Privacy Preserving Identification Using Sparse Approximation with Ambiguization

Behrooz Razeghi, Slava Voloshynovskiy, Dimche Kostadinov and Olga Taran

Stochastic Information Processing Group University of Geneva Switzerland

December 2017

Outline

Introduction

Proposed Framework

Main Idea
Sparse Data Representation
Ambiguization
Privacy-Preserving Identification

Results

Privacy-preserving content identification

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

Privacy-preserving content identification

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

Recent Trends

Big Data & Distributed Applications

Services on outsourced cloud-based systems

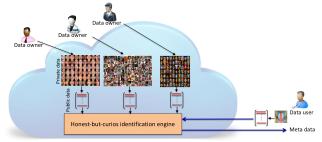
Privacy-preserving content identification

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

Recent Trends

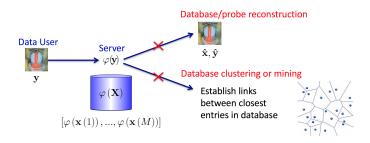
Big Data & Distributed Applications

Services on outsourced cloud-based systems

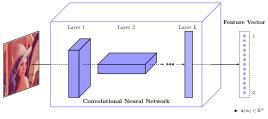


Problem Formulation

Goal of privacy protection in outsourced services



How do we receive a feature vector?



- Cryptographic Methods Homomorphic Encryption
 - Main Idea: Similarity search in the encrypted domain
 - Brute force identification ⇒ huge complexity
- Robust Hashing a single hash from the whole content / local descriptors / last layer of CNN
 - Main Idea: $x \longrightarrow (011011100110)$ and believed non-invertability
 - Loss in performance due to binarization
 - Unauthorized database clustering

- Cryptographic Methods Homomorphic Encryption
 - Main Idea: Similarity search in the encrypted domain
 - Brute force identification ⇒ huge complexity
- Robust Hashing a single hash from the whole content / local descriptors / last layer of CNN
 - Main Idea: $\mathbf{x} \longrightarrow (011011100110)$ and believed non-invertability
 - Loss in performance due to binarization
 - Unauthorized database clustering
- **Group Testing / Memory Vectors**
 - Main Idea: Group testing by measuring the proximity to the group representative
 - Group representatives (memory vectors) should be stored in memory

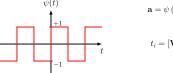
- Cryptographic Methods Homomorphic Encryption
 - Main Idea: Similarity search in the encrypted domain
 - Brute force identification

 huge complexity
- Robust Hashing a single hash from the whole content / local descriptors / last layer of CNN
 - Main Idea: $\mathbf{x} \longrightarrow (011011100110)$ and believed non-invertability
 - Loss in performance due to binarization
 - Unauthorized database clustering
- **Group Testing / Memory Vectors**
 - Main Idea: Group testing by measuring the proximity to the group representative
 - Group representatives (memory vectors) should be stored in memory

state-of-the-art

Universal Quantization

- Main Idea: projection with the dimension reduction and periodic quantization
 - Binary quantization: in the region of low projected magnitudes high P_b
 - Ambiguization due to periodization of quantizer no possibility to recover data even for the authorized users
 - Server can still can cluster data privacy leakages
 - Information preservation in general no link to R(d) and recovery is demonstrated so far



$$\mathbf{a} = \psi (\mathbf{W}\mathbf{x})$$

$$t_i = [\mathbf{W}\mathbf{x}]_i$$

- Proposed approach: 3 key elements
 - Sparsification
 - Ambiguization
 - Search / Identification
- Advantages:
 - Fast search / memory efficient
 - Difficult to accurately reconstruct from probe
 - Server cannot reveal a structure of the database

- Proposed approach: 3 key elements
 - Sparsification
 - Ambiguization
 - Search / Identification
- Advantages:
 - Fast search / memory efficient
 - Difficult to accurately reconstruct from probe
 - Server cannot reveal a structure of the database
- Main concerns addressed in our study:
 - Performance
 - Memory (database) / complexity (identification)
 - Privacy-preserving with respect to:
 - \blacksquare database \mathcal{A}
 - probe y

