INNOGAP - Proof-of-Principle Fund

Funded projects

FUNDED PROJECTS IN 2021

 

IMG_20220303_141523 crop.jpg

RefFIT

Optical experiments play an important role in many production and process development processes, in quality control and sorting applications in the materials industry. However, due to the complexity of the analysis of optical spectra, often valuable information contained in the spectra is not extracted or lost, especially in uniquely occurring situations. At the university of Geneva, a software called RefFIT was developed providing a no-code solution based on a library of scientific, interpretable models. With RefFIT, complex spectroscopic analysis becomes easy, fast and accessible for unskilled users. The INNOGAP funding will be used to develop a demonstrator for the photonics industry and to explore the broader potential of the analytical approach for other applications.

reffit.ch

Photo: PhD Nicole Ruckstuhl and PhD Iris Crassee, Department of Quantum Matter Physics.

 

 

 

 

Team Prof Ramesh Pillai.jpg

 

Targeting a link between metabolites and RNA to treat rare human diseases

The flow of genetic information held in our DNA passes through an RNA intermediate which is then used for producing proteins. After they have served this purpose, the RNAs are degraded by several decapping enzymes. The Pillai team is studying the molecular basis of rare human diseases caused by mutations in enzymes involved in RNA decay pathways. Using a mouse mutant for a human disease-related decapping enzyme, the Pillai team identified a link between accumulation of specific cellular metabolite and RNA decay pathways. The INNOGAP funding will be used to define this molecular pathway and explore therapeutic treatment options to target this aberrant pathway using the mouse model and patient-derived cell lines. Detection of this metabolite in body fluids as a diagnostic tool will be examined.

Photo: From left to right are Prof. Ramesh Pillai, Linyun Li, Michaela Dohnalkova, Elena Delfino, Pascal Gos.

 

 

 

Sanae El Harane in lab crop.jpeg

Une solution pour produire des sphéroïdes cellulaires stables et standardisés

Le projet consiste en la création d'une start-up autour d'une nouvelle technologie pour la génération et la culture de sphéroïdes et organoïdes pour la recherche médicale et la thérapie cellulaire. En effet, dans le cadre des travaux de recherche sur la culture cellulaire 3D, Sanae El Harane a récemment développé la technologie 3D-AirLiWells (brevetée avec Unitec). Contrairement à la culture cellulaire traditionnelle en monocouche en 2D, la culture cellulaire en 3D est un environnement de culture qui permet aux cellules de se développer et d'interagir avec la matrice extracellulaire environnante en trois dimensions. Cette technologie a déjà été validée dans plusieurs applications montrant une haute standardisation et de nombreux avantages en comparaison à d’autres technologies de culture en 3D déjà sur le marché. Elle a été validée pour la première fois dans le cadre de la thérapie cellulaire pour la chirurgie reconstructive en utilisant des cellules souches de tissu adipeux. De plus, Sanae El Harane travaille actuellement sur l'optimisation d'un protocole de différenciation dopaminergique pour la thérapie cellulaire de la maladie de Parkinson. Enfin, dans le cadre de collaborations, elle a également permis le développement d'organoïdes pour modéliser une pathologie du foie et le cancer du sein.

 

Actuellement, la technologie a été validée dans un format de plaque 6 puits. Le fond Innogap permettra de développer les 3D-AirLiwells vers des formats plus petits comme les plaques 24 ou 96 puits qui permettront ainsi du criblage à haut débit. Le fond va également permettre d’élargir les applications à travers un test interne de la technologie au sein de la faculté de médecine de Genève. De plus, il permettra d’optimiser davantage le produit grâce aux différents retours.

