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Abstract—In this paper, we propose a privacy preserving
framework for outsourced media search applications. Considering
three parties, a data owner, clients and a server, the data owner
outsources the description of his data to an external server,
which provides a search service to clients on the behalf of the
data owner. The proposed framework is based on a sparsifying
transform with ambiguization, which consists of a trained linear
map, an element-wise nonlinearity and a privacy amplification. The
proposed privacy amplification technique makes it infeasible for
the server to learn the structure of the database items and queries.
We demonstrate that the privacy of the database outsourced to
the server as well as the privacy of the client are ensured at a
low computational cost, storage and communication burden.

Keywords—data privacy; sparse approximation; transform
learning; ambiguization; content-based retrieval.

I. INTRODUCTION

The main challenge for outsourced media search is that the
server must remain capable of performing the search service
whilst knowing little about the owner’s data and the clients’
interests. This paper presents a new privacy preserving strategy
for the third party outsourced media search problem based
on the recently proposed concept of sparse approximation
with ambiguization [1]. Our main contribution consists of
a novel framework based on Scaled Sparse Ternary Coding
(SSTC) and partial ambiguization. In our framework the owner
and the client compute the sparse representations from the
media data that they own using a trained linear map followed
by a element-wise nonlinearity. Each sparse representation is
split into two parts. One part left almost in-the-clear and the
other part is ambiguized. Both in-the-clear and ambiguized
representations of the owner’s database are send to the server.
The in-the-clear part is used by the server for the initial
similarity search. The ambiguized part is used by the client
to refine the list. A similar idea based on DCT transform with
binarization has been proposed in [2].

Given a database, the dictionary learning problem is the
task of learning a transform that allows sparse representations
of the data. The main downside of the learned transforms is
that they lack structure and therefore are not computationally
efficient, unlike the classical well-known transforms such as
Fourier, Hadamard and so forth. Analogous to [1], in this
paper we construct an orthonormal structured dictionary. Then
we project the data onto the column space of the dictionary
and keep the largest Sx components in magnitude to obtain
the provable best Sx-term approximation. We construct the
structured sparsifying transform that may keep or extend the
dimension of the original signal. We impose no restrictions
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Fig. 1: Block diagram of the proposed outsourced media search.

on the input data, i.e., we assume that as an input we might
have raw data, extracted features using any known hand crafted
methods, aggregated local descriptors based on BoW, FV,
VLAD [3]–[5], etc., or from the last layers of deep nets [6].

In comparison to the most recent outsourced media search
framework based on robust hashing and partial encryption [8],
there are several fundamental differences:
1) Transformation: In [8], the authors used a dimensionality
reduction transform with random entries. In this paper, we
consider a square or an over-complete transform, which may
extend the dimensions. That is, instead of projecting data
to a lower dimension, we project our data to the same or
higher dimensions. Moreover, our transform is trained us-
ing the sparsifying Procrustes problem to ensure an optimal
sparse representation that is information preserving in general,
whereas the locality-sensitive hashing (LSH) in [8] might
preserve the distances only under certain conditions of the
Johnson-Lindenstrauss Lemma.
2) Codes: In [8], the codes are dense and binary, whereas in
our method the codes are sparse and scaled ternary, which
form a basis of our ambiguization framework.
3) Encryption: In [8], the authors used standard encryption
for preserving privacy. However, we simply add ambiguization
noise to the nonzero components of the sparse representation.
The standard encryption has more computation and communi-
cation cost in comparison to our ambiguization method.
4) Decryption: In [8], the returned encrypted hash values must
be decrypted at the client side in order to perform similarity
search. However, in our method the client just computes the
similarity measure on the support of its sparse representation
that is more computationally efficient.



A. Notation
The superscript (·)T stands for the transpose and (·)† stands

for the pseudo-inverse. Vectors and matrices are denoted by
boldface lower-case (x) and upper-case (X) letters, respec-
tively. We consider the same notation for a random vector x
and its realization. The difference should be clear from the
context. xi denotes the i-th entry of vector x. For a matrix X,
x(j) denotes the j-th column of X. We use the notation [N ]
for the set {1, 2, ..., N} and card (S) for the cardinality of a
set S.
B. Outline of the Paper

The remainder of the paper is organized as follows. In
Section II, the problem formulation is introduced. Then, in
Section III we present our framework. We provide the privacy
performance in Section IV. Finally, conclusions are drawn in
Section V.

