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Abstract. We give a new simple formula for the energy function of a level 1 perfect crystal of type C
(1)
n

introduced by Kang, Kashiwara and Misra. We use this to give several expressions for the characters of level

1 standard modules as generating functions for different types of partitions. We then relate one of these
formulas to the difference conditions in the conjectural partition identity of Capparelli, Meurman, Primc

and Primc, and prove that their conjecture is true for all level 1 standard modules. Finally, we propose a
non-specialised generalisation of their conjecture.

1. Introduction and statement of results

This paper lies at the intersection between representation theory and combinatorics, the goal being to
connect Rogers–Ramanujan type partition identities with characters of Lie algebra modules and crystal bases.
The connection between these two fields originated with work of Lepowsky, Milne and Wilson [LM78a, LW84,
LW85] who linked the Rogers–Ramanujan identities to characters of standard level 3 modules of the affine

Lie algebra A
(1)
1 . But before going into detail, let us first recall some definitions and notations.

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. For
example, the partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1). A partition identity is a theorem
stating that for all n, the number of partitions of n satisfying some conditions (often difference conditions
between consecutive parts) equals the number of partitions of n satisfying some other conditions (often
congruence conditions on the parts). Probably the most famous partition identities are those of Rogers–
Ramanujan [RR19]. They were originally stated as q-series identities:

Theorem 1.1 (The Rogers–Ramanujan identities). Let i = 0 or 1. Then∑
n≥0

qn
2+(1−i)n

(q; q)n
=

1

(q2−i; q5)∞(q3+i; q5)∞
.

Here the q-Pochhammer symbol (a; q)n is defined for n ∈ N ∪ {∞} as

(a; q)n :=

n−1∏
k=0

(1− aqk).

These identities were then interpreted as partition identities by MacMahon [Mac16] and Schur [Sch17]:

Theorem 1.2 (Rogers–Ramanujan identities, combinatorial version). Let i = 0 or 1. For every natural
number n, the number of partitions of n such that the difference between two consecutive parts is at least
2 and the part 1 appears at most i times is equal to the number of partitions of n into parts congruent to
±(2− i) mod 5.

Any partition λ can be also be described in terms of frequencies, i.e. by a sequence (fi)i≥1, where fi is
the number of parts of λ which are equal to i. For example, the partition (4, 3, 3, 3, 1, 1) corresponds to the
frequency sequence (2, 0, 3, 1, 0, 0, 0, . . . ). In the Rogers–Ramanujan identities, partitions with difference at
least 2 between consecutive parts can equivalently be seen as partitions whose frequency sequence satisfies
fi + fi+1 ≤ 1 for all i. It is however not easy in general (or even possible) to find a correspondence between
frequency conditions and difference conditions. For the Rogers–Ramanujan identities, it is the version with
frequency conditions that Lepowsky and Wilson used to make the connection with characters of affine Lie
algebras.
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We do not recall all the definitions related to Kac–Moody Lie algebras and crystals. The interested reader
can find them in classical books like [HK02, Kac90], or in our first paper on the subject [DK19]. However
we fix some notations.

Let g be an affine Kac–Moody Lie algebra with Cartan subalgebra h. Let P+ denote the set of dominant
integral weights and let L(λ) be the irreducible highest weight g-module of highest weight λ ∈ P+ (also
called the standard module with highest weight λ). Let α0, . . . , αn and Λ0, . . . ,Λn be the simple roots and
fundamental weights, respectively. Let δ = d0α0 + d1α1 + · · ·+ dn−1αn−1 be the null root.

Then the character of L(λ) is defined as

chL(λ) =
∑
µ∈h∗

dimL(λ)µ · eµ,

where e is a formal exponential satisfying eµ+µ′
= eµeµ

′
, and L(λ)µ is the weight space of weight µ in the

weight-space decomposition of L(λ). The Weyl–Kac character formula [Kac90, Proposition 10.10] expresses
the character as follows:

chL(λ) =

∑
w∈W sgn(w)ew(λ+ρ)−ρ∏
α∈∆+(1− e−α)multα

,

where ∆+ is the set of positive roots, W is the Weyl group and ρ is the Weyl vector.
Replacing e−αi by q for all i ∈ {0, . . . , n} in a character formula is called performing the principal

