermal feature (depending on the distance)	
Type of output	Temperature, Plume 2D size, Plume exit velocity	

	YES	NO
Is data freely available?		X
If yes, please specify where it can be downloaded:		

	Comments
Detection limits	Depends on the emissivity and depends no
	thermal contrast between target and
	background, distance to target, size of the
	target, and viewing conditions.
Saturation	Depends on the camera (250 – 2000 °C)
Particle size	ash-to-bombs/blocks
Weather conditions	Good visibility
Are there other detection	No
conditions? (e.g., day/night,	
clear sky/clouds)	

Vertical resolution (i.e., 1D, 2D, 3D)	2D
Units	Temperature, Size, Exit velocity
	W, K, m2, m/s, m3/s, kg, kg/s
Other	

References

Steve T. Sahetapy-Engel & Andrew J. L. Harris, 2009, Thermal-image-derived dynamics of vertical ash plumes at Santiaguito volcano, Guatemala. *Bull. Volcanol.* 71, 827–830

Patrick, MR; Harris, AJL; Ripepe, M, et al. 2007, Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. *Bull. Volcanol.* 69(7) 769-784

Harris, A.J.L., 2013. Radiometry of Active Volcanoes – A User's Manual. Cambridge University Press, Cambridge, 736 p. ISBN: 9780521859455.

Delle Donne, D., and M. Ripepe (2012), High-frame rate thermal imagery of Strombolian explosions: Implications for explosive and infrasonic source dynamics, J. Geophys. Res., 117, B09206, doi:10.1029/2011JB008987.

Harris, A.J.L._, Delle Donne, D., Dehn, J., Ripepe, M., and Worden, A. K. (2013). Volcanic plume and bomb field masses from thermal infrared camera imagery. Earth and Planetary Science Letters, 365, 77-85, DOI 10.1016/j.epsl.2013.01.004.

Harris, A.J.L._, Ripepe, M., and E.E. Hughes (2012). Detailed analysis of particle launch velocities, size distributions and gas densities during normal explosions at Stromboli. J. Volcanol. Geotherm. Res, 231-232, 109-131.

Other comments			

Instrument Name	UV camera		
Spectral range	0.3-0.34 microns		
Record frequency	0.5-1 Hz		
Parameter(s) detected (e.g., particle/gas concentration, mass,	SO ₂ line of sight burden, ash opacity		
temperature)			
Scale of acquisition			Tick
	Proximal (order of a few km)		X
	Medial (order of 100s of km)		
	Distal (order of 1000s of km)		
	Other		
		YES	NO
Is it operational for data acquis	sition at some Institution/VAAC/VO?		X
If yes, where?			

2. Technical requirements

	YES	NO	Comments
Is it ground based?	X		
Is it satellite based?		X	
Does it require dedicated	X		The camera, plus peripherals (ca.
instrumentation?			20,000 euros)
Does it require additional		X	The instrument does require
technologies for data			regular calibration
acquisition/retrieval (e.g.,			
atmospheric data)			
Can data be easily		X	Data volumes are considerable (2.2
automatically transferred?			Mb per measurement). It's possible
(e.g., wire, radio, GSM			to operate remotely, but probably
telemetry)			not at full spatiotemporal resolution

		YES	NO
Can raw data be used with no additional processing?			X
	-		
If yes, please complete the following:			
	Comments		
Assumptions required for data	Geometry required, distance	to targ	get –

acquisition (e.g., geometry of observations)	some information on visibility is required too.
Delivery time (e.g., real-time, days, weeks, months)	Can be NRT
Uncertainties	Interference from ash, distance correction
Type of output	SO ₂ image

If additional data processing is necessar	ary, please complete the following:
	Comments
Algorithm required for data	Yes, although the algorithm is very
processing (e.g., complex refractive index data)	simple
Assumptions required for data	Gas cell calibration
processing (e.g., complex refractive	
index data)	
Delivery time of additional	Can be NRT, most often used in research
processing (e.g., real-time, days,	mode.
weeks, months)	
Software requirements	Matlab/IDL
Uncertainties	Distance correction is challenging, ash
	interference makes the retrieval much
	more involved.
Type of output	SO ₂ image

	YES	NO
Is data freely available?		X
If yes, please specify where it can be downloaded:		

	Comments
Detection limits	Very dependent on conditions, probably on the
	order of 10-50 ppm.m
Saturation	1500 ppm.m
Particle size	NA
Weather conditions	Clouds are OK, as long as they are broadly
	heterogeneous and behind the plume. Anything
	between plume and instrument prevents the
	retrieval functioning
Are there other detection	Day time only. Rain is not good (from both an
conditions? (e.g., day/night,	instrument and radiative transfer point of
clear sky/clouds)	view)
Vertical resolution	2D
(i.e., 1D, 2D, 3D)	
Units	Typically reported in ppm.m or kg s ⁻¹ (if

	converted to emission rate)
Other	

References

Bluth, G.J.S., Shannon, J.M., Watson, I.M., Prata A.F., and Realmuto V.J., 2007, Development of An Ultra-violet Digital Camera for Volcanic SO₂ Imaging. Journal of Volcanology and Geothermal Research, 161, 47-56.