II. PROBLEM FORMULATION
Consider that a owner has a collection of M (raw)

feature vector x(m),m ∈ [M ] in the database X =
[ x(1), · · · ,x(m), · · · ,x(M) ], where each feature
vector x(m),m ∈ [M ] from a set X ⊂ RN is a random vector
with distribution p (x) and bounded variance σ2

x. The user has
a query y(m) ∈ RN which is a noisy version of x(m), i.e.,
y(m) = x(m) + z, where we assume z ∈ RN is a Gaussian
noise vector with distribution N

(
0,Σz = σ2

zIN
)
. The user is

interested in some information about the subset L (y) of the
γ-NN (or γ-ANN) of y. The owner subcontracts the similarity
search to an entity called the server.

III. PROPOSED FRAMEWORK

A. Framework Overview
Our framework is composed of the following five steps

(Fig. 1):
1) Preparation at Owner Side: The owner computes

the sparse representations from the media data that he owns
using the trained linear map followed by the element-wise
nonlinearity. Each sparse representation is split into two parts.
One part is left in-the-clear in sparsified form and the other
part is sparsified and ambiguized. These representations are
send to the server.

2) Indexing at Server Side: The server indexes the in-
the-clear parts of the received sparse codes to a database.

3) Querying at Client Side: The client computes a sparse
representation from his query data using the same trained lin-
ear map followed by the element-wise nonlinearity. Then, the
client sends the signs of a fraction of its sparse representation
to the server. The indices of these components correspond to
the in-the-clear part components of the sparse representation
generated by the owner.

4) Searching at Server Side: The server runs a similarity
search to identify the sparse representations that are most
similar to the query. Similarity is computed using the received
partial query code and the in-the-clear parts of the database
codes. Finally, the ambiguized parts of the most similar codes
are send back to the client, along with the distance information
computed at the server for the in-the-clear parts.

5) Refining at Client Side: The client runs a similarity
search on the support (non-zero components) of his sparse
code. The final list is computed using similarity search within
the initial list.

B. Scaled Sparse Ternary Coding
In [1], we use a transform model [9] for the sparse

representation of vectors at the enrollment and identification
phases. This model suggests that a feature vector x(m) ∈ RN
is approximately sparsifiable using a transform W ∈ RL×N ,
that is Wx(m) = a(m)+ea, where a(m) ∈ RL is sparse, i.e.,
‖a(m)‖0 � L, and ea ∈ RL is the representation error of the
feature vector or residual in the transform domain. The sparse
coding problem for this model is a direct constraint projection
problem. This sparse approximation is as follows:

â(m)= arg min
a(m)∈AL

‖Wx(m)−a(m)‖22 +λΩ (a(m)),∀m ∈ [M ] .

(1)
The above direct problem has a closed-form solution for
any of the two important regularizers Ω (·) = ‖ · ‖0 or
Ω (·) = ‖ · ‖1. Analogous to [1], we consider the `0-“norm”
as our sparsity-inducing penalty. In this case, the solution
â(m) is obtained exactly by hard-thresholding the projection
Wx(m) and keeping the Sx entries of the largest magnitudes
while setting the remaining low magnitude entries to zero.
For this purpose, we define an intermediate vector f(m) ,
Wx(m) ∈ RL and denote by λx the Sx-th largest magnitude
amongst the set {|f1(m)|, ..., |fL(m)|}. Then the closed-form
solution is achieved by applying a hard-thresholding operator
to f(m), which is defined as aH (m) = Hλx(f (m)) =
1|fl(m)|≥λx

f(m),∀m ∈ [M ] ,∀l ∈ [L]. In [1], the authors
consider the alphabet of sparse representation vectors as
A = {−1, 0,+1} and apply the ternary hash mapping to
Hλx

(Wx (m)) as:

aT (m) , Tλx
(Wx (m)) ∈ {−1, 0,+1}L, ∀m ∈ [M ] , (2)

where Tλx
(Wx (m)) = sign (Hλx

(Wx (m))).

In order to reduce the information loss of ternary hash map-
ping, we propose the Scaled Ternary Sparse Coding (SSTC)
scheme, which enhances the accuracy of similarity search. It
is clear that, given a fixed λx (or Sx), the operator Tλx

(·)
imposes a greater loss of information in comparison to the
operator Hλx (·). By employing SSTC, we make a balance
between the sparse vector aH (m) and ternarized sparse vector
aT (m). Given λx, to find an optimal scale factor τm ∈ R+

such that aH (m) ≈ τmaT (m), we solve an optimization
problem:

τ∗m = arg min
τm

‖aH (m)− τmaT (m) ‖22, s.t. τm > 0. (3)

The cost function ‖aH (m)− τmaT (m) ‖22 =: J (τm), can be
express as J (τm) = aTH(m)aH(m) − 2τmaTH(m)aT (m) +
τ2
maTT (m)aT (m). Since aTH(m)aH(m) = gm is a known

constant variable, and also aTT (m)aT (m) = Sx, we can rewrite
J (τm) as gm − 2τmaTH(m)aT (m) + τ2

mSx. Therefore, the
optimal weight τ∗m can be simply obtained by taking the
derivative of J (τm) with respect to τm and set to zero.
As a result, we have τ∗m =

(
aTH(m)aT (m)

)
/Sx. Since

aT (m) = sign (aH(m)), we have τ∗m = 1
Sx

∑ |aH(m)|.