specialisation. We denote the principal specialisation by the operator 1 (see (1.1) for an example). Lepowsky
and Milne [LM78a, LM78b] first noted that, once multiplied with the “fudge factor” 1/(q; q2)∞, the product
side of the Rogers–Ramanujan identities becomes equal to the principal specialisation of the Weyl–Kac

character formula for the level 3 standard modules 3Λ0 and 2Λ0 + Λ1 of the affine Lie algebra A
(1)
1 . To

establish the equality with the sum side of the Rogers–Ramanujan identities, Lepowsky and Wilson [LW84]
constructed a basis of the same level 3 standard modules using the theory of vertex operator algebras. This
basis corresponds in some sense to partitions in which some patterns, equivalent to the frequency conditions
fi + fi+1 ≤ 1, are forbidden.

More generally, performing the principal specialisation in the Weyl–Kac character formula for any standard
module of any affine Kac-Moody gives a product of q-Pochhammer symbols, see for example [Lep78].

In particular, in type C
(1)
n , there is a precise expression for 1

(
e−k0Λ0−···−knΛnχ(L(k0Λ0 + · · ·+ knΛn))

)
as an infinite product. Let s be a non-negative integer, and let x0, . . . , xs be positive integers. Define the set

D(x0, . . . , xs) = {x0 + · · ·+ xj : 0 ≤ j ≤ s} ⊔ {x0 + · · ·+ xj−1 + 2xj + · · ·+ 2xs : 1 ≤ j ≤ s},

and the multiset

∆(x0, . . . , xs) = D(x0, . . . , xs) ⊔D(x1, . . . , xs) ⊔ · · · ⊔D(xs).

Then
1
(
e−k0Λ0−···−knΛn ch(L(k0Λ0 + · · ·+ knΛn))

)
=

∏
a∈{2n+2k+2}n⊔D(k0+1,...,kn+1);b∈∆(k1+1,...,kn+1);j=a,b,2n+2k+2−b(q

j ; q2n+2k+2)∞

(q; q2)∞(q; q)n∞
,

(1.1)

where k = k0 + · · ·+ kn.
Lepowsky and Wilson’s approach, applied to other affine Kac–Moody Lie algebras or at other levels,

gives rise to other sum/product identities, also called Rogers–Ramanujan type partition identities, see e.g.
[Cap93, MP99, Nan14, PŠ16, PŠ19, Sil17]. However, while it is relatively easy to obtain an infinite product
by using the principal specialisation in the Weyl–Kac character formula, it is much harder to find a basis of
the modules considered. Hence, some of the aforementioned partition identities were only conjectured, not
proved, using representation theory. But a combinatorial proof of the identity automatically proves that the
conjectured basis is indeed a basis, by equality of cardinalities. Capparelli’s identity [Cap93] was first proved
combinatorially by Andrews [And92], then refined by Alladi, Andrews and Gordon in [AAG95] using the
method of weighted words, and finally proved by Capparelli [Cap96]. Siladić’s identity was already proved by
Siladić himself [Sil17] using purely representation theoretic techniques, but was then refined combinatorially
by the first author [Dou17], and latter generalised by the second author [Kon20a] and linked to statistical
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mechanics [Kon22]. Nandi’s identity [Nan14] was conjectured using vertex operator algebras and proved
combinatorially by Takigiku and Tsuchioka [TT19].

Using the vertex operator algebras approach, Primc and Šikić [PŠ16] proved an identity for characters of

L(Λ0) in type C
(1)
n for all n ≥ 1, and conjectured a generalisation for L(kΛ0) in type C

(1)
n for all n, k ≥ 1

in [PŠ19]. This conjecture describes the characters as generating functions for partitions with frequency
conditions on so-called “cascades”, which are downward paths in certain tables of integers, and the principal
specialisation gives a sum/product identity.

