

The APhoRISM project: **MACE integrated approach for volcanic products** L. Merucci, S. Corradini, C. Bignami, S. Stramondo **INGV-Rome**, Italy and the APhoRISM project partners

APhoRISM

APHORISM project addresses the development of innovative products based on space and ground data to support the management and mitigation of the volcanic and the seismic risk. The objective of the project is to demonstrate that satellite remote sensing data and ground data, appropriately managed by means of novel methods, can provide new and improved products able to be used by the stakeholders for managing volcanic and, stemming from a wider exploitation of available instruments, to achieve new performances in terms of accuracy and quality of information. APHORISM project proposes the development and testing of two new methods to combine in a fruitful way Earth Observation satellite data from different sensors and ground data. The first one involves the development of remote sensing methods related to monitoring volcanic crisis. The second one concerns the generation of products dealing with seismic crises events. Concerning volcanic crisis, the outcome is the Multi-platform volcanic Ash Cloud Estimation (MACE). The MACE method will exploit the complementarity between GEO (Geosynchronous Earth Orbit) sensor's platform, LEO (Low Earth Orbit) satellite sensors and ground measurements to improve the ash detection and retrieval and to fully characterize the volcanic ash clouds from source to the atmosphere. The basic idea behind the proposed method consists to meaningfully improve (calibrate and integrate), in a novel manner, the volcanic ash retrievals at the space-time scale of typical geostationary observations using both the LEO satellite estimations and in-situ data. The typical ash thermal infrared (TIR) retrieval will be integrated by using a wider spectral range from visible (VIS) to microwave (MW) and the ash detection will be extended also in case of cloudy atmosphere or steam plumes. APHORISM methods have been defined in order to provide products oriented toward the next ESA Sentinels satellite missions.

Multi-platform volcanic Ash Cloud Estimation: MACE A new set of ash cloud products for volcanic crisis management. Integration of all the available information on volcanic ash clouds in the widest possible spectral range, from VIS to MW. Ash detection is extended in the case of cloudy atmosphere or steam plumes.

The basic idea of MACE is to provide the best achievable volcanic ash products by continuous update and integration of all the ash retrievals obtained using GEO and LEO satellites and ground-based systems.

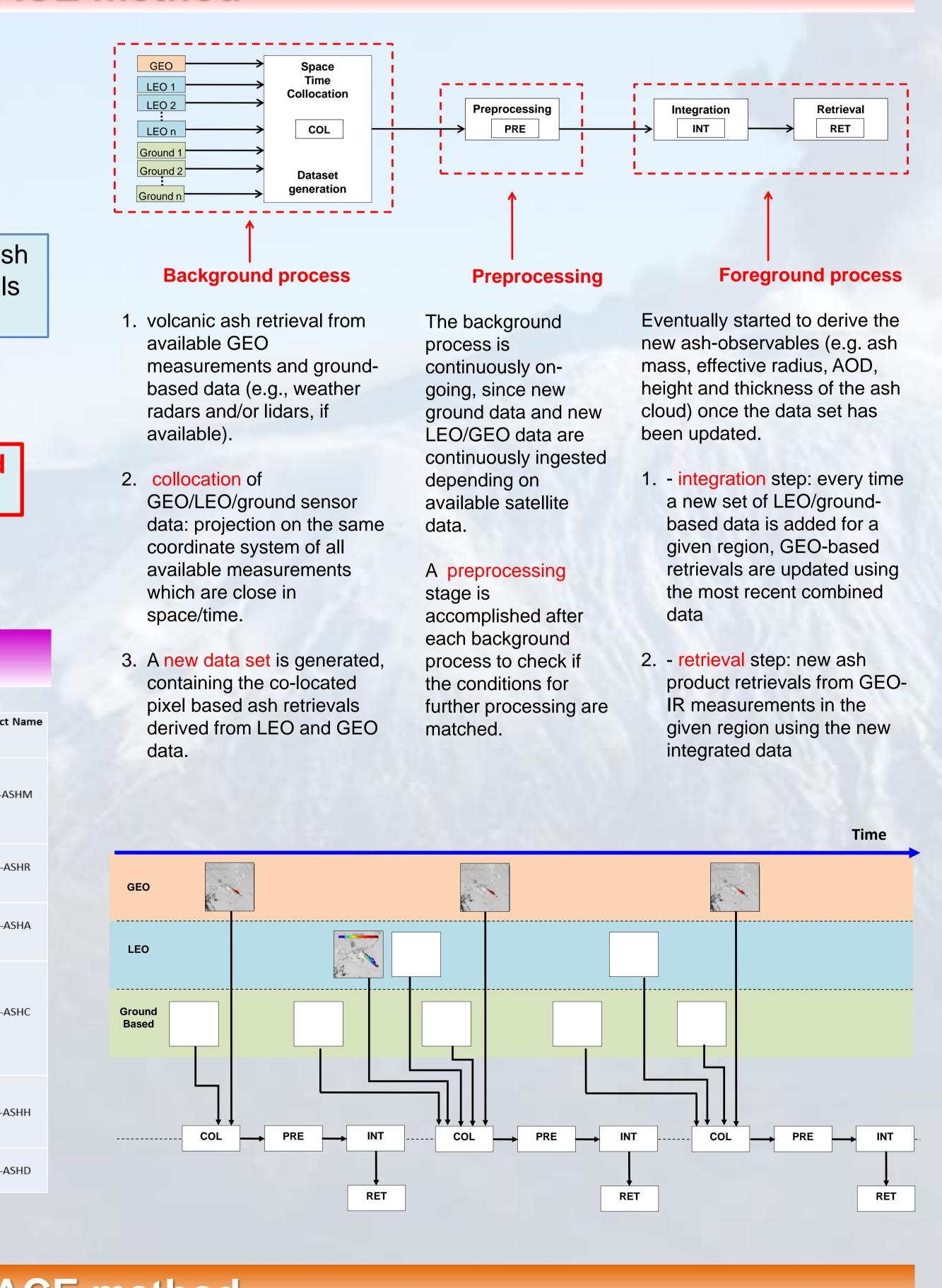
Input products: GEO and LEO space- and ground-based retrievals in VIS-TIR-MW spectral range

