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Processes of volcanic particle transport and sedimentation

Deposits as the basis of eruption classification
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Volcanic Ash Dispersion
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Ash dispersion from
sustained, co-
ignimbrite and
short-duration
volcanic sources

Common features:
Atmospheric
injection

Particles < 64 mm

Particle volumetric
concentration is low




Volcanic Ash Dispersion %ﬁeéfi%f
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Initial Conditions for Ash Dispersion

Puhuehue 2011

Rise height H(km)
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Sparks’ fit H = 0.220Q%2>°
Mastin's fit H = 0.304Q%-241
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Sparks 1986; Mastin et al 2009

* Volcanic plumes reach a level of neutral buoyancy controlled by mixing and

atmospheric stratification

* Height of injection is correlated to the plume source mass flux
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Initial Conditions for Ash Dispersion %‘ﬁ‘iﬁ%’gf

ECMWT reanalysis Function fits
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* Volcanic plume intrudes into the atmosphere as an ash cloud

* |Initially ash cloud is dispersed by wind and buoyancy; typical Peclet numbers

Woodhouse et al 2013
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Transition to Diffusive Spreading

The transition from buoyant spreading to ash
dispersion by wind advection and diffusion has

been identified

Costa et al 2013

Column height (km)
5 10 15 20 30 40
104 - | | | | | |

Passive

Distance (km)

Density—driven —

1t
10*  10% 10®° 107 10® 10° 10%°
MFR (kg/s)

Memovolc Workshop 2014

University of

BRISTOL
Pinatubo 15 June 1991,
A) Composite of GMS thermal satellite images.
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Advective-Diffusive Sedimentation
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Volcanic ash deposition can be described using combined wind advection,
atmospheric diffusion and particle sedimentation
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Volcanic particle sedimentation in the atmosphere
depends on particle size, density, shape and flow

regime

Tephra2 simulation of 1998 Etna eruption

Bonadonna and Costa 2013
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Deposits and Thinning Trends %ﬁ?rtgf

Volcanic airfall deposits show decrease in thickness (thinning) and in maximum
clast size with distance from the source
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Isopach and Isopleth contours (cm) for 10.5 ka eruption of Nevado de Toluca,
Mexico

Arce et al 2003
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Deposits and Thinning Trends
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Deposit thinning has been described in terms of a relationship between deposit
thickness and square root of area of the isopach enclosing that deposit thickness:

Exponential (Pyle 1989)

Exponential segments
(e.g. Fierstein &
Nathenson 1992)

Power-law fits to exponential
form

(Bonadonna & Houghton 2005)

Weibull
(Bonadonna & Costa 2012)
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Volume Estimation %%?%EE

Erupted volume can be estimated by integration of thinning trends or by statistical
regression on point thickness measurements
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Regression methods show broad agreement with isopach thinning trends
Engwell et al 2013; Burden et al 2013
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Deposit Clast Sizes %ﬁ\%ﬁlrtgf

The maximum clast size at a deposit location can be used to estimate eruption
plume height, and hence source mass flux
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Eruption Classification Based on Transport and Deposits BRISTSL

Walker (1973) devised a quantitative eruption classification based on deposit
isopachs and grainsize
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(D is area enclosed by 1% maximum thickness isopach T, ; F is % of deposit finer
than 1 mm diameter at intersection of dispersal axis and 1% T, isopach)

e D andFare hard to measure!




Eruption Classification Based on Transport and Deposits
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Volcanic Explosivity Index and Magnitude are based on deposit volume and mass
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Eruption Classification Based on Transport and Deposits
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Mastin et al (2009) proposed a classification of eruption ‘type’ based on a
combination of plume height (source mass flux) and deposit volume and particle

size fraction

M

Eruption type Example H D Vv Mg3
(Date as M/D/Y) (km) (h) (kg/s) (km?)
above vent
Mafic, standard  Cerro Negro, Nicaragua, 7 60 1x10° 001 0.05
(MO) 4/13/1992
Small (M1) Etna, Italy, 7/19-24/2001 2 100 5x10* 0.001 0.02
Medium (M2) Cerro Negro, Nicaragua, 7 60 1x10° 001 0.05
4/9-13/1992
Large (M3) Fuego, Guatemala, 10 5 1x10° 017 0.1
10/14/1974
Silicic, standard ~ Spurr, USA, 8/18/1992 11 3 4x10° 0015 0.4
(S0)
Small (S1) Ruapehu, New Zealand, 5 12 2x10° 0003 0.1
6/17/1996
Medium (S2) Spurr, USA, 8/18/1992 11 3 4x10° 0015 0.4
Large (S3) St. Helens, USA, 15 8 1x107 015 0.5
5/18/1980
co-ignimbrite  St. Helens, USA, 25 05 1x10® 0.05 0.5
cloud (S8)  5/18/1980 (pre-9 AM)
Brief (S9) Soufriere Hills, 10 0.01 3x10° 00003 0.6
Montserrat (composite)
Submarine (U0) None 0 - - -
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Type Magma type Historical eruption characteristics

MO Basalt or other mafic insufficient historical data to characterize
M1 H<5 km or VEI<2

M2 H=5-8 km or VEI=3

M3 >8 km or VEI=4

1] Andesite, dacite, rhyolite or insufficient historical data to characterize
S1 other explosive composition H<6 km or VEI<2

S2 H=6-12 km or VEI=3

S3 H=12 km or VEI= 4

S8 active column collapse

S9 active lava dome is present

uo All magma types submarine vent with water depth =50 m
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Challenges %ﬁ%%gf

Transient eruption dynamics are not well-understood — challenge to describe
frequent small transient eruptions that feed into ‘cascading’ volcanic hazard

Lack of detailed understanding of short-timescale meteorological drivers on
volcanic ash dispersion and deposition

Lack of understanding of finest particle processes e.g. aggregation, proximal
fine ash deposition
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Transport and Deposit Parameters for Eruption Classification BRISTOL

Volcanic source flux is a major control on dispersal style

Plume height alone is insufficient to characterise eruption size because it is
partially set by the wind for weak plume eruptions
- recent advances in mechanistic understanding

Not clear what information about transient eruption behaviour (short-duration
eruption or source fluctuations in continuous eruptions) can be preserved in
deposits

Deposit parameters - area/thickness
- size/size distribution/density

Optimizing information obtained from deposits; e.g. combining thickness and
grainsize information (Bonadonna & Costa 2013)
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