Using computer algebra experimentations, Capparelli, Meurman, Primc and Primc [CMPP21] recently

generalised Primc and Šikić’s conjecture to all standard modules of level k in type C
(1)
n for all n, k ≥ 1. We

give some notation to be able to state their conjecture. Let N2n+1 be the array of integers with 2n+1 rows
represented in (1.2):

0 1 3 5 7
0 2 4 6 8

...
0 1 3 5 7

0 2 4 6 8
0 1 3 5 7

. . . . (1.2)

Here an integer l in row i is considered to be different from the integer l in row j for j ̸= i (or equivalently,
we can consider that each row is coloured with a different colour). Any partition with parts in N2n+1 can
be represented by its frequencies in the array Fk0,k1,...,kn represented in (1.3):

kn f1 f3 f5 f7
0 f2 f4 f6 f8

...
k1 f1 f3 f5 f7

0 f2 f4 f6 f8
k0 f1 f3 f5 f7

. . . , (1.3)

where the zeros in the first column are set to have fictitious frequencies equal to k0, k1, . . . , kn.
A downward path Z in an array with 2n + 1 rows is a (2n + 1)-tuple (a1, a2, a3, . . . , a2n+1) such that ai

is in the i-th row for all 1 ≤ i ≤ 2n + 1 and (ai, ai+1) is a pair of two adjacent elements for all 1 ≤ i ≤ 2n.
For example, two downward paths in F2,0,0 are represented in red and blue below:

0 f1 f3 f5 f7
0 f2 f4 f6 f8

0 f1 f3 f5 f7
0 f2 f4 f6 f8

2 f1 f3 f5 f7

. . . .

A partition with parts in N2n+1 is said to be (k0, k1, . . . , kn)-admissible if its frequencies in Fk0,k1,...,kn satisfy∑
m∈Z

m ≤ k0 + · · ·+ kn,

for all admissible paths Z in Fk0,k1,...,kn .
We can now state the Capparelli–Meurman–Primc–Primc (CMPP) conjecture.

Conjecture 1.3 (CMPP conjecture). Let k0, . . . , kn be non-negative integers. The principally special-
ized character 1

(
e−k0Λ0−···−knΛn ch(L(k0Λ0 + · · ·+ knΛn))

)
is the generating function for the number of

(k0, k1, . . . , kn)-admissible partitions with parts in N2n+1.

The case k0 = k, k1 = · · · = kn = 0 corresponds to the conjecture of Primc–Šikić.

Note that the type C
(1)
n is defined for n ≥ 2. However, by replacing in Conjecture 1.3 the principal

specialization of the character by the product (1.1), it becomes possible to consider the case n = 1 from
a combinatorial viewpoint. By doing so, we retrieve an identity of Meurman–Primc [MP99] related to the

character of the standard module L(k0Λ0 + k1Λ1) of type A
(1)
1 .
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In this paper, we give several expressions for the characters of all level 1 standard modules Λ0, . . . ,Λn of

C
(1)
n in terms of generating functions for different types of generalised partitions. One of these generating

functions, when performing the principal specialisation, becomes exactly the generating function for the
admissible partitions of the CMPP conjecture.

Hence, our result implies that the CMPP conjecture is true for all level 1 standard modules

Λ0, . . . ,Λn of C
(1)
n , i.e. for the case k0 + · · ·+ kn = 1 and all n.

We derive these character formulas in terms of partitions via the theory of perfect crystals. Again we
refer the reader to [HK02] for all the relevant definitions. Intuitively, the crystal of a standard module is
an oriented graph which encodes some representation theoretic information on the module. This theory was
introduced by Kang, Kashiwara, Misra, Miwa, Nakashima, and Nakayashiki [KKM+92a, KKM+92b], who
proved the so-called “(KMN)2 crystal base character formula” [KKM+92a], which expresses the character
as a sum of formal exponentials indexed by so-called λ-paths, i.e. sequences of vertices in the crystal graph
which are ultimately equal to the so-called “ground state path”

pλ =
(
gk)

∞
k=0 = · · · ⊗ gk+1 ⊗ gk ⊗ · · · ⊗ g1 ⊗ g0.

Primc [Pri99] was the first to use the theory of perfect crystals and the (KMN)2 crystal base character

formula to conjecture and prove new partition identities corresponding to level 1 standard modules of A
(1)
1

and A
(1)
2 . The A

(1)
1 conjecture was proved and refined combinatorially by the first author and Lovejoy [DL18]

and the refined version was generalised to A
(1)
n for all n by the two authors [DK22a, DK19].