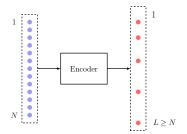
- Proposed approach: 3 key elements
 - Sparsification
 - Ambiguization
 - Search / Identification
- Advantages:
 - Fast search / memory efficient
 - Difficult to accurately reconstruct from probe
 - Server cannot reveal a structure of the database
- Main concerns addressed in our study:
 - Performance
 - Memory (database) / complexity (identification)
 - Privacy-preserving with respect to:
 - \blacksquare database \mathcal{A}
 - \blacksquare probe \mathbf{y}

└ Main Idea

Part 1: Sparse Data Representation

Sparsification

Main Idea



 $\mathbf{x}(m) \in \mathbb{R}^N$

▶ $\mathbf{a}(m) \in \{-1, 0, +1\}^{L}$

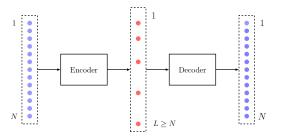
 $ightharpoonup \mathbf{x}(m) \sim p(\mathbf{x})$

- $\blacktriangleright \|\mathbf{a}(m)\|_0 \leq S_x$
- ▶ Rate: $R = \frac{1}{L} \log_2 \left(\binom{L}{S_x} 2^{S_x} \right)$

└ Main Idea

Sparsification

Main Idea



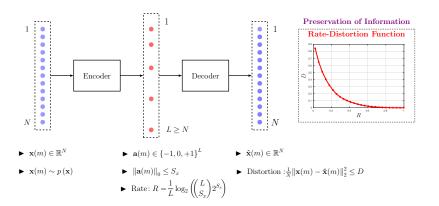
 $\mathbf{x}(m) \in \mathbb{R}^N$ \triangleright $\mathbf{x}(m) \sim p(\mathbf{x})$

- ▶ $\mathbf{a}(m) \in \{-1, 0, +1\}^L$
- ▶ $\|\mathbf{a}(m)\|_{0} \le S_{x}$
- ► Rate: $R = \frac{1}{L} \log_2 \left(\binom{L}{S_-} 2^{S_z} \right)$
- \blacktriangleright $\hat{\mathbf{x}}(m) \in \mathbb{R}^N$
 - ▶ Distortion : $\frac{1}{N} ||\mathbf{x}(m) \hat{\mathbf{x}}(m)||_2^2 \le D$

└ Main Idea

Sparsification

Main Idea



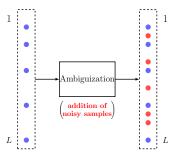
Part 2: Ambiguization

└ Main Idea

Proposed Framework
Main Idea

Ambiguization

Main Idea



 $\quad \mathbf{a}(m) \in \left\{-1,0,+1\right\}^L$

► Public Domain

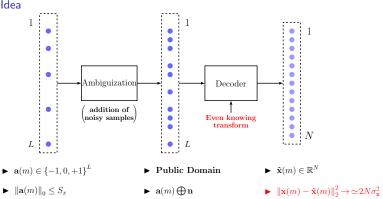
▶ $\|\mathbf{a}(m)\|_{0} \leq S_{x}$

a(m) ⊕ n

└ Main Idea

Ambiguization

Main Idea



- ▶ Prevent reconstruction from $\mathbf{a}(m) \bigoplus \mathbf{n}$ and from probe \mathbf{y}
- \blacktriangleright Preclude server from discovering the structure of the database ${\mathcal A}$

12 / 34

Part 3: Privacy-Preserving Identification

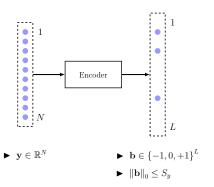
└ Main Idea

└ Main Idea

Proposed Framework

Privacy-Preserving Identification: Private Search

Main Idea: User discloses his probe completely

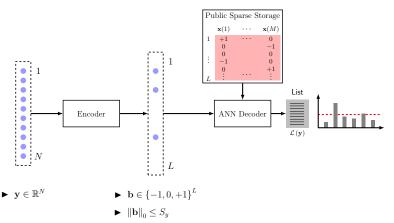


−Proposed Framework

∟Main Idea

Privacy-Preserving Identification: Private Search

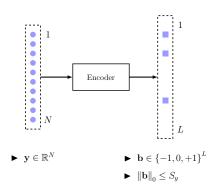
Main Idea: User discloses his probe completely



