

CHIMIQUE

Infecting amoebae with mycobacteria to study conserved mechanisms of innate immunity

Prof. Thierry SOLDATI Department of biochemistry, UNIGE

Phagocytosis is an ancestral eukaryotic process that allowed key innovations during evolution. Phagocytic protozoan such as amoebae internalise bacteria as a source of nutrients, while multicellular organisms use phagocytosis as a defence mechanism to kill microbes and, in higher organisms, initiate a sustained immune response. Therefore, mechanisms of recognition, signalling and killing are surprisingly conserved throughout evolution.

Intracellular bacterial pathogens such as *Mycobacterium tuberculosis* and *M. marinum*, evolved counter weapons to modify the bactericidal environment of the phagosome and proliferate inside phagocytes.

M. marinum causes a tuberculosis-like disease in fish and frogs and has emerged as an alternative model for tuberculosis research.

Dictyostelium is a social amoeba that feeds by phagocytosis and has a rudimentary cell-intrinsic immune system. It is an experimentally versatile model organism and is genetically and biochemically tractable.

We have firmly established *Dictyostelium* as a powerful host model to dissect the evolutionary conserved mechanisms of host-defence to intracellular mycobacteria.

Conférence présentée le

LUNDI 10 JUIN 2013 à 17h30

Université de Genève – Bâtiment Sciences II Auditoire A. Pictet – A100 30, quai Ernest-Ansermet, Genève

La conférence est publique

Avec le soutien de :

MERCK

sochimge@unige.ch

www.unige.ch/sochimge/