In [DK19], the authors introduced the theory of grounded partitions, which allows one to rewrite the
character as a generating function for certain coloured partitions, when the ground state path is constant,
i.e. of the form · · ·⊗g0⊗g0⊗g0. They later generalised their theory to multi-grounded partitions in [DK22b]

to treat all possible ground state paths and applied it to higher levels of A
(1)
1 together with Hardiman in

[DHK21], obtaining a companion to the Andrews–Gordon [And74] and Meurman–Primc [MP99] identities.
In this paper we only study perfect crystals with constant ground state paths, so the theory of grounded
partitions of [DK19], which we now briefly recall, is sufficient for our purposes.

Definition 1.4. Let C be a set of colours, let ZC = {kc : k ∈ Z, c ∈ C} be the corresponding set of coloured
integers, and let ≻ be a binary relation defined on ZC . A generalised coloured partition with relation ≻ is a
finite sequence (π0, . . . , πs) of coloured integers from ZC , such that for all i ∈ {0, . . . , s− 1}, πi ≻ πi+1.

When it is clear from the context, we sometimes write simply “partitions” instead of “generalised coloured
partition”. Moreover, if kc is a coloured integer, then c(kc) (resp. |kc|) denotes the colour c (resp. size k)
of kc. Similarly, if λ is a generalised coloured partition, |λ| denotes the size of λ, i.e. the sum of the sizes of
its parts. Moreover, we let ℓ(λ) denote the number of parts of λ and C(λ) be colour sequence of λ, i.e. the
product of the colours of its parts.

Now we fix a particular colour cg ∈ C and define grounded partitions.

Definition 1.5. A grounded partition with ground cg and relation ≻ is a non-empty generalised coloured
partition π = (π0, . . . , πs) with relation ≻, such that πs = 0cg , and when s > 0, πs−1 ̸= 0cg .
Let P≻

cg denote the set of such partitions.

We proved the following character formula as generating function for grounded partitions.

Theorem 1.6 (Dousse–Konan 2019). Let g be an affine Kac–Moody Lie algebra, let B be a perfect crystal
of level ℓ, let Λ be a dominant integral weight of level ℓ with constant ground state path · · · ⊗ g ⊗ g. Let H
be an energy function on B ⊗ B such that that H(g ⊗ g) = 0. Then, letting C = {cb : b ∈ B} be the set of

colours indexed by the vertices of B, and setting q = e−
δ
d0 and cb = ewtb for all b ∈ B, we have cg = 1, and∑

π∈P⋗
cg

C(π)q|π| = e−Λch(L(Λ)),

∑
π∈P≫

cg

C(π)q|π| =
e−Λch(L(Λ))

(q; q)∞
,
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where P⋗
cg and P≫

cg are respectively the sets of grounded partitions with ground cg and relations ⋗ and ≫
defined by

kcb ⋗ k′cb′ if and only if k − k′ = H(b′ ⊗ b).

and

kcb ≫ k′cb′ if and only if k − k′ ≥ H(b′ ⊗ b).

Define the set

[n] := {1, . . . , n, n, . . . , 1},

with the convention that for all k ∈ [n], k = k, and the order

1 < 2 < · · · < n− 1 < n < n < n− 1 < · · · < 2 < 1. (1.4)

In this paper, we study the level 1 perfect crystal B of C
(1)
n represented in Figure 1.1.
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Figure 1.1. Crystal graph of B

Our first main result is a simple formula for the energy function on B ⊗ B, in the spirit of the formula

which we gave for the energy function of a level 1 crystal of A
(1)
n in [DK22a, DK19].

Theorem 1.7. The energy function H on B⊗B such that H(∅⊗∅) = 0 is given, for all x ≤ y, x′ ≤ y′ ∈ [n],
by the formulas {

H(∅ ⊗ ∅) = 0,

H(∅ ⊗ (x, y)) = H((x, y)⊗ ∅) = 1,

and

H((x, y)⊗ (x′, y′)) =

{
χ(x ≥ x′) + χ(y ≥ y′)− χ(y ≥ y′ > x ≥ x′) if y′ ̸= x,

χ(x > x′) + χ(y > y′)− χ(y > y′ > x > x′) if y′ = x,

where χ(prop) = 1 if the proposition prop is true and 0 otherwise.
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Combining Theorems 1.6 and 1.7, we have an expression for the character as generating functions for
grounded partitions which satisfy difference conditions given by the energy H.

