INNOGAP - Proof-of-Principle Fund
Funded projects
Innogap funded projects in 2023
Monolithic silicon pixel sensor with a high time resolution
Dr. Thanushan Kugathasan and Prof. Giuseppe Iacobucci (DPNC) aim to build a monolithic silicon pixel sensor with a high time resolution of 10 picoseconds. The detector will be used for precise detection of photons in the visible and near-infrared spectrum. Advantages over existing solutions are an improved detection signal amplification with very low noise, higher acquisition rate and a uniform timing response with proper pixel design. Potential applications include high-precision LiDAR systems for autonomous vehicles, co-botics, satellite-to-satellite communication, and time-resolved Raman spectroscopy for studying rapid dynamic processes in materials and biology. The InnoGAP funding will be used to produce the detector and characterise it using the picosecond light source available at the university.
Prof. Giuseppe Iacobucci and Dr. Thanushan Kugathasan, Département de physique nucléaire et corpusculaire (DPNC), UNIGE
Projet LiteRev
Due to the volume of scientific articles published at unprecedented speeds, literature reviews have become slow, resource-intensive, and quickly outdated. Professor Keiser’s team has developed a new software LiteRev that aims at revolutionizing literature reviews by leveraging advanced technologies like natural language processing and machine learning. It enables users to streamline and automate the exploration of scientific articles across vast databases containing millions of open-access articles and preprints, offering fast and comprehensive insights into any research topic. LiteRev provides an overview of article topics and facilitates the prioritization of relevant content based on research inquiries. Researchers can engage with the engine to refine searches and receive targeted suggestions. In a real-world test, LiteRev already demonstrated a 56% reduction in workload compared to manual screening. The InnoGAP funding will be used to enhance the software's capabilities and performance by incorporating advanced features and functionalities, with the aim of refining LiteRev into the envisioned robust and versatile platform.
Establishing TGFbeta as a therapeutic drug
The laboratory of Pr Berhnard Wehrle-Haller has discovered an undescribed complex of the TGFβ family as therapeutic drug responding to a clinical unmet need.
Pr Bernard Wehrle-Haller and Dr Michaël Bachmann, Département de Physiologie Cellulaire et Métabolisme, University of Geneva, UNIGE.
Model 3D de clitoris et pénis stylisés basées sur des données in vivo
Dre Jasmine Abdulcadir et Dre Céline Brockmann ont réalisé un kit 3D démontable du trigone urogénital/ petit bassin, incluant le clitoris et le pénis, servant à l’enseignement et la clinique de l’anatomie et physiologie sexuelle et reproductive. Ce projet a montré un fort intérêt des spécialistes dans le domaine.
Dre Jasmine Abdulcadir, Département de gynécologie et obstétrique de la Faculté de médecine et médecin adjointe, service de gynécologie, HUG et Dre Céline Brockmann, adjointe et collaboratrice scientifique à la Faculté de médecine, co-directrice du Bioscope, UNIGE.
Protocole pour la détection de l’épilepsie
L’ équipe de la Pre Margitta Seeck a identifié des biomarqueurs de l’épilepsie, détectables automatiquement par électroencéphalographie (EEG). A terme, la technologie permettra de diagnostiquer de façon efficace l’épilepsie aux urgences et ce de manière automatisée et sûre. Les développements, financés au travers du subside INNOGAP, permettront d’améliorer, grâce notamment à l’intelligence artificielle, les performances de diagnostic avec des bénéfices évidents pour les patients.
Pre Magritta Seeck, Médecin adjointe agrégée responsable, unité d'exploration de l'épilepsie et EEG, Service de Neurologie, HUG.
Dr Eric Ménétré et Dr Stefano Gallotto, laboratoire de Neuropsycholinguistique, UNIGE, rattaché au laboratoire de cartographie cérébrale, Unité d’EEG et d’investigation de l’épilepsie, Département des Neurosciences cliniques, Service de Neurologie, HUG.