We denote the space of public storage as AL×M . For
simplicity, through out this paper, we denote by S ⊂ XN
the space of vectors in the signal (original) domain and by
T ⊂ AL the space of vectors in the transform domain.
Also, we denote by ψ(·) the operator Tλ (·) in general, i.e.,
ψ(Wx) = τ � Tλ (Wx), where � is the Hadamard product.



C. Learning Structured Overcomplete Transform
We construct our overcomplete transform by stacking the C

orthonormal sub-transforms as W =
[

WT
1 · · · WT

C

]T ∈
RL×N , with L = CN , where Wc ∈ RN×N , c ∈ [C] are
sufficiently different. Our similarity measure between Wc and
Wć, c, ć ∈ [C] is based on the mutual coherence [10] of the
Gcć =

[
WT

c WT
ć

]
∈ RN×2N , which is defined as:

µ (Gcć) = max
1≤k,j≤N,k 6=j

|gTcć(k)gcć(j)|
‖gcć(k)‖2.‖gcć(j)‖2

. (4)

Since Wc and Wć are orthonormal matrices, the mutual coher-
ence of this transform satisfies 1/

√
N ≤ µ (Gcć) ≤ 1 [11]. Note

that one can propose various interesting privacy-preserving
scenarios by considering different structures, communication
schemes, sparsifying rates etc. for transform matrices.

Our sparsifying transform learning is based on the classical
Procrustes matrix problem [12]. That is, we seek orthonor-
mal matrices Wc ∈ RN×N , c ∈ [C], which most closely
transforms a fix matrix X ∈ RN×M into a sparse matrix
Ac ∈ RN×M . Therefore, using the Frobenius norm, the
problem is to find Wc minimizing ‖Wc X−Ac‖2F , subject
to WcW

T
c = I. For the square sparsifying transform, it can

be shown that for variable Wc and fixed X, the closed-
form solution Wc = UcV

T
c is given by the singular value

decomposition AcX
T = UcΣcV

T
c . Our algorithm for the

above minimization problem alternates between solving for
Ac = ψ (WcX) (sparse coding step) and Wc = UcV

T
c

(transform update step), whilst the other variables are kept
fixed. Moreover, note that we can learn each transform matrix
Wc based on the training signals of class c ∈ [C]. In this case,
each block of our over-complete transform will be optimal for
its corresponding class.

D. Algorithm
1) Preparation at Owner Side: The owner transforms of-

fline the feature vectors with trained linear map W followed
by the element-wise nonlinearity map ψ(·). Then, the owner
splits each scaled sparse ternary code into a public sparse
code a1 and private (secret) sparse code a2, with respective
lengths Lp and Ls such that L = Lp + Ls. The sign of
the sparse components of the public part, i.e., aclear(m) =
sign (a1(m)) ,∀m ∈ [M ], along with the ambiguized non-
sparse code aamb(m) = a2(m)⊕n,∀m ∈ [M ] are outsourced
to the server, where n ∈ {±τm},m ∈ [M ] and ⊕ is
orthogonal direct sum. The ambiguization scheme is similar
to the proposed method in [1]. It is clear that there is a trade-
off between privacy and utility at the server. If we send more
components (larger value for Lp) to the server, we increase
the privacy leakage, since the server might cluster the public
codes in the database. In contrast, a small value for Lp leads
to higher privacy.

2) Indexing at Server Side: Since the code is sparse, it can
be indexed as in [13], [14].

3) Querying at Client Side: The client transforms the
feature vector y from its query, using the shared trained linear
map W followed by the element-wise nonlinearity map. Then,
the client splits his scaled sparse ternary code into two parts.
The sign of the public part then forms the query, which is
send to the server. In contrast to the ambiguization part at the
owner side, we have no ambiguization for the private part at
the client side.