 

Photo: Sanae El Harane

 

 

 

Team Prof Senn.jpg

 

Novel screening method/model for auditory neurogenesis

The intrinsic limited stemness of mammalian sensory progenitor cells has always been an important limitation for in vitro investigations and further development of therapies as well as regenerative medicine for sensory disorders. The present invention relates to reprogramming methods for inducing stemness into sensory neuroprogenitor (ANPG) cells and uses of ANPG cells, or cells having similar properties to ANPG cells. Stemness-induced (reprogrammed) ANPG exhibit robust intrinsic self-renewal properties (beyond 40 passages) and at any passage, differentiate into functional sensory neurons. This invention does not only provide a unique tool to understand ANPG self-renewal and regeneration in mammals, but also delivers a robust in vitro platform for high-throughput screening assays and further therapeutics development. A further advantage of the present invention is the great reduction in animal numbers needed with major implications in 3R efforts to replace, reduce and refine the use of animals in research and therapeutic settings, also reducing associated costs and administrative and ethical burden. The present cell line and reprogramming methods offer great possibilities for high throughput in vitro investigations as well as regenerative medicine for researchers and biotech companies in the field of sensory neurosciences.

Photo: de gauche à droite Prof. Pascal Senn (professeur associé), Mrs Rebecca Sipione (PhD student) ; Dr Francis Rousset (PhD, Maitre Assistant), Mr German Nacher-Soler (PhD student). L'image au fond montre des neurones auditifs matures de souris générés à partir de progéniteurs régénérés par reprogrammation.

 

 

IMG_20220519_152344_1.jpg

Synthesis and biological evaluation of small fragment inhibitors of TNFR1

Deregulation of the Tumor Necrosis Factor (TNF) pathway is responsible for the pathological onset of various autoimmune disorders and the perpetuation of chronic inflammation. The current standard of care for a broad spectrum of inflammatory conditions, such as rheumatoid arthritis, Crohn's disease, and psoriasis, consists of using TNF inhibitors that directly prevent TNFα binding to its two receptors: TNFR1 and TNFR2. However, total TNF inhibition often leads to severe side effects such as an increased risk of developing multiple sclerosis and the reactivation of tuberculosis, mainly caused by the impairment of TNFR2-mediated response.
Hence, by combining fragment-based in vitro screening, mutational studies, and iterative molecular modeling, we have identified preliminary hits that selectively block TNFR1 pro-inflammatory activity. The Innogap fund will help acquire deep insights into the MoA (mechanism of action) of these scout molecules and refine a three-dimensional model of the receptor for developing analogs with enhanced inhibitory activity towards TNFR1.

Photo: from left to right Prof. Dr. Leonardo Scapozza, Sara Pannilunghi

 

 

FUNDED PROJECTS IN 2020

Donald Glowinski_Emmanuel Badier (2)_utiliser site Unitec.jpg

Team Tracker: une nouvelle technologie qui vient en aide au secteur médical ainsi qu'à d'autres secteurs

Les erreurs médicales sont l'une des causes majeures de décès dans le monde et nécessitent donc une attention spéciale. La technologie « TeamTracker » vise à aider les praticiens à améliorer leurs capacités de travail en équipe, de coopération et vise à minimiser leur risque de commettre des erreurs. Il s'agit d'un logiciel d'analyse automatique de la performance individuelle et collective permettant de monitorer une activité donnée à l'aide d'indicateurs de performances intelligents adaptés à l'activité du secteur concerné. Le logiciel dispose d'une interface de visualisation 3D capable d'enregistrer et de rejouer les données relatives aux mouvements et à la voix (entrées du système) acquises au cours d'une session. Cela permet par la suite, entre autres, à l'examinateur, d'avoir accès à un rapport automatique contenant des indicateurs de performance des participants lors d'une séance d'évaluation et ainsi avoir une mesure quantitative et non-biaisée de celle-ci. Le financement INNOGAP sera utilisé pour la validation du logiciel et pour continuer son développement qui vise, entre autres, à enrichir la palette d'indicateurs existantes, à perfectionner l'algorithme et d'implémenter une intelligence artificielle de type Deep Learning pour détecter les profils performants et/ou à risque dans une équipe.