Genetic construct for selection of non-adherent cell lines
Gene therapy is transforming modern medicine by providing treatment and often even cure for diseases that were previously untreatable. For gene therapy, genetic information needs to be introduced into cells, and this is done with the help of so-called vectors. At present, the major limiting factor for gene therapy is the cost: the cure of a child with severe genetic immune deficiency (bubble child) costs ~1 million dollars. The cost for the cure of a patient with sickle cell anemia even exceeds 2 million dollars. A key factor for these high costs is the production of gene therapy vectors. Indeed, while gene therapy has shown major progress on most fronts, the production of the vectors remains virtually unchanged over the last 30 years.
The allover goal of the team of Dr. Maude Rolland and Pr Karl-Heinz Krause is the establishment of high quality gene therapy vectors at markedly reduced costs. For this task, several daunting biotechnology challenges need to be addressed. With the help of the Innogap grant, the team will address one of these challenges, namely the first step in the generation of cell lines that stably produce the gene therapy vectors by selecting cells that have incorporated high amounts of the DNA required to produce the vectors.
Dre Maude Rolland and Pr Karl-Heinz Krause, Département de pathologie et immunologie, UNIGE.
Fusion protein for the treatment of cancer
Development of a new approach to restore some anti-tumor immune response in HER2+ breast cancer patients.
Dr Aurélien Pommier, Immunopharmacology of Cancer, Section des Sciences Pharmaceutiques, UNIGE.
PROJETS FINANCÉS EN 2022
Non-polarizing optical module
We have developed an optical module that can replace a beam splitter or a dichroic mirror while preserving the polarization state of the transmitted and reflected beams.
If the performance is sufficient, this device could replace dichroic mirrors in standard multi-photon, fluorescence, Raman microscopy equipment and provide access to the valuable information carried by the polarization of light , which is usually degraded by the optics used in standard set ups .
Photo: From left to right are Dr Jérémie Teyssier and Dr Volodymyr Multian.
Inhibition of the WNT signalling pathway
We have identified chemical series called FSA with novel, specific and efficient inhibitory mechanism against a validated drug target pathway in cancers called Wnt. These compounds have anti-cancer effects in vitro and in vivo, with a marked decrease in adverse reactions associated with blunt Wnt inhibition typical for competitor compounds. With INNOGAP funding, we will continue lead optimization towards a second-generation, best-in-class Wnt inhibitors - an essential step towards clinical stage and commercialization of these results through creation of start-up with subsequent out-licensing to a big pharma company.
Photo: From left to right are Alexey Koval, Cédric Boudou and Gaël Greggio.
TESSA >> Planeto
Today the heating supply in buildings is more than 80 per cent fossil based. District heating and cooling networks (DHC) is an essential solution to reduce CO2 emissions in this sector. The adoption of the technology must quickly increase, limited mainly by the complication of designing DHC and the lack of adequate design tools. Our simulation software TESSA helps energy utilities and energy planners who want to design and develop new DHC projects by using machine learning algorithms to slash time, cost and accelerating the energy transition. Unlike traditional engineering consultancies approaches for energy planning tasks, we can produce results 10 times faster and provide geospatial modelling that is usually too time consuming and expensive to produce in early design phases. We aim to deliver a SaaS for DHC planning that allows our customers to generate the most important project KPIs (such as energy and CO2 savings, or investment cost).
With this INNOGAP, we aim to bring our software from a TRL 5 prototype to a TRL 7 SaaS, including implementation of IT best practices, and to develop a business model with our first customers, including defining the pricing model based on our add value and defining service offering for our spin-off Planeto.”
Photo: From left to right are PhD. Stefano Cozza, PhD. Jonathan Chambers, and Xiang Li.