└ Main Idea

Privacy-Preserving Identification: Public Search

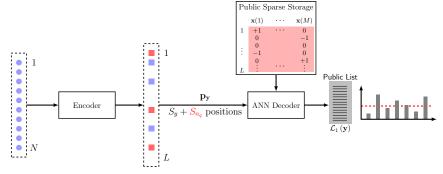
Main Idea: User sends only positions of interest



└ Main Idea

Privacy-Preserving Identification: Public Search

Main Idea: User sends only positions of interest



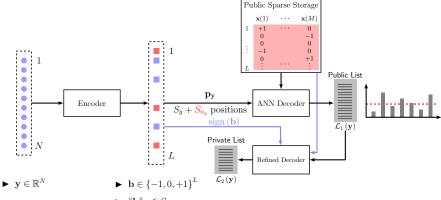
 $\mathbf{y} \in \mathbb{R}^N$

- ▶ $\mathbf{b} \in \{-1, 0, +1\}^L$
- $\|\mathbf{b}\|_0 \le S_y$
- ▶ Add S_{n_q} random positions

└ Main Idea

Privacy-Preserving Identification: Public Search

Main Idea: User sends only positions of interest

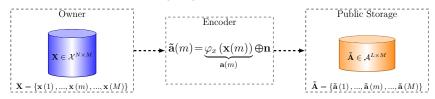


- $\|\mathbf{b}\|_0 \leq S_u$
- ightharpoonup Add S_{n_a} random positions

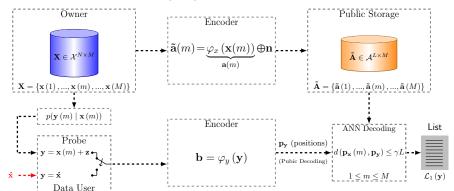
∟ Main Idea

Proposed Framework

Main idea behind the proposed solution



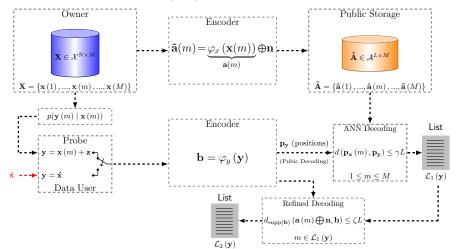
Main idea behind the proposed solution



−Proposed Framework

∟Main Idea

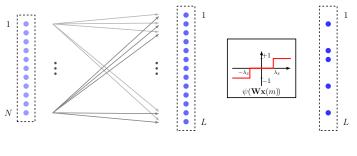
Main idea behind the proposed solution



Sparse Data Representation

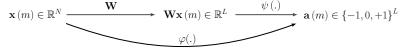
Sparsifying Transform

A Schematic Idea



Linear Mapping

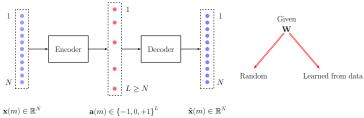
Element-wise Non-linearity



Sparse Data Representation

Sparsifying Transform

General Problem Formulation



■ Encoder:

$$\mathbf{\hat{a}}\left(m\right)=\psi\left(\mathbf{W}\mathbf{x}\left(m\right)\right)$$

Decoder:

$$\mathbf{\hat{x}}\left(m\right) = \mathbf{W}^{\dagger}\mathbf{\hat{a}}\left(m\right)$$

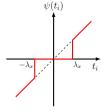
Sparse Data Representation

Encoder: as a projection problem (for a fixed W)

$$\widehat{\mathbf{a}}(m)\!=\!\mathop{\arg\min}_{\mathbf{a}(m)\in\mathcal{A}^L}\left\|\mathbf{W}\mathbf{x}(m)\!-\!\mathbf{a}(m)\right\|_2^2+\beta\Omega\left(\mathbf{a}(m)\right),\forall m\in[M]$$