MACE

new integrated ash products

Instrument	Product Description	Meas. Unit	Product Name	Responsible
	TIR Ash mass map	t/km²	SEV-ASHM	
SEVIRI	TIR Ash effective radius map	μm	SEV-ASHR	
SEVIN	AOD at 0.55 mm		SEV-ASHA	
	TIR Ash Concentration map	mg/m³	SEV-ASHC	INGV-RM
	VIS-TIR Ash mass map	t/km²	MOD-ASHM	
MODIS	VIS-TIR Ash effective radius	μm	MOD-ASHR	
WODIS	AOD at 0.55 mm		MOD-ASHA	
	VIS-TIR Ash Concentration map	mg/m³	MOD-ASHC	
MERIS	AOD at 0.55 mm		MER-ASHA	
IASI	TIR Ash mass map	t/km²	IAS-ASHM	UNIOX
	TIR Ash effective radius map	μm	IAS-ASHR	
	AOD at 0.55 mm		IAS-ASHA	
	Ash Height map	km	IAS-ASHH	
	Ash TIR Concentration map	mg/m³	IAS-ASHC	
	Ash Mass map	t/km²	AAT-ASHM	
AATSR	TIR Ash effective radius map	-m	AAT-ASHR	
AATSN	AOD at 0.55 mm		AAT-ASHA	
	Ash Height map	km	AAT-ASHH	
	Ash Concentration map	mg/m³	AAT-ASHC	
MISR	VIS Ash effective radius map	μm	MISR-ASHR	INGV-CT
	Ash Height map	km	MIS-ASHH	
SSMIS	MW Ash mass map	t/km²	AME-ASHM	UNIRM
	MW Ash Concentration map	mg/m³	AME-ASHC	
AMSU-A	MW Ash mass map	t/km²	AMA-ASHM	
	MW Ash Concentration map	mg/m³	AMA-ASHC	
CALIPSO	Ash Concentration map	mg/m³	CAL-ASHC	
	Ash Height	km	CAL-ASHH	
SAR-C	Ash Detection	-	SAR-ASHD	BRGM
GPS	Ash Detection	-	GPS-ASHD	INGV-CT
	Ash detection map		RAD-ASHD	
MM D. 1	Ash Concentration map	mg/m³	RAD-ASHC	UNIRM
MW Radar	Ash Height map	km	RAD-ASHH	