PROJETS FINANCÉS EN 2021
Drugging the Epitranscriptome
Research in the Pillai lab is focused on understanding how RNA modifications are used for regulating gene expression. Using mouse models, the group has uncovered physiological functions of proteins that have the ability to ‘read’ RNA modifications. Use of protein biochemistry has allowed the group to identify functionally relevant protein complexes of reader proteins that are now going to be used for identifying small molecule disruptors that impede complex formation. The hope is that such inhibitors will be valuable for treating disease states caused by reader protein malfunction. The INNOGAP funding will be used for pilot studies towards this direction.
Photo: From left to right are Prof. Ramesh Pillai, Lingyun Li, Elena Delfino, Fabienne Fleury Olela and Pascal Gos.
SurvivAI (Dr Pierre Fabre)
This project targets slowly developing degenerative diseases, where affected cells or tissues take a long time to degenerate and where the testing of therapeutic interventions takes a lot of time. To address this time constraint, Dr. Pierre Fabre and Dr. Julien Prados have developed an artificial intelligence-based method to predict the long-term survival potential of single cells or small groups of cells. The AI is fed with single cell mRNA sequencing data and allows to predict survival scores for each cell or cell group. With the help of Quentin Lo Giudice, Nicolas Suarez and Silas Kieser, the project is about validating the model further. A patent has been filed on this technology.
Photo: upper row (left to right): Quentin Lo Giudice, Pierre Fabre et Silas Kieser; lower row: (left to right): Julien Prados et Nicolas Suarez.
FUNDED PROJECTS IN 2021
RefFIT
Optical experiments play an important role in many production and process development processes, in quality control and sorting applications in the materials industry. However, due to the complexity of the analysis of optical spectra, often valuable information contained in the spectra is not extracted or lost, especially in uniquely occurring situations. At the university of Geneva, a software called RefFIT was developed providing a no-code solution based on a library of scientific, interpretable models. With RefFIT, complex spectroscopic analysis becomes easy, fast and accessible for unskilled users. The INNOGAP funding will be used to develop a demonstrator for the photonics industry and to explore the broader potential of the analytical approach for other applications.
Photo: PhD Nicole Ruckstuhl and PhD Iris Crassee, Department of Quantum Matter Physics.
Targeting a link between metabolites and RNA to treat rare human diseases
The flow of genetic information held in our DNA passes through an RNA intermediate which is then used for producing proteins. After they have served this purpose, the RNAs are degraded by several decapping enzymes. The Pillai team is studying the molecular basis of rare human diseases caused by mutations in enzymes involved in RNA decay pathways. Using a mouse mutant for a human disease-related decapping enzyme, the Pillai team identified a link between accumulation of specific cellular metabolite and RNA decay pathways. The INNOGAP funding will be used to define this molecular pathway and explore therapeutic treatment options to target this aberrant pathway using the mouse model and patient-derived cell lines. Detection of this metabolite in body fluids as a diagnostic tool will be examined.
Photo: From left to right are Prof. Ramesh Pillai, Linyun Li, Michaela Dohnalkova, Elena Delfino, Pascal Gos.
Une solution pour produire des sphéroïdes cellulaires stables et standardisés
Le projet consiste en la création d'une start-up autour d'une nouvelle technologie pour la génération et la culture de sphéroïdes et organoïdes pour la recherche médicale et la thérapie cellulaire. En effet, dans le cadre des travaux de recherche sur la culture cellulaire 3D, Sanae El Harane a récemment développé la technologie 3D-AirLiWells (brevetée avec Unitec). Contrairement à la culture cellulaire traditionnelle en monocouche en 2D, la culture cellulaire en 3D est un environnement de culture qui permet aux cellules de se développer et d'interagir avec la matrice extracellulaire environnante en trois dimensions. Cette technologie a déjà été validée dans plusieurs applications montrant une haute standardisation et de nombreux avantages en comparaison à d’autres technologies de culture en 3D déjà sur le marché. Elle a été validée pour la première fois dans le cadre de la thérapie cellulaire pour la chirurgie reconstructive en utilisant des cellules souches de tissu adipeux. De plus, Sanae El Harane travaille actuellement sur l'optimisation d'un protocole de différenciation dopaminergique pour la thérapie cellulaire de la maladie de Parkinson. Enfin, dans le cadre de collaborations, elle a également permis le développement d'organoïdes pour modéliser une pathologie du foie et le cancer du sein.