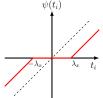
-
$$\mathbf{W} \in \mathbb{R}^{L \times N}$$
, $\mathbf{x}(m) \in \mathbb{R}^N$, $\mathbf{a}(m) \in \mathbb{R}^L$

- Closed-form solution for: $\Omega\left(.\right) = \left\|.\right\|_{0}$ and $\Omega\left(.\right) = \left\|.\right\|_{1}$



Hard-thresholding operator

$$\Omega \left(.\right) =\left\Vert .\right\Vert _{0}$$



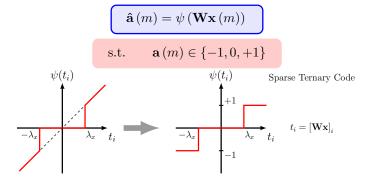
 $\hat{\mathbf{a}}(m) = \psi(\mathbf{W}\mathbf{x}(m))$

Soft-thresholding operator

$$\Omega(.) = ||.||_1$$

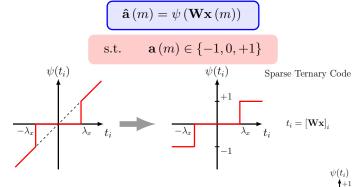
Sparse Data Representation

Encoder: Extra constraint on the alphabet



Sparse Data Representation

Encoder: Extra constraint on the alphabet

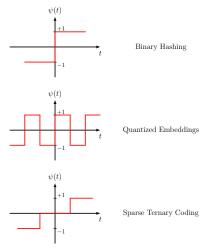


Remark:

Binary hashing (like LSH) is the special case of our $\psi(.)$ for $\lambda_x=0$.

Sparse Data Representation

Comparison of Three Encoding Schemes



Proposed Framework

Sparse Data Representation

Learning Sparsifying Transform

General Formulation: joint learning

$$\left(\hat{\mathbf{W}}, \hat{\mathbf{A}}\right) = \arg\min_{\left(\mathbf{W}, \mathbf{A}\right)} \left\| \mathbf{W} \mathbf{X} - \mathbf{A} \right\|_{F}^{2} + \beta_{W} \Omega_{W}(\mathbf{W}) + \beta_{A} \Omega_{A}(\mathbf{A})$$

► Sparse Coding Step (Fixed W):

$$\hat{\mathbf{A}} = \arg\min_{\mathbf{A}} \|\mathbf{W}\mathbf{X} - \mathbf{A}\|_F^2 + \beta_A \Omega_A (\mathbf{A})$$

$$\hat{\mathbf{a}}(m) = \psi (\mathbf{W}\mathbf{x}(m))$$

Transform Update Step (Fixed A):

$$\mathbf{\hat{W}} = \arg\min_{\mathbf{W}} \|\mathbf{W}\mathbf{X} - \mathbf{A}\|_F^2 + \beta_W \Omega_W (\mathbf{W})$$

Linear Regression : (with quadratic regularizer)

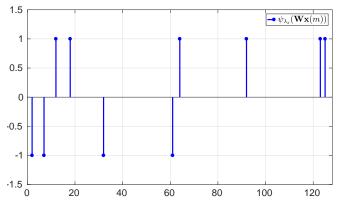
$$\hat{\mathbf{W}} = \mathbf{A}\mathbf{X}^T \Big(\mathbf{X}\mathbf{X}^T + \beta_W \mathbf{I}_N\Big)^{-1}$$