NEW DDODICTC


The MACE method

APhoRISM project will start in December, 2013

The most pressing challenges related to this project are Improving retrieval algorithms' inputs with updated ash refractive index database and more accurate ash cloud height and thickness measures (see Poster 12). Improving the integration and fusion of the ash cloud parameters retrieved with different methods and data (i.e. the integration of the different ash cloud mass maps derived from the datasets collected by different sensors such as MODIS, SEVIRI, IASI ecc)

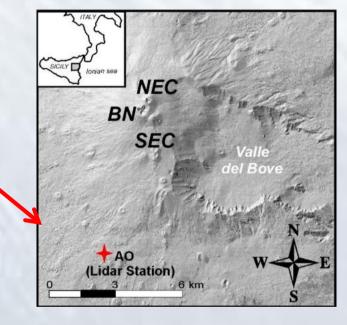
Improving the integration of modelled dispersal and transport forecasts and satellite retrievals

The MACE method

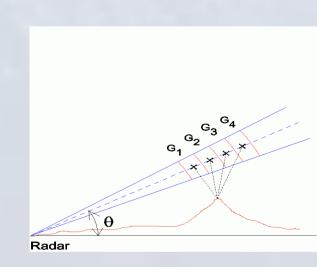
2nd IUGG-WMO workshop on Ash dispersal forecast and civil aviation

Test events

MACE ash products will be tested on three recent eruptions representative of different eruption styles in different clear or cloudy atmospheric conditions :


- Eyjafjallajokull (Iceland) 2010
- Grimsvotn (Iceland) 2011
- Etna (Italy) 2011-2012

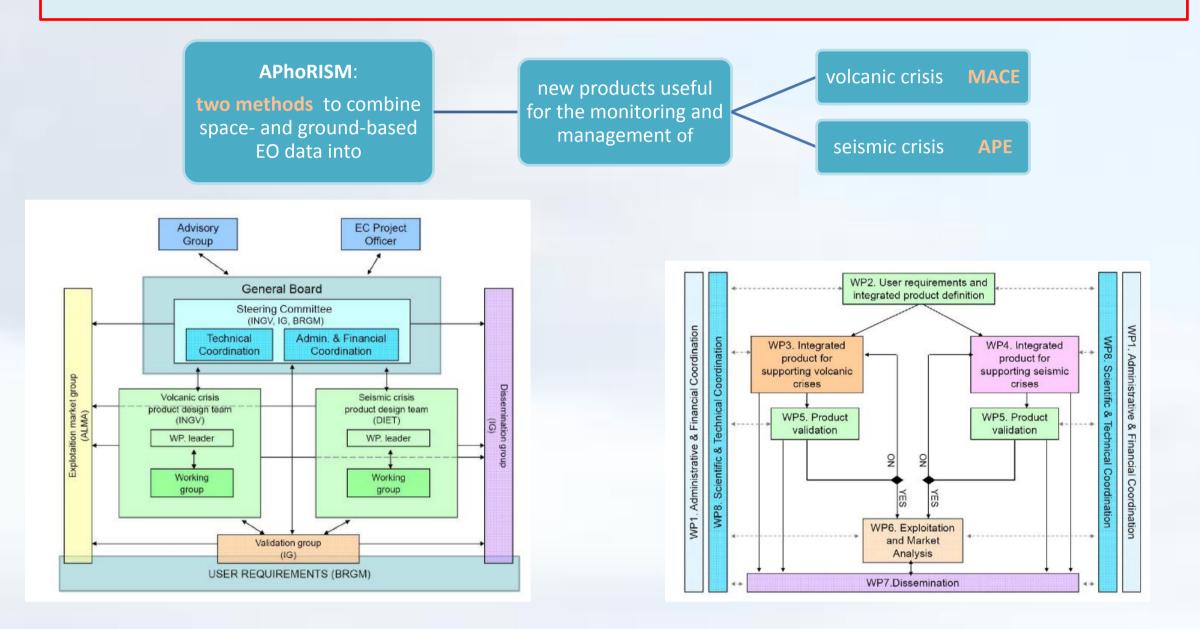
Validation


Satellite sensors ash products retrievals are compared in the MACE integration that can be seen as a continuous validation process.

