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Caldera-forming ignimbrites: how and
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Discussion on what can be used to
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Open questions and future perspectives



Walker’s classification: where do we fit ignimbrites
and more so caldera-forming ones?
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The Volcanic Explosivity Index

VEI

O ON L AW N~ O

| TABLE 1. Criteria for Estimation of the Volcanic Explosivity Index (VEI)
‘ Criteria VEL: o 1 F) k) 4 5 & 7 B
DESCRIFTION non—explosive small moderate mod-large large very large
VOLUME OF EJECTA (4} <10t 10%-10° 10-10 107-10® 10%-10° 10*-1010 1010t 10tlage!? >0t
(TSUYA CLASSTFICATION]+ (43 {11-111) [$44] v} {v) {viz} (virt) () ====mmmn
“ COLUMH HEIGHT (EM)* <0.1 0.1-1 1-3 315 10-25 >15
QUALITATIVE DESCREIFTION ===gentle, effusive'=— mmmmn g pl aa i ve M —— ===—="cataclysmic, paroxysmal, colossal™
“gevere, wiolent, tercifie"
CLASSTFICATION ======e=—="Stronbol ian"- Mplinian™
----- "Hawaiian" "guleanian——-———-—===  sccccce-"yltraplinisn
DURATION (hours) =1 B
of continuous blase 1=
CAVW HAX EXPLOSIVITY®* ==lava Elowg=  ===—=eecceema—- =explosion or aude ardente
=====—phreatic TTT i issssssssssnsannnnnas T
===—=dowe or mudflow---
TROPOSPRERIC IHJECTION negligible winor soderate substantial
STRATOSFHERIC IRJECTLON none nane none possible dafinite sigoificant

+If all eruptive products were pyroclastic ajecta
#For VEIL's 0O=-2, uses km above crater; for VEI's 3-8, uses km above sea level.
wkThe most explosive setivity indicated for the eruption in the Catalogus of Active Volecanoems
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" Criteria are listed in decreasing order of reliability. 1
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Linearity between caldera area and erupted volume: does it
help classification?
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® Epicontinental Ring Structures
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Figure 2. Plot of caldera area versus ash-Mlow eruption volume. Diagonal lines give depths of draw-
down in magma chamber, assuming vertical walls and a Aut roof. Data from many published sources.
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Caldera collapse processes and kinematics
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Available caldera classifications so far have not explicitly related
collapse styles to deposit types although there is a general
agreement that stratigraphy should record the timing (?style?) of
collapse
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Caldera collapse - the classic model: internally triggered by
volatile supersaturation and initial overpressure

Eruptions of Ash and Pumice
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Caldera-forming sequence

Timing of caldera collapse and stratigraphy

Pressure evolution inside the magma chamber

Pressure
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Volatile-driven eruptions and ignimbrites mobility: low aspect ratios

2 VA Hudspith et al. | Palaeogeograp iy,
Ignimbrite
Valley-ponded veneer deposit
ignimbrite 25cmto 8 m,

1lo70m, ically 0.5 to 2 m
fypically =5 m Hprel

older deposils

Height of eruption column —»

eExamples of LARIs
eTaupo 186 A.D. Ignimbrite, New Zealand
eRabaul Ignimbrite (c1 Ma)
eKoya Ignimbrite, Japan : y
eCampanian Ignimbrite, ltaly (39 ka) Imply short lived, hlghly V|olent events from transfratlon of

eoKos Plateau Tuff, Greece (160 ka) potential to kinetic energy due to high eruption columns or
sedlmentatlon from turbulent suspensmns