-Proposed Framework
-Ambiguization

Ambiguization Scheme

Main Idea

Add noise to **non-zero** components of sparse representation



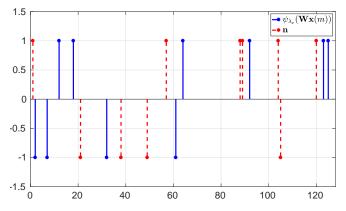
-Proposed Framework

☐ Ambiguization

Ambiguization Scheme

Main Idea

Add noise to **non-zero** components of sparse representation

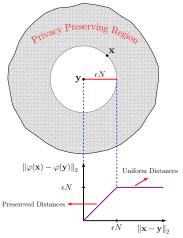


-Proposed Framework

Privacy-Preserving Identification

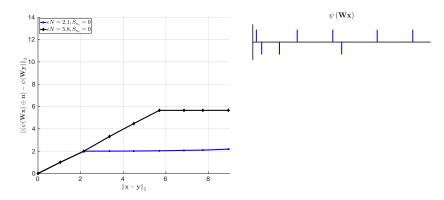
Desired property of mapping scheme

Distance preservation in the desired radius



Impact of Ambiguization at Server Side

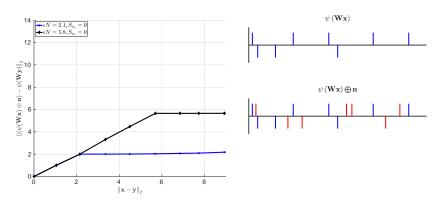
Goal: The server should not distinguish distances $\|(\psi(\mathbf{W}\mathbf{x}) \oplus \mathbf{n}) - \psi(\mathbf{W}\mathbf{y})\|_2$



Distances are computed in the full length.

Impact of Ambiguization at Server Side

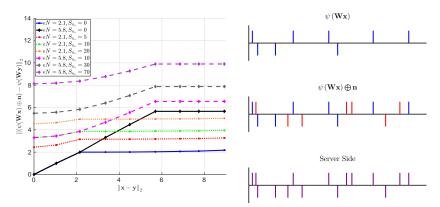
Goal: The server should not distinguish distances $\|(\psi(\mathbf{W}\mathbf{x}) \oplus \mathbf{n}) - \psi(\mathbf{W}\mathbf{y})\|_2$



Distances are computed in the full length.

Impact of Ambiguization at Server Side

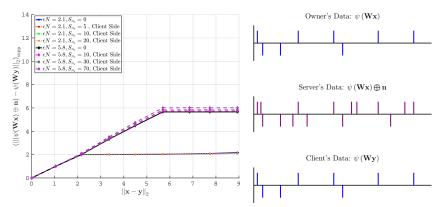
Goal: The server should not distinguish distances $\|(\psi(\mathbf{W}\mathbf{x}) \oplus \mathbf{n}) - \psi(\mathbf{W}\mathbf{y})\|_2$



Distances are computed in the full length.

Impact of Ambiguization at Client Side

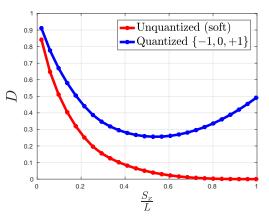
Goal: The client should distinguish distances $(\|(\psi(\mathbf{W}\mathbf{x}) \oplus \mathbf{n}) - \psi(\mathbf{W}\mathbf{y})\|_2)_{\text{supp}}$



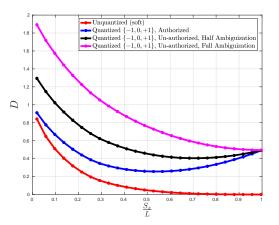
Distances are computed in the non-zero components of probe.

Reconstruction: Authorized User \triangleright $\hat{\mathbf{x}} = \mathbf{W}^{\dagger} \mathbf{a}$

 \mathbf{x} : i.i.d. Gaussian, with each sample $X_n \sim \mathcal{N}\left(0,1\right)$, $\frac{N}{L}=1$ S_x : Sparsity Level



Reconstruction: Unauthorized User \triangleright $\hat{\mathbf{x}} = \mathbf{W}^{\dagger} (\mathbf{a} \bigoplus \mathbf{n})$