Theorem 1.8. Let b0 = ∅ and bi = (i, i) for all i ∈ {1, . . . , n}. Setting q = e−δ and cb = ewtb for all b ∈ B,
we have for all i ∈ {0, . . . , n}, ∑

π∈P⋗
cbi

C(π)q|π| = e−Λch(L(Λi)),

∑
π∈P≫

cbi

C(π)q|π| =
e−Λch(L(Λi))

(q; q)∞
.

In [DK22a], we had a result of the same shape as Theorem 1.8 for A
(1)
n which generalised Primc’s identities.

In addition, through a bijection, we were able to deduce a generalisation of Capparelli’s identity as well. In
this paper we give a generalisation of this bijection, stated in full generality in Section 3, which allows us in
particular to give yet another expression for the character.

Let C = {cb : b ∈ B} be the set of colours indexed by the vertices of B, let S = C \ {c∅}, and let c∞ be a
colour not in C. Then, for all i ∈ {0, . . . , n}, define the function ρi on S × (S ⊔ {c∞}) by

• ρi(cbi , c∞) = 1,
• ρi(cb, c∞) = H(bi ⊗ b) if cb ∈ S \ {cbi},
• ρi(cx′,y′ , cx,y) = χ(x ≥ x′) + χ(y ≥ y′)− χ(y ≥ y′ > x ≥ x′).

Let P̃c∞
ρi

be the set of generalised coloured partitions π = (π0, . . . , πs−1, πs = 0c∞) with colours in S ⊔ {c∞}
such that for all i ∈ {0, . . . , s− 1},

c(πi) ̸= c∞ and |πi| − |πi+1| ≥ ρi(c(πi), c(πi+1)).

Let Pi,ρ be the set obtained from P̃c∞
ρi

by transforming the final part 0c∞ into 0cbi . We prove the following.

Theorem 1.9. For all i ∈ {0, . . . , n}, there exists a bijection Φ between P≫
cbi

and the product set Pi,ρ × P,

where P is the set of partitions. Furthermore, for Φ(λ) = (µ, ν), we have |λ| = |µ|+ |ν|, ℓ(λ) = ℓ(µ) + ℓ(ν),
and the colour sequence of λ restricted to the colours in C \ {cbk : k ∈ {0, . . . n}} is the same as the colour
sequence of µ restricted to the colours in C \ {cbk : k ∈ {0, . . . n}}.

Combining Theorems 1.8 and 1.9, we obtain a different character formula.

Theorem 1.10. Setting q = e−δ and cb = ewtb for all b ∈ B, we have for all i ∈ {0, . . . , n},∑
π∈Pi,ρ

C(π)q|π| = e−Λi ch(L(Λi)).

In [DK22a] we had also expressed our level 1 characters of A
(1)
n in terms of coloured Frobenius partitions,

i.e. two-rowed arrays of coloured integers (
λ1 λ2 · · · λs

µ1 µ2 · · · µs

)
,

where s is a non-negative integer.

Here, in the case of C
(1)
n , we can also make a connection with coloured Frobenius partitions, but they

must satisfy additional conditions.
Let R = {cu : u ∈ [n]} be a set of colours which we call primary colours. Recall the order (1.4) on [n]

and define the corresponding order ≥ on ZR the set of primary-coloured integers in the following way:

kcu ≥ lcv ⇐⇒ k − l ≥ χ(u < v). (1.5)

The corresponding strict order > is then defined by kcu > lcv if and only if k − l ≥ χ(u ≤ v).