Photo: Dr. Donald Glowinski (gauche) et M. Emmanuel Badier (droite). En partenariat avec le Centre Interprofessional de Simulation, Genève.

 

Dr.Adrien Roux_Dr.Gabriel Campargue_Dre. Marisa Jaconi Dévaud_Dr. Luigi Bonacina.jpg

Detection of cells circulating in the whole blood

This multidisciplinary project (Applied physics – UNIGE, Neurosciences – UNIGE, and Tissue engineering lab – HEPIA) aims to develop a device for the detection of individual cells circulating in the whole blood. The technology relies on a cost-effective laser originally developed for telecom application and has implications for the bio-research and medical communities. The high-sensitivity/selectivity detection is based on a novel mechanism that avoids blood autofluorescence problems. One key application is to trace cells in the circulatory system during regenerative medicine and immune therapies.

Photo (left to right): PhD. Adrien Roux, PhD. Gabriel Campargue, PhD. Marisa Jaconi Dévaud and PhD. Luigi Bonacina.

 

Slava_images LSC.png

L'échantillonnage intelligent avec la reconstruction par apprentissage automatique

L'imagerie en général est gourmande en données de stockage au moment de la formation de l'image. L'invention du Prof. Slava Voloshynovskiy et de ses collègues vient en aide à ce problème car elle permet d'économiser des ressources de stockage lorsque l'image est formée et de traitement de données avec une amélioration de plusieurs ordres de grandeur. La méthode consiste à traiter l'image non pas dans leur ensemble mais au moyen d'un échantillonnage intelligent car la machine a préalablement appris à reconnaître le type d'image à acquérir. La technologie est particulièrement utile dans les domaines de l'imagerie médicale, l'imagerie hyperspectrale ou encore dans l'astronomie. Le financement INNOGAP sera utilisé pour faire développer une version robuste avec une interface agréable afin de pouvoir faire des démonstrations auprès des sociétés ou des investisseurs intéressés.

Photo: Prof. Slava Voloshynovskiy et une image comparative de son invention LSC.

 

Stefan Matile (2)_utiliser site Unitec.jpg

A molecule with high potential therapeutic activity against Sars-CoV-2

Prof. Matile and Dr. Sakai have identified a small molecule with potential therapeutic activity against Sars-CoV-2 using a pseudoviral entry assay. Preliminary results showed that one small molecule demonstrated an IC50 of 50 µM in the absence of cytotoxicity. Positive feedback has already been received from Roche, MSD, Merck and Novartis.  INNOGAP funding will be used to test analogous chemicals that may have higher potency and to further understand their mechanism of action.

Photo: Prof. Stefan Matile, Department of Organic Chemistry, University of Geneva.

 

Sébastien Mosser_Fabien Abdul_Olivier Preynat-Seauve_Aurélie Caillon_Karl-Heinz Krause.jpg

A promising cell-based assay in the fight against Sars-CoV-2

In the context of dealing with the COVID-19 pandemic, Prof Krause and his team have developed a cell-based, high-throughput screening assay that may be used to indicate whether a person is (still) immunized against the Sars-CoV-2 virus. This assay may also be used as a screening assay for anti-COVID-19 drugs. INNOGAP funding will be used to further optimize this assay and to continue further validation using the sera from large numbers of infected and non-infected patients.

Photo (left to right): Mr. Sébastien Mosser, Mr. Fabien Abdul, Mr. Olivier Preynat-Seauve, Ms. Aurélie Caillon and Prof. Karl-Heinz Krause.

 

Oliver Brina_Paolo Machi_Philippe Reymond.jpg

A device for the treatment of acute ischemic stroke (AIS)

AIS is the first cause of acquired neurological deficit and the third cause of death in the adult population in the Western world. It is due to the occlusion of a brain vessel by, for example, a clot. Since 2015, the removal of the clot is done using the method of mechanical thrombectomy. Prof. Paola Machi and his collaborators developed a prototype of medical device which would help them recognize different occlusion patterns and characteristics by means of impedance sensors present in the instrument. The INNOGAP funding will be used to purchase human vascular training flow models and interventional tools such as micro-guidewires and micro-catheters.