Actuellement, la technologie a été validée dans un format de plaque 6 puits. Le fond Innogap permettra de développer les 3D-AirLiwells vers des formats plus petits comme les plaques 24 ou 96 puits qui permettront ainsi du criblage à haut débit. Le fond va également permettre d’élargir les applications à travers un test interne de la technologie au sein de la faculté de médecine de Genève. De plus, il permettra d’optimiser davantage le produit grâce aux différents retours.
Photo: Sanae El Harane
Novel screening method/model for auditory neurogenesis
The intrinsic limited stemness of mammalian sensory progenitor cells has always been an important limitation for in vitro investigations and further development of therapies as well as regenerative medicine for sensory disorders. The present invention relates to reprogramming methods for inducing stemness into sensory neuroprogenitor (ANPG) cells and uses of ANPG cells, or cells having similar properties to ANPG cells. Stemness-induced (reprogrammed) ANPG exhibit robust intrinsic self-renewal properties (beyond 40 passages) and at any passage, differentiate into functional sensory neurons. This invention does not only provide a unique tool to understand ANPG self-renewal and regeneration in mammals, but also delivers a robust in vitro platform for high-throughput screening assays and further therapeutics development. A further advantage of the present invention is the great reduction in animal numbers needed with major implications in 3R efforts to replace, reduce and refine the use of animals in research and therapeutic settings, also reducing associated costs and administrative and ethical burden. The present cell line and reprogramming methods offer great possibilities for high throughput in vitro investigations as well as regenerative medicine for researchers and biotech companies in the field of sensory neurosciences.
Photo: de gauche à droite Prof. Pascal Senn (professeur associé), Mrs Rebecca Sipione (PhD student) ; Dr Francis Rousset (PhD, Maitre Assistant), Mr German Nacher-Soler (PhD student). L'image au fond montre des neurones auditifs matures de souris générés à partir de progéniteurs régénérés par reprogrammation.
Synthesis and biological evaluation of small fragment inhibitors of TNFR1
Deregulation of the Tumor Necrosis Factor (TNF) pathway is responsible for the pathological onset of various autoimmune disorders and the perpetuation of chronic inflammation. The current standard of care for a broad spectrum of inflammatory conditions, such as rheumatoid arthritis, Crohn's disease, and psoriasis, consists of using TNF inhibitors that directly prevent TNFα binding to its two receptors: TNFR1 and TNFR2. However, total TNF inhibition often leads to severe side effects such as an increased risk of developing multiple sclerosis and the reactivation of tuberculosis, mainly caused by the impairment of TNFR2-mediated response.
Hence, by combining fragment-based in vitro screening, mutational studies, and iterative molecular modeling, we have identified preliminary hits that selectively block TNFR1 pro-inflammatory activity. The Innogap fund will help acquire deep insights into the MoA (mechanism of action) of these scout molecules and refine a three-dimensional model of the receptor for developing analogs with enhanced inhibitory activity towards TNFR1.