4) Searching at Server Side: Provided that meaningful sim-
ilarity search is possible between bclear and aclear (m) ,m ∈
[M ], the server seeks all {aclear (m) ,m ∈ [M ]} NNs in
the radius γ1Lp from the query bclear in order to produce
an initial list L1 of possible candidates as L1 (bclear) =
{m ∈ [M ] : dA1

(aclear (m) ,bclear) ≤ γ1Lp}, where dA1
(., .)

is a similarity measure in space A1.

Finally, the server sends back the initial list L1

along with the corresponding calculated similarity measure
dA1 (aclear (m) ,bclear) (optional side information for the im-
proved search efficiency) as well as retrieved correspond-
ing ambiguized parts {aamb(m),∀m ∈ L1}. The list size
card (L1) is supposed to be sufficiently large for privacy
preservation. The server can either fix the threshold or the
number of K similar elements. These parameters are key
elements setting the privacy-utility for the clients. A longer
initial candidate list results in a higher quality of search at the
client side, while a shorter candidate list provides higher client
privacy.

5) Refining at Client Side: In [1], the authors show that
by imposing ambiguization noise, all distances from the
server viewpoint go to a constant value, i.e., all vectors
aamb(m),∀m ∈ [M ] seem equally likely from the server
standpoint. However, at the client side we can effectively
preserve distances up to the desired radius, just by computing
distances (or similarity measure) on non-zero components of
the sparse representation of the private part bpriv, i.e., on
supp (bpriv).

The client receives the initial list L1, the corresponding
distances, and ambiguized vectors {aamb(m),∀m ∈ L1}. It
then computes the distances (or similarity measure) based on
the support of its sparse vector, i.e., dA2

(bpriv, · ) is defined
on the support of bpriv. Next, it produces the final list L2.

IV. PRIVACY PERFORMANCE

We use mutual information between the N -dimensional
random feature vector x and the reconstructed feature x̂, i.e.
I(x; x̂)1, as a metric for privacy leakage. Since the mutual
information quantifies the Kullback-Leibler distance between
the prior and posterior knowledge of the original data x
and reconstructed data x̂ and is also related to the Fisher
information for asymptotically large databases. Indeed, our
privacy leakage is equivalent to the invertibility of our scheme.
We know that I(x; x̂) = h(x)−h(x|x̂) = h(x)−h(x−x̂|x̂) ≥
h(x)−h(x− x̂), where the last inequality is based on the fact
that conditioning reduces entropy. We simplified our problem
by considering a single-letter formulation and defined separa-
ble distortion metrics by averaging the single-letter distortions.
Since for a given variance, the normal distribution maximizes
entropy, and also assuming that x−x̂ has a normal distribution
with zero mean and a variance of E[(x − x̂)2], we have:
h(x)−h(x− x̂) ≥ 1

2 log2

(
2πeσ2

x

)
− 1

2 log2(2πeE[(x− x̂)2]).
Therefore, we have the lower bound I(x; x̂) ≥ 1

2 log2(
σ2
x

D ).
We denote by δmax = maxD∈D0

(
1
2 log2(

σ2
x

D )
)

, the maximal
privacy leakage on the distortion interval D0.

1All variables and vectors in the entropy and mutual information functions
are considered to be random variables and vectors.
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Fig. 2: The relation between distortion and sparsity ratio Sx/L.

Here, we propose a scaled reconstruction scheme, which
achieves the same performance as SSTC, while reducing the
computational cost and storage space effectively. To this end,
we make a balance between the (raw) feature vector x(m) and
reconstructed feature vector x̂(m), which is obtained from the
ternary sparse code aT (m). Given λx, to find an optimal global
scale factor θ such that X ≈ θ X̂, we solve an optimization
problem:

θ∗ = arg min
θ

‖X− θ X̂‖2F , s.t. θ > 0. (5)

The cost function ‖X− θX̂‖2F =: J (θ), can be expressed
as J (θ) = tr

[
XTX− 2θXT X̂ + θ2X̂T X̂

]
. Since XTX and

X̂T X̂ are known constant variables, the optimal scale factor
θ∗ can be simply obtained by taking the derivative of J (θ)
with respect to θ and setting to zero. As result, we have θ∗ =

tr
[
XT X̂

] /
tr
[
X̂T X̂

]
. This means that, instead of storing the

SSTC of the private part of the database at the server, we
just need to store the STC of them. The owner can obtain the
global scale factor θ based on the training data and then shared
it with authenticated clients. The performance of the scaled
reconstruction scheme is depicted in Fig. 2a. This scheme leads
us to the more interesting scenario for large scale identification
problems using distributed servers, which is not the scope
of this paper. Fig. 2 depicts the amount of reconstruction
distortion as a function of the sparsity ratio αx = Sx/L for the
condition that xn ∼ N (0, 1), L = N . In Fig. 2a, we compare
the distortion measure for four different cases. As shown, both
the STC and SSTC have a global minimum, which are obtained
at around αx = 0.53 and αx = 0.41, respectively. As we
expected, the SSTC outperforms STC in accuracy. However,
it requires more storage space and computational cost.