Dalton M.P., Watson I.M., Nadeau P.N., Werner, C and Morrow W., Calibration of the UV Camera remote sensing technique for measuring SO_2 in point source plumes, Journal of Volcanology and Geothermal Research, doi:10.1016/j.jvolgeores.2009.09.013

Mori, T., and M. Burton, 2006, The SO_2 camera: A simple, fast and cheap method for ground-based imaging of SO_2 in volcanic plumes, *Geophys. Res. Lett.*, 33, L24804, doi:10.1029/2006GL027916.

Other comments			

Instrument Name		VOLDORAD (Volcano Doppler Rada	ar)	
Spectral range		$\lambda = 23.5 \text{ cm}$		
Record frequency		~5-15 Hz		
Parameter(s) dete	cted			
(e.g., particle/gas		- Particle velocities		
concentration, ma	SS,	- Particles mass/flux, volume and con	centra	ation
temperature)				
Scale of acquisition		Tick		
		Proximal (order of a few km)		0.3-
				12km
	Medial (order of 100s of km)			
	Distal (order of 1000s of km)			
Other				
YES		NO		
Is it operational for data acquisition at some Institution/VAAC/VO? yes				
If yes, where?	OPGC Clermont-Ferrand (3 Doppler radars): 1 radar operating			
	on Etna (collab. Istituto Nazionale di Geosifica e Vulcanologia –			
	Catania)			

2. Technical requirements

	YES	NO	Comments
Is it ground based?	YES		VOLDORAD is a transportable ground based radar system (radar+antenna=70kg)
Is it satellite based?		NO	
Does it require dedicated instrumentation?	YES		Radar + antenna + PC + AC or generator
Does it require additional technologies for data acquisition/retrieval (e.g., atmospheric data)		NO	Kinetic parameters obtained directly.Loading parameters need inversion models (available).
Can data be easily automatically transferred? (e.g., wire, radio, GSM telemetry)	YES		

3. Data acquisition and delivery

			NO
Can raw data be used with no additional processing?		YES	
If yes, please complete the following:			
	Comments		
Assumptions required for data acquisition (e.g., geometry of observations)	Geometry of the radar sounds the target. Particle Size Distribution (for estimates)	Ü	
Delivery time (e.g., real-time, days, weeks, months)	Near-Real-Time		
Uncertainties	Depends on our knowledge o geometry of observations.	f the	
Type of output	Doppler spectra, Particles vel	ocity	

If additional data processing is necessary, please complete the following:		
	Comments	
Algorithm required for data processing (e.g., complex refractive index data)	Mie scattering algorithm, radar equations.	
Assumptions required for data processing (e.g., complex refractive index data)	Complex refractive index, particle density and sphericity.	
Delivery time of additional processing (e.g., real-time, days, weeks, months)	Days	
Software requirements	Matlab	
Uncertainties	Depends on particle size distribution	
Type of output	Particles mass and derived parameters	

	YES	NO
Is data freely available?		No
If yes, please specify where it can be downloaded:		

	Comments	
Detection limits	Distance (<12 km), cannot see the gas phase	
Saturation	No limitation	
Particle size	Fine particles are detected above a	
	concentration threshold (low) depending on	
	size.	

Weather conditions	No limitation
Are there other detection conditions? (e.g., day/night, clear sky/clouds)	The acquisition can be made day and night, and during clear or cloudy/rainy conditions.
Vertical resolution	Probed volumes aligned along radar beam
(i.e., 1D, 2D, 3D)	(1D). Along-beam resolution = 60-225m.
	Horizontal and vertical resolution (=70 m to
	2000m)depends on distance
Units	Raw : Power spectral density (dBW)
	Raw : Particles velocity (m/s)
Other	

References

Gouhier, M. & Donnadieu, F., 2008. Mass estimations of ejecta from Strombolian explosions by inversion of Doppler radar measurements, J. Geophys. Res., **113**, B10202, doi:10.1029/2007JB005383.

Donnadieu F., Dubosclard G., Cordesses R., Druitt T.H., Hervier C., Kornprobst J., Lénat J.-F., Allard P., Coltelli M., 2005. Remotely monitoring volcanic activity with ground-based Doppler radar. E.O.S. Trans., 86(21), p.201-204.

Dubosclard, G., Donnadieu, F., Allard, P., Cordesses, R., Hervier, C., Coltelli, M., Privitera, E. & Kornprobst, J., 2004. Doppler radar sounding of volcanic eruption dynamics at Mount Etna, Bull. Volcanol., **66**, 443-456, doi:10.1007/s00445-003-0324-8.

Other comments

Contact: F.Donnadieu@opgc.univ-bpclermont.fr