Photo (left to right): Olivier Brina, Paolo Machi and Philippe Reymond.

 

Image Prof. Yogeshvar Kalia_M. Aditya Darade_Dre. Maria Lapteva_round 24 Innogap.jpeg

A novel method to produce vesicular nanocarriers

Nanomedicines have an increasingly wide application in the prevention, diagnosis, and treatment of diseases.  In order to produce these vesicular nanocarriers, Dr. Darade and Prof. Kalia have developed an improved method which uses cryo-milling techniques. These should enable scale-up production of nanocarriers based on a solvent free approach that has a shorter processing time and potential advantages for bulk storage. INNOGAP funds will be used to optimize and validate the process, to characterize the stability of the formulation and to compare the efficacy of nano-encapsulated medicines prepared by conventional methods and by the method described here.

Photo (left to right): Prof. Yogeshvar Kalia, Mr. Aditya Darade and PhD. Maria Lapteva.

 

Kryuchkov_coated sample_control sample.jpg

A novel antibacterial and antiviral nanocoating

Spread of pathogenic microbes and antibiotic-resistant bacteria in healthcare facilities and public space is a serious public health challenge. In order to tackle the problem, Mikhail Kryuchkov, a post-doc researcher at the laboratory of Prof. V. Katanaev, developed a method for producing a cicada wing surface-like nanocoating covered by nanoparticles, which is applicable on all large-scale surfaces, cost effective and stable for at least one-week period. The INNOGAP funding will be used to tets different nanoparticles and to validate the technology according to the ISO requirements.

Photo: PhD. Mikhail Kryuchkov, Department of Cell Physiology and Metabolism, University of Geneva.

 

Affif Zaccaria et Shahan MOMJIAN_3_utiliser site Unitec.JPG

A ring-shaped device to assist surgeons during brain tumor removal surgical procedures

Dr. Zaccaria and Prof. Momjian have developed a single use medical device which will help surgeons during brain tumor removal surgical procedures. The invention consists of an MRI-compatible ring that will give the neurosurgeon the 3D-position of tumoral regions in the patient’s cerebral parenchyma. This should reduce overall medical costs by reducing the occurrence of second/redo surgeries and will help in training less experienced surgeons. The inventors will use the INNOGAP fund to produce a prototype, to test it and to validate the technology in a representative environment.

Photo (left to right): PhD. Shahan Momjian and PhD. Affif Zaccaria.

 

Viollier assis_post Dr. Nicolas Kint debout.jpg

Characterization and assessment of a new glycosylation system

Modification of proteins by glycosylation is fundamental to many biological processes and valuable for the development of therapeutic proteins. Prof. Patrick Viollier identified and characterized a protein from Caulobacter crescentus, a new glycosyltransferase, capable of glycosylating proteins using sialic acid and pseudaminic acid. He also engineered a new strain which represents the first in vivo bacterial system to glycosylate soluble proteins. The INNOGAP funding will be used to test the new-engineered bacterial strain for glycosylating human proteins.

Photo (left to right): PhD. Nicolas Kint and PhD. Patrick Viollier.

FUNDED PROJECTS IN 2019

 

SPRING 2019

Method for object recognition and/or verification on portable devices (Prof. S. Voloshynovskyy)

Le projet du Prof. Voloshynovskyy a pour objectif de développer une application mobile permettant d’identifier et de vérifier l’authenticité de descripteurs extraits des surfaces de produits et/ ou de leurs emballages à la sortie de leur production. L’objectif est que des consommateurs ou des inspecteurs puissent, au moyen de la caméra de leur téléphone portable, vérifier l’authenticité de produits disponibles sur le marché ; des médicaments par exemple. La technologie est protégée par une famille de brevets.