Photo: from left to right Prof. Dr. Leonardo Scapozza, Sara Pannilunghi
FUNDED PROJECTS IN 2020
Team Tracker: une nouvelle technologie qui vient en aide au secteur médical ainsi qu'à d'autres secteurs
Les erreurs médicales sont l'une des causes majeures de décès dans le monde et nécessitent donc une attention spéciale. La technologie « TeamTracker » vise à aider les praticiens à améliorer leurs capacités de travail en équipe, de coopération et vise à minimiser leur risque de commettre des erreurs. Il s'agit d'un logiciel d'analyse automatique de la performance individuelle et collective permettant de monitorer une activité donnée à l'aide d'indicateurs de performances intelligents adaptés à l'activité du secteur concerné. Le logiciel dispose d'une interface de visualisation 3D capable d'enregistrer et de rejouer les données relatives aux mouvements et à la voix (entrées du système) acquises au cours d'une session. Cela permet par la suite, entre autres, à l'examinateur, d'avoir accès à un rapport automatique contenant des indicateurs de performance des participants lors d'une séance d'évaluation et ainsi avoir une mesure quantitative et non-biaisée de celle-ci. Le financement INNOGAP sera utilisé pour la validation du logiciel et pour continuer son développement qui vise, entre autres, à enrichir la palette d'indicateurs existantes, à perfectionner l'algorithme et d'implémenter une intelligence artificielle de type Deep Learning pour détecter les profils performants et/ou à risque dans une équipe.
Photo: Dr. Donald Glowinski (gauche) et M. Emmanuel Badier (droite). En partenariat avec le Centre Interprofessional de Simulation, Genève.
Detection of cells circulating in the whole blood
This multidisciplinary project (Applied physics – UNIGE, Neurosciences – UNIGE, and Tissue engineering lab – HEPIA) aims to develop a device for the detection of individual cells circulating in the whole blood. The technology relies on a cost-effective laser originally developed for telecom application and has implications for the bio-research and medical communities. The high-sensitivity/selectivity detection is based on a novel mechanism that avoids blood autofluorescence problems. One key application is to trace cells in the circulatory system during regenerative medicine and immune therapies.
Photo (left to right): PhD. Adrien Roux, PhD. Gabriel Campargue, PhD. Marisa Jaconi Dévaud and PhD. Luigi Bonacina.
L'échantillonnage intelligent avec la reconstruction par apprentissage automatique
L'imagerie en général est gourmande en données de stockage au moment de la formation de l'image. L'invention du Prof. Slava Voloshynovskiy et de ses collègues vient en aide à ce problème car elle permet d'économiser des ressources de stockage lorsque l'image est formée et de traitement de données avec une amélioration de plusieurs ordres de grandeur. La méthode consiste à traiter l'image non pas dans leur ensemble mais au moyen d'un échantillonnage intelligent car la machine a préalablement appris à reconnaître le type d'image à acquérir. La technologie est particulièrement utile dans les domaines de l'imagerie médicale, l'imagerie hyperspectrale ou encore dans l'astronomie. Le financement INNOGAP sera utilisé pour faire développer une version robuste avec une interface agréable afin de pouvoir faire des démonstrations auprès des sociétés ou des investisseurs intéressés.
Photo: Prof. Slava Voloshynovskiy et une image comparative de son invention LSC.
A molecule with high potential therapeutic activity against Sars-CoV-2
Prof. Matile and Dr. Sakai have identified a small molecule with potential therapeutic activity against Sars-CoV-2 using a pseudoviral entry assay. Preliminary results showed that one small molecule demonstrated an IC50 of 50 µM in the absence of cytotoxicity. Positive feedback has already been received from Roche, MSD, Merck and Novartis. INNOGAP funding will be used to test analogous chemicals that may have higher potency and to further understand their mechanism of action.
Photo: Prof. Stefan Matile, Department of Organic Chemistry, University of Geneva.
A promising cell-based assay in the fight against Sars-CoV-2
In the context of dealing with the COVID-19 pandemic, Prof Krause and his team have developed a cell-based, high-throughput screening assay that may be used to indicate whether a person is (still) immunized against the Sars-CoV-2 virus. This assay may also be used as a screening assay for anti-COVID-19 drugs. INNOGAP funding will be used to further optimize this assay and to continue further validation using the sera from large numbers of infected and non-infected patients.
Photo (left to right): Mr. Sébastien Mosser, Mr. Fabien Abdul, Mr. Olivier Preynat-Seauve, Ms. Aurélie Caillon and Prof. Karl-Heinz Krause.
