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PROBLEM

Solar Photovoltaic (PV) deployment on existing
building rooftops has proven is a very promissing re-
source of sustainable energy for urban areas. Large
scale potential studies are needed to see the viability
of the system depending on the location. Yet, esti-
mating the PV energy potential at a large scale, re-
mains a challenge, for several reasons:

• Many solar and building variables need to be
captured (weather, urban characteristics, geo-
metrical building considerations)

• Lack of precise large-scale methodology.

• Lack of detailed large-scale roof data.

OBJECTIVES

+ Develop a data-driven methodology combining
GIS and machine learning algorithms, to derive
rooftop PV potential at national level, at two scales,
communes and 200 ⇥ 200 [m2] pixels.
+ Derive accurate monthly solar maps of Switzer-
land using solar time series and weather data.
+ Estimate urban characteristics in Switzerland.
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SOLAR MODELLING OVER TILTED ROOFS

The global solar radiation on a tilted surface Gt is expressed
as the sum of the direct (or beam) GBt, the diffuse GDt, and
the reflected GRt tilted radiation over this surface:

Gt = GBt +GDt +GRt = GBRb +GDRd +GhRr

where Rb, Rd, and Rr are the direct, diffuse, and reflected
radiation factor respectively for daily radiation. Rb is com-
puted using the 1977 Klein model. Rd is computed using
the 1990 Reindl model. Rr is computed using a typical
irotropic model: Rr = ⇢
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