Volatile Controls on Eruption Style

Kathy Cashman University of Bristol

with help from Alison Rust, Julie Oppenheimer, Jenny Suckale, Isolde Belien, Emma Nicholson & Ariana Soldati

Overview - the role of volatiles

The behavior of volatiles, in large part, determines whether or not magma reaches the Earth's surface

Intrusive

Effusive

Extrusive

Explosive

Overview - the role of volatiles

The behavior of volatiles, in large part, determines whether or not magma reaches the Earth's surface

Intrusive

Extrusive

Effusive

Explosive

HOW, WHERE AND WHEN DOES GAS GET OUT?

Ten years ago - silicic systems

limit of equilibrium degassing (heterogeneous)

"Volatile Controls on Magma Ascent and Eruption" Cashman (2004)

Now - more data on mafic systems

Bubbles rise through melt 2-phase flow

Gas separation allows simultaneous explosive and effusive activity at different vents

Rapid and extensive shallow crystallization can modulate shallow degassing

Volatile Behavior

Move with magma CLOSED SYSTEM

Exsolved

Requires magma rise rate >>

- bubble rise rate
 - permeable flow
 - diffusion

Volatile Behavior

Move with magma CLOSED SYSTEM

Move through magma OPEN SYSTEM

restricted to crystalpoor mafic systems

Exsolved

Dissolved

WATER CONTENT

Requires magma rise rate >>

- bubble rise rate
- permeable flow
- diffusion

Permeable flow

silicic and crystalrich magmas

Volatile exsolution Equilibrium or dis-equilibrium?

Rhyolite:

- homogeneous
 bubble nucleation
 commonly occurs
 at high ΔP
- heterogeneous
 bubble nucleation
 can follow
 equilibrium paths

Gardner et al. (1999); Mangan and Sisson (2000)

Volatile exsolution Equilibrium or dis-equilibrium?

Rhyolite:

- homogeneous bubble nucleation commonly occurs at high ΔP
- heterogeneous
 bubble nucleation
 can follow
 equilibrium paths

Basalt:

- H₂O exsolution occurs under equilibrium conditions
- CO₂ exsolution can be kinetically limited

Even small amounts of exsolved water will expand to >>99% when decompressed to surface pressures

Even small amounts of exsolved water will expand to >>99% when decompressed to surface pressures

Evidence for expansion can be found in the particles formed by magma disruption

Vesiculation/acceleration

Gas expansion rate

>>

- rise of individual bubbles
- permeable gas flow

Transitions from closed to open system behavior

1. EXCEED CRITICAL BUBBLE RISE VELOCITY

two-phase flow

2. EXCEED CRITICAL PERMEABILITY

permeable flow

Critical bubble rise rate?

PRIMARY CONTROLS

- melt viscosity
- magma rheology (includes effects of other bubbles and crystals)
- bubble radius

Transitions in eruption style

BUBBLE RISE

Individual bubble rise most likely for low viscosity melts, large bubbles and low magma rise rates

Mangan et al. (in press)

Bubble rise

TWO-PHASE FLOW

http://www.hzdr.de/db/Cms?pOid=24991&pNid=3016

Pioli et al. (2011)

Bubble break up

BUBBLES CAN ALSO BREAK UP

dynamical effects

changes in geometry

Hele-Shaw cell

Suckale et al. (2010)

interaction with solid particles

00

Mafic eruption styles

Critical permeability?

Bubbles coalesce to form permeable gas pathways

PRIMARY CONTROLS

- bubble volume fraction
- time (viscosity, expansion rate)
- role of crystals?

Critical permeability?

Expanding melts reach the percolation (permeability) threshold only after reaching porosities of 65-75%

this reflects the time required to thin bubble walls

Rust & Cashman (2011)

Permeable flow

Explosively generated pyroclasts may exceed permeability threshold at lower bulk porosities if they are (1) crystal-rich or (2) have experienced deformation in the conduit

Wright et al. (2009)

Permeable flow

Wright et al. (2009)

Uniformly low bulk porosities of lava flows and domes requires gas loss

Explosively generated pyroclasts may exceed permeability threshold at lower bulk porosities if they are (1) crystal-rich or (2) have experienced deformation in the conduit

Permeability hysteresis

Cashman & Sparks (2013)

The pore structure (and resulting permeability) evolves as magma expands and deforms

Permeability hysteresis

Cashman & Sparks (2013)

The pore structure (and resulting permeability) evolves as magma expands and deforms

data from LePennec et al. (2001), Bernard et al. (2007), Wright et al. (2007; 2009), Wright & Cashman (2014)

Electrical conductivity measurements confirm systematic changes in the pore structure with compaction

Shallow conduit degassing

Silicic eruption styles

Transitional eruption styles

Cashman & Sparks (2013)

Degassing of multiphase magma

Most erupted pyroclasts have crystals... which leads to the question of the role of crystals on the development of gas pathways

Okamura et al. (2012)

Multiphase flow

THE EFFECT OF PARTICLES ON FLOW REGIMES

Multiphase flow

THE EFFECT OF PARTICLES ON FLOW REGIMES

There is an abrupt change in gas behavior close to the point of loose maximum particle packing (the *jamming point*)

A closer look at the jamming point

GAS INJECTED INTO PARTICLE-RICH SUSPENSION

Hele-Shaw cell with golden syrup and glass spheres

increasing particle volume fraction

A closer look at the jamming point

A closer look at the jamming point

Internal vesiculation

Pure syrup (+ baking soda + citric acid)

58% particles

(2) First connections

(3) Bursting foam

(4) Channelling

Applications?

Landi et al. (2009)

Stromboli erupts highly crystalline magma

Degassing is accomplished by distributed passive degassing (45%), puffing in the central crater (45%) and 'normal' explosions at the ends of the crater terrace (10%)

Applications?

PUFFING AND EXPLOSIONS HAVE DIFFERENT SOURCES

Ripepe et al. (2007)

Solution = 8kPa Is this the yield stress at the jamming point?

Applications?

Mafic scoria

mafic

phenocrysts

What is the effect of complex interconnected gas pathways on magma fragmentation?

glass, microlites and feldspar phenocrysts

gas

Summary

GAS EXPANDS WITHIN MAGMA: Magma expansion >> either individual bubble rise or permeable flow

BUBBLE RISE: Most effective in low viscosity, low crystallinity, near-static melt

PERMEABLE FLOW: Applicable to high viscosity and high crystallinity magma; requires initial exceedence of porosity threshold but may be maintained during deformation

MULTICOMPONENT SYSTEMS: crystals affect bulk rheology • change flow regimes • aid gas pathway development