Some integrated MACE ash products will be validated using data from ground based instruments deployed on Etna volcano:

ash concentration Lidar part of the EARLINET network

ash column height radar Doppler (VOLDORAD) to validate the temporal evolution of the ash column height.


The area and the sounding geometry of the Doppler radar beam above the Etna's summit craters

- development of innovative products derived from space- and ground-based data

APhoRISM objective is to demonstrate that space and ground-based remote sensing data, appropriately managed and integrated, can provide new improved products useful for seismic and volcanic crisis monitoring and management

APhoRISM:

- products

APhoRISM par

ISTITUTO NAZIONALE DI GEOFISI CONSORCI INSTITUT DE GEOMAT **BUREAU DE RECHERCHES GEOLO** UNIVERSITA DEGLI STUDI DI ROMA GAMMA REMOTE SENSING RESEA **CONSULTING AG**

THE CHANCELLOR, MASTERS AND UNIVERSITY OF OXFORD ALMA SISTEMI SAS DI DI IORIO A

Previous projects

TOWARDS FUTURE EO MISSIONS

Other missions

MW radiometers aboard Metop-A and –B: European Polar Satellite **Second Generation** (EPS-SG, Microwave Imager and Ice Cloud Imager payloads).

Lidar and cloud radar: EarthCARE (Cloud and Aerosol Estimation) European small satellite to be launched by ESA in few years.

luca.merucci@ingv.it

November 18-20, 2013 Geneva, Switzerland

CONCEPT AND OBJECTIVES

Advanced PRocedures for volcanic and Seismic Monitoring: APhoRISM

• wider exploitation of available and upcoming instruments for new performances in terms of accuracy and quality of information. aims at providing new tools for managing seismic and volcanic crisis

1. products are strongly oriented to the developments of innovative Copernicus

2. methodologies are suitable to be implemented in the next generation of Earth Observation ESA SENTINEL missions.

PARTNERS												
ners	Short name Country		Partner	Institution	Name	Role						
CA E VULCANOLOGIA	INGV	Italy	1	INGV	Salvatore Stramondo	Coordinator/WP1 & WP8 leade						
ICA	IG	Spain			Sofia Mariano	WP1 & WP8 co-leader						
GIQUES ET MINIERES	BRGM	France			Luca Merucci, Stefano Corradini	WP3 leader						
A LA SAPIENZA	DIET	Italy		IG	Michele Crosetto	WP5/WP7 leader						
ARCH AND	GAMMA	Switzerland	2		Marta Agudo	Support in technical coordination in WP8						
	HOVE	Lin the d	3	BRGM	Marcello de Michele	WP2 leader						
SCHOLARS OF THE	UOXF	United Kingdom	4	DIET	Nazzareno Pierdicca	WP4 leader						
SSIO & C ALMA Italy		7	ALMA Alessio di Iorio		WP6 leader and support in technical coordination in WP8							

Ongoing projects TUREVOLC, volcanologica supersite in Iceland

RELATED PROJECTS

VAST (Volcanic Ash Strategic-initia **SACS2** (Support to Aviation Contr Service 2) on volcanological theme

MASH (Study on an end-to-enc systeM for volcanic ASH plume monitoring and prediction)

Starting projects

D_SUV, Mediterranean Supersite Volcanoes, Mt. Etna

proced implem	ures u ented	and LEO ash retrievals used will be directly in the next generation el missions.			MACE integration method will be suitable to be implemented as well			
sensor		new sensor		note	mission			
EVIRI	FCI	Eumetsat's Flexible Combined Imager embarl on the MTG-Imager (MTG-I)	ked	additional channels with bet and radiometric resolution	SENTINEL-4			
SI	IRS	Eumetsat's InfraRed Sounder (IRS) embarked on the MTG as part of the SENTINEL 4 mission		IRS Full Disk data every 60 m resolution of 4 km				
IODIS	OLCI SLSTR	Ocean Land Colour Instrument Sea and Land Surface Temperature Radiomet	VIS-TIR spectral range with h resolution for volcanic aeros detection and retrievals	SENTINEL-3				
IERIS	OLCI			OLCI additional 6 bands in th				
ATSR	SLSTR	SLSTR		SLSTR dual view for stereo n volcanic plume altitude				
-band SAR				continuity of C-band SAR sys ENVISAT and Radarsat data	tems ERS-1, ERS-2,	SENTINEL-1		