A device for the treatment of acute ischemic stroke (AIS)
AIS is the first cause of acquired neurological deficit and the third cause of death in the adult population in the Western world. It is due to the occlusion of a brain vessel by, for example, a clot. Since 2015, the removal of the clot is done using the method of mechanical thrombectomy. Prof. Paola Machi and his collaborators developed a prototype of medical device which would help them recognize different occlusion patterns and characteristics by means of impedance sensors present in the instrument. The INNOGAP funding will be used to purchase human vascular training flow models and interventional tools such as micro-guidewires and micro-catheters.
Photo (left to right): Olivier Brina, Paolo Machi and Philippe Reymond.
A novel method to produce vesicular nanocarriers
Nanomedicines have an increasingly wide application in the prevention, diagnosis, and treatment of diseases. In order to produce these vesicular nanocarriers, Dr. Darade and Prof. Kalia have developed an improved method which uses cryo-milling techniques. These should enable scale-up production of nanocarriers based on a solvent free approach that has a shorter processing time and potential advantages for bulk storage. INNOGAP funds will be used to optimize and validate the process, to characterize the stability of the formulation and to compare the efficacy of nano-encapsulated medicines prepared by conventional methods and by the method described here.
Photo (left to right): Prof. Yogeshvar Kalia, Mr. Aditya Darade and PhD. Maria Lapteva.
A novel antibacterial and antiviral nanocoating
Spread of pathogenic microbes and antibiotic-resistant bacteria in healthcare facilities and public space is a serious public health challenge. In order to tackle the problem, Mikhail Kryuchkov, a post-doc researcher at the laboratory of Prof. V. Katanaev, developed a method for producing a cicada wing surface-like nanocoating covered by nanoparticles, which is applicable on all large-scale surfaces, cost effective and stable for at least one-week period. The INNOGAP funding will be used to tets different nanoparticles and to validate the technology according to the ISO requirements.
Photo: PhD. Mikhail Kryuchkov, Department of Cell Physiology and Metabolism, University of Geneva.
A ring-shaped device to assist surgeons during brain tumor removal surgical procedures
Dr. Zaccaria and Prof. Momjian have developed a single use medical device which will help surgeons during brain tumor removal surgical procedures. The invention consists of an MRI-compatible ring that will give the neurosurgeon the 3D-position of tumoral regions in the patient’s cerebral parenchyma. This should reduce overall medical costs by reducing the occurrence of second/redo surgeries and will help in training less experienced surgeons. The inventors will use the INNOGAP fund to produce a prototype, to test it and to validate the technology in a representative environment.
Photo (left to right): PhD. Shahan Momjian and PhD. Affif Zaccaria.
Characterization and assessment of a new glycosylation system
Modification of proteins by glycosylation is fundamental to many biological processes and valuable for the development of therapeutic proteins. Prof. Patrick Viollier identified and characterized a protein from Caulobacter crescentus, a new glycosyltransferase, capable of glycosylating proteins using sialic acid and pseudaminic acid. He also engineered a new strain which represents the first in vivo bacterial system to glycosylate soluble proteins. The INNOGAP funding will be used to test the new-engineered bacterial strain for glycosylating human proteins.
Photo (left to right): PhD. Nicolas Kint and PhD. Patrick Viollier.
FUNDED PROJECTS IN 2019
SPRING 2019
Method for object recognition and/or verification on portable devices (Prof. S. Voloshynovskyy)
Le projet du Prof. Voloshynovskyy a pour objectif de développer une application mobile permettant d’identifier et de vérifier l’authenticité de descripteurs extraits des surfaces de produits et/ ou de leurs emballages à la sortie de leur production. L’objectif est que des consommateurs ou des inspecteurs puissent, au moyen de la caméra de leur téléphone portable, vérifier l’authenticité de produits disponibles sur le marché ; des médicaments par exemple. La technologie est protégée par une famille de brevets.