Ilgnimbrites and mobility - low aspect vs high aspect ratios

Table 1. Observed Properties of Pyroclastic Surge Deposits and LARIs, and Inferred Properties of Their Parent Eruptions and Flows®

v, 4, L AR, G 0 Un L.
(dm) km® km A x10? x10* Ts m's! ms' km YidJ © References
Surge Deposits
Montserrat 697 00008 4 67 01 35 04 191 4x10° 35 04 3x 10" 05 Calder et al. [1999] =
Montserrat 1297 00025 98 5 04 29 07 127 2x10* 40 05 1x10% 06 Calder et al. [1999]
Taal 00050 50 4 w035 02 162 3x10* 25 08 4x10Y 03 Waters and Fisher [1971]
El ChichénS1 00325 93 6 = 13 09 130 3x10° 46 1 3 x10'" 09  Siewdsson ef al. [1987a, 1987h] rockfalls (66) I
El ChichénS2 00450 14 6 = 15 12 117 4x10° 52 1 410" 1.1  Sigurdsson er al. [1987a, 1987h]
Lamington 01 200 8 = 13 L1 145 7x10° 55 13 1x10" 13 Fn;:cfe [1‘[;;;3;; ]srmm and debris flows (29)
ibert
Mt. Saint Helens 0.1 527 20 13 03 0.1 587 2x10° 34 28 3x10" 05 Moore and Sisson [1983] b&a PF (10y F
Rabaul 06 1200 20 3 05 05 360 2x10° 55 32 210" 13 Walke 1983; McKee eral. [1985) (10) {1
LARIs pum PF (5) M—
Vulsini B 18 1250 20 =« 14 21 216 8x 10: 03 27 5x 10:‘; 35 Sparks [1975]
Koya 5 11000 60 02 0.1 1137 4x10° 53 10 5x107 1.1 Walker et al. [1980] B — T
Tosu 510000 100 1 02 01 1807 3x10° 55 11 5x107 13 Susuki-Kamata and surges (8)
Kamata [1990)
Taupo 15 20000 80 7 02 02 1180 1x107 6 12 2x10% 19 Wilson [ 1985] LARIs() - T ®
Guatamala H 18 16000 125 1 03 02 1506 1x107 8 12 2x 10" 28 Koch and McLean [1975]
Tto 50 15000 70 3 1 22 490 1x10° 143 8 4x10" 83 Walker et al. [1980] el T R EE
Kidnappers 225 45000 120 = 0.8 24 686 3x10° 175 13 3 x 10" 125 Wilson et al [1995] 5 4 3 ) o
Campanian 250 31400 100 7 1.6 57 45 6x10° 220 10 3 x 10" 199 Fisher et al. [1993] 10 10 10 10 10
Rattlesnake 330 35000 120 24 18 61 499 7x10* 240 11 4 x 10" 236  Sweck and Grunder [1995]
Dade, JGR 2003
F_ Legros, K. Kelfoun / Journal of Volcam
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Temperature of emplacement: a proxy for heat dissipation,
eruption and transport styles
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REFERENCE DEPOSIT T°C METHOD VOLUME NOTES

Paterson et al 2010 St Helens May 18 1980 330-390/>634 TRM

Paterson et al 2010 St Helens June 12 1980 510-590 TRM HARI

Paterson et al 2010 St Helens Jul 22 1980 >577 TRM boil over
Paterson et al 2010 Colima 2005 cold TRM

Banks and Hoblitt 1996 St Helens 1980 300->600 direct measurement

Banks and Hoblitt 1996 St Helens June 12 1980 540+-30 direct measurement HARI

Banks and Hoblitt 1996 St Helens Jul 22 1980 >600 boil over

Cioni et al. 2004 Vesuvio- 79 180-380 TRM 5

McClelland and Druitt 1989 Santorini - Cape Riva Middl 250->580 TRM 30

McClelland et al. 2004 Taupo 186 AD 150-300/400-500 TRM 35 LARI

Hudspith et al 2010 Taupo 186 AD 200-400°C charcoal 35 LARI

Porreca et al. 2006 Stromboli - SdL <140 TRM 0.0001 phreatomagmatic
Porreca et al. 2006 Stromboli - COA 300-340 TRM 0.0001 phreatomagmatic
Porreca et al. 2008 Colli Albani - Peperino 240-350 TRM 0.8 phreatomagmatic
Zanella et al. 2008 Vesuvio - Pollena 260-360 TRM 5

Sulpizio et al. 2008 El Chicén 380 TRM

Gurioli et al 2012 Vulcano - Commenda 160-360 TRM

Lesti et al. 2011 Galan >580°C TRM 630 crystal-rich; parly welded



Vescicularity eruption history [+hiatuses] and grain size

Klug etal BV 2002 Crater Lake
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Adams et al., BV 2006 VTTS

Table III. Vesicle measurements from explosive silicic eruptions.