In Fig. 2b, we illustrate the reconstruction distortion for
the cases in which the owner sends the fraction Lp of his
L-dimensional ternarized projected data with the alphabet
{−1, 0,+1} or {−τm, 0,+τm} to the server, as the pub-
lic clear database. Also, we compare the distortion mea-
sure with the hard-thresholding case. Therefore, the curious
server just capable to reconstruct the x(m),∀m ∈ [M ] from
aclear (m) ,∀m ∈ [M ] with effectively high distortion level,
even if it knows the sparsifying transform W.

The bit rate of our encoding scheme can be formulated
as R = 1

L log2

((
L
Sx

)
2Sx

)
. In Fig. 3a, we depict and compare

the distortion-rate behaviour of the ternary encoding scheme
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Fig. 3: Effect of public length ratio Lp/L on privacy measures:
a) “reconstruction” leakage, b) “clustering” leakage.

for various ratios of Lp/L along with the maximal privacy
leakage δmax. As it is shown, the maximal achievable rate is
1.585 which is equal to the entropy of the ternary alphabet.
The recursive part of the distortion-rate curve corresponds to
the increasing behaviour of distortion after a certain sparsity
ratio Sx/L. This behavior is studied with more details in [15].

Moreover, the curious server might want to cluster the
database vectors from aclear (m) ,∀m ∈ [M ]. In [1], the
authors introduced a Kullback-Leibler divergence privacy pro-
tection measure, in order to address this clustering threat.
Utilizing the same measure, we study the privacy protection
of our outsourced media search scheme for the case in which
the owner sends the fraction Lp of its own L-dimensional
ternarized projected data with the alphabet {−1, 0,+1} to the
server. To this end, we generate four 500-dimensional i.i.d.
vectors with distribution N (0,1) and 1000 500-dimensional
i.i.d. vectors with distribution N (0,0.1). Then we add each
250 (out of 1000) low variance vectors to the four high
variance ones (schematically shown in [1, Fig. 6]). This results
in a database of 1000 vectors adhering to four clusters. We
denote the probability density functions (PDFs) of ‘intra-
cluster’ and ‘inter-cluster’ of distances by Pintra and Pinter,
respectively. To this end, we define distribution P1 as mixture
of Pintra and Pinter, that is, P1 = αx Pintra + (1− αx)Pinter,
0 ≤ αx ≤ 1. Also, we denote the Gaussian distribution
N
(
µ2, σ

2
2

)
by P2, such that µ2 and σ2

2 are the mean and
variance of P1, respectively. Therefore, the privacy protection
measure of disclosing the structure of database by the curious
server can be defined by the Kullback-Leibler divergence
(KLD) as D (P1‖P2) = EP1

[
log P1

P2

]
. Now, the privacy pro-

tection constraint can be expressed as D (P1‖P2) ≤ ε, where
ε determines the allowable privacy leakage from database
clustering. In Fig. 3b, we illustrate the estimated PDFs of pair-
wise distances in the transform domain. The solid lines indicate
P1 with three public-length ratios Lp/L = 0.25, 0.50, 0.75
and two sparsity ratios Sx/L = 0.02, 0.16. As evident, by
increasing the sparsity ratio, the distribution P1 becomes uni-
modal Gaussian, therefore, the curious server cannot cluster the
database. The dashed lines indicate the corresponding Gaussian
distribution P2 fit to each solid plot. It is clear that the larger
Lp requires larger Sx/L in order to satisfy the specific privacy
protection constraint ε. Therefore, given the desired privacy
protection constraint ε, the curious serer cannot cluster the
public database, provided D (P1‖P2) ≤ ε.



V. CONCLUSION

We have proposed a novel privacy preserving framework
for outsourced media search applications based on sparse
ternary coding with partial ambiguization. Our intuition for the
similarity search in the public in-the-clear database is based on
the fact that the sparse significant components can effectively
provide the initial list, while impeding the reconstruction and
clustering at the server. One of the main points illustrated
by this study is that the owner can compute only one global
scale factor based on the training data and then share it with
the authorized clients to scale their reconstructed media in
the original domain. The results show that the curious server
cannot reconstruct and cluster the samples in the database,
provided the mutual information privacy leakage I(x; x̂) and
Kullback-Leibler privacy protection D(P1‖P2) constraints are
satisfied.
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