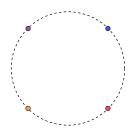


Half Ambiguization: $S_{n_s} = \frac{1}{2}(L - S_x)$

Full Ambiguization: $S_{n_s} = (L - S_x)$

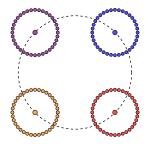
Generate Structured Data

- ▶ Generate:
 - Four 512-dimensional i.i.d. vectors with distribution $\mathcal{N}\left(\mathbf{0},\mathbf{1}\right)$
 - 1000~512-dimensional i.i.d. vectors with distribution $\mathcal{N}\left(\mathbf{0},\mathbf{0.1}\right)$
- ▶ Add each 250 (out of 1000) low variance vectors to the four high variance ones

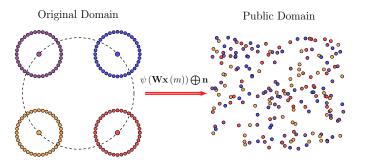


Generate Structured Data

- Generate:
 - Four 512-dimensional i.i.d. vectors with distribution $\mathcal{N}\left(\mathbf{0},\mathbf{1}\right)$
 - 1000~512-dimensional i.i.d. vectors with distribution $\mathcal{N}\left(\mathbf{0},\mathbf{0.1}\right)$
- \blacktriangleright Add each 250 (out of 1000) low variance vectors to the four high variance ones



Goal: Hide structure of database



Introduce Measure for Evaluation

Define:

$$\qquad \qquad \alpha_x = \frac{S_x}{L}, \ S_x : \mathsf{Sparsity} \ \mathsf{level}$$

Denote:

 $ightharpoonup P_{
m intra}$: PDF of 'intra-cluster' distances

▶ Pinter : PDF of 'inter-cluster' distances

Define:

$$P_1 = \alpha_x P_{\text{intra}} + (1 - \alpha_x) P_{\text{inter}}, \quad 0 \le \alpha_x \le 1$$

Denote:

$$ightharpoonup P_2 \sim \mathcal{N}\left(\mu_2, \sigma_2^2\right)$$
, fit to P_1

Define:

Privacy Leak Measure:

$$D(P_1 || P_2) = \alpha_x D(P_{\text{intra}} || P_2) + (1 - \alpha_x) D(P_{\text{inter}} || P_2)$$
$$= \mathbb{E}_{P_1} \left[\log \frac{P_1}{P_2} \right]$$

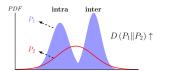
Introduce Measure for Evaluation

Define:

$$ightharpoonup \alpha_x = \frac{S_x}{I}$$
, S_x : Sparsity level

Denote:

- Pintra: PDF of 'intra-cluster' distances
- ▶ P_{inter} : PDF of 'inter-cluster' distances



Clear distinguishability based on inter&intra-distances

Define:

$$P_1 = \alpha_x P_{\text{intra}} + (1 - \alpha_x) P_{\text{inter}}, \quad 0 \le \alpha_x \le 1$$

Denote:

$$ightharpoonup P_2 \sim \mathcal{N}\left(\mu_2, \sigma_2^2\right)$$
, fit to P_1

Define:

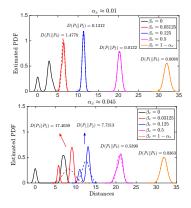
Privacy Leak Measure:

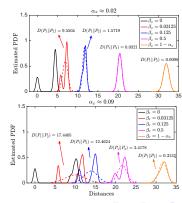
Not distinguishable

$$D\left(P_{1} \| P_{2}\right) = \alpha_{x} D\left(P_{\text{intra}} \| P_{2}\right) + \left(1 - \alpha_{x}\right) D\left(P_{\text{inter}} \| P_{2}\right)$$
$$= \mathbb{E}_{P_{1}} \left[\log \frac{P_{1}}{P_{2}}\right]$$

Clustering: How much ambiguization should be added to have indistinguishability for the server?

Evaluation of Our Scheme: $\alpha_x=\frac{S_x}{L}$, $\beta_x=\frac{S_{n_s}}{L}$, $S_{n_s}:\#$ of noise components for the server





Conclusions:

- Preserve distances up to the desired radius
- Ensure the reconstruction of data for authorized users
- Preclude the curious server to cluster or reconstruct the samples in the database
- Public decoding scheme

34 / 34