Eruption Pumice type Bulk vesicularity  Average density-derived Average bulk Average
from image analysis bulk vesicularity vesicle n density (cm™)  gm D
‘CI m 0.85-0.94 (0.89) 0.78 1x10* 0.390
t 0.87-0.92 (0.89) 0.75 1x10° 0.591
e - 0.81 - -
“Pinatubo White 0.76-0.85 (0.81) 0.60 1x10%10° 0.371
Foliated 0.72-0.82 (0.77) - 1x10° 0.383
Gray 0.68-0.82 (0.74) 0.66 1x10%-10° 0.234
“'Quilotoa White (0.80) 0.66 8.9x10° 0.413
Gray (0.84) 0.71 8.1x10° 0.274
AMt. Mazama Different 0.82 1.0x10°
types
AAML. St. Helens White (0.80) 0.80 8.2x10°
Gray (0.60) 0.61 2.0x10°
Polacci Ann. Geophys. 2005



Vescicularity and grain size
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Ignimbrite Deposit | D.R.E. Composition Area Min subsidence Max hight

unit - Age volume! | volume? Max runout | 8 x 8 km caldera climbed (VED)
(km?) (km?)

Aspect ratio
Villa Senni 30+ 18 18 + 10 | Tephri-phonolitic/phono- | >1600 km? 281-437 m > 250 mat 20 6
Formation (intra- tephritic 30 km (vsn1) km from source

(VSN; 355ka) | caldera) (SiO2 54-48wt%) 3x104

i

.
Density 1000-1900 kg/m3
Vesicularity 14-64%
Connected 85-99%
k1 1.9x10-13-7.8x10"12 m?

VN
)¢

Max viscosity 1045 Pa-s | "~y

Y.

b

Vi

VSN2 i i
I,
20 km3
1l
Vo)
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141 = [0 Red Pozzolans E ‘ iy
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Eruption history: f= 30
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What drives the sustained explosivity of these mafic magmas ?

» Crystals - change of viscosity?

7.00
Giordano D. et al, 2008
6.00
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1.00 T°C =1000
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Campagnola S., 2014, unpulished PhD thesis



What drives the sustained explosivity of these mafic magmas ?

Frag mentation threshold (MPa)

Decompression?
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Phase 2
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Ignimbrites and chemical composition
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The dilemma of crystal-rich monotonous intermediates: why and
when?

{8} Manatanous intermediate dacite chamber lgnimbrfia Caldera Wolume Crysialinity | Plinian phase
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Ignimbrites and stratigraphy/timing of collapse (Ora ig. 1290 km3;
MI; f=0) no basal fall deposit; lithic poor; welded; crystal rich 45%

~1300m
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Caldera collapse - overpressure model in a viscoelastic crust

PM. Grege et al. / Journal of Volcanology and Geothermal Research 241-242 (2012) 1-12

a) Magma chamber bagins to pressunze
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A twofold classification based on collapse style + indirect
stratigraphic evidence

Chamber triggered Roof triggered
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Timing of caldera collapse and stra

Pressure evolution inside the magma chamber
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Depth and radius of magma chamber vs f --> twofold
classification of collapse and magma withdrawal
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Ilgnimbrites and stratigraphy/timing of collapse (f)
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Monotonous Intermediates mobility
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Monotonous intermediate temperatures
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Back to Walker’s classification: based on observables
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Applying Walker’s approach to caldera forming
deposits: based on observables

Stratigraphic complexity
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Applying Walker’s approach to caldera forming
deposits: based on observables
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Points for discussion
1 - do we need a classification for caldera forming eruptions?
2 - is it viable to build it on observables?
3 - what variables and how many?
4 - what is the extent of uncertainties when calculating:
caldera area (morphological vs structural)
deposit volume (bulk vs DRE) vs total mass
aspect ratios
emplacement temperature
stratigraphic timing of caldera collapse (breccia? texture?)

5 - is it meaningful to try relating calssification based on collapse
models to eruption styles?

6 - how to include repose intervals?

7/ - should we use some geophysical parameters (for active calderas)