Definition 1.11. Let kc, ld ∈ ZR be two primary-coloured integers such that ld ≤ kc ≤ (l + 1)d. A C
(1)
n -

Frobenius partitions with relation > and ground kc, ld is a pair of generalised coloured partitions (µ, ν) with
parts in ZR such that

• µ = (µ0, . . . , µs−1, µs = kc) and ν = (ν0, . . . , νs−1, νs = ld) are well-ordered according to >,
6



• νj + 1 ≥ µj ≥ νj for all j ∈ {0, . . . , s− 1}.
The size and colour sequence of (µ, ν) as defined as

|(µ, ν)| =
s−1∑
j=0

|µj |+ |νj | and C(µ, ν) =

s−1∏
j=0

c(µj)c(νj),

respectively (note that we do not take the fixed last parts kc and ld into account). Let Fkc,ld
> denote the set

of C
(1)
n -Frobenius partitions with relation > and ground kc, ld.

We give a bijection (Theorem 4.3) between Pi,ρ and F
0c

i+1
,0ci

> (resp. F
0c

1
,−1c

1
> ) for i ∈ {1, . . . , n} (resp.

i = 0). Hence we get yet another expression for the character.

Theorem 1.12. Setting q = e−δ and cb = ewtb for all b ∈ B, we have∑
(µ,ν)∈F

0c
1
,−1c

1
>

C((µ, ν))q|(µ,ν)| = e−Λ0 ch(L(Λ0)),

and for all i ∈ {1, . . . , n}, ∑
(µ,ν)∈F

0c
i+1

,0ci

>

C((µ, ν))q|(µ,ν)| = e−Λi ch(L(Λi)).

Finally we make the connection between Pi,ρ and partitions satisfying frequencies restrictions on paths,
in order to prove (a refinement of) the CMPP conjecture for the level 1 standard modules.

Let S := {cx,y = cxcy = cycx : 1 ≤ x ≤ y ≤ 1} be the set of secondary colours (note that it coincides with
the set S defined above), let ZS be the corresponding set of secondary-coloured integers, and set

Z+
S = {0cx,y

: 1 ≥ y ≥ x > y ≥ 1} ⊔ (Z>0)S .

Set ω0 := (−1)c1,1 , and for i ∈ {1, . . . , n}, ωi := 0ci,i+1
, with the convention that n+ 1 = n. Let

Ω = {ωu : u ∈ {0, . . . , n}} ⊔ {0cu,u : u ∈ {1, . . . , n}}.
Define the function ρ on S2 by

ρ(cx′,y′ , cx,y) := χ(x ≥ x′) + χ(y ≥ y′)− χ(y ≥ y′ > x ≥ x′).

The corresponding relation ≫ρ on ZS is given by

kc ≫ρ ld if and only if k − l ≥ ρ(c, d).

Let PS denote the set of generalised coloured partitions with parts in Z+
S and order ≥, where order ≥ is

defined in Section 5.
Recall that any partition π ∈ PS can be described as its frequency sequence (fu)u∈Z+

S
, where fu is the

number of occurrences of u in π. We then have

C(π)q|π| =
∏

u∈Z+
S

(
c(u)q|u|

)fu
.

In Section 5, we define a notion of paths in Ω ⊔ Z+
S . We do not give the definition in this introduction as it

requires too many preliminary definitions. For ω ∈ Ω, let Pω
S be the set of partitions of PS whose frequency

sequence (fu)u∈Z+
S
is such that, by considering fictitious occurrences of elements in Ω with fω = 1, we have

fe0 + . . .+ fem ≤ 1 for all paths (e0, . . . , em) in Ω ⊔ Z+
S .

We prove (in Theorem 5.8, which is actually more general) that there is a bijection between Pi,ρ and Pωi

S
which preserves the size and the colour sequence when omitting the part ωi. From this, we deduce one last
character formula.

Theorem 1.13. Setting q = e−δ and cb = ewtb for all b ∈ B, we have for all i ∈ {0, . . . , n},∑
π∈Pωi

S

C(π)q|π| = e−Λi ch(L(Λi)),

where the fictitious parts are not taken into account in the generating function.
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Writing, for k ∈ Z ∪ {−∞},

Ek := {ld : l ≥ k, d ∈ {0, . . . , 2n}, l − d ≡ 1 mod 2},

a path in Ek is a sequence ((l(0))0, . . . , (l
(m))2n) such that for all j ∈ {0, . . . , 2n − 1}, l(j+1) = l(j) ± 1 and

(l(j))j ∈ Ek (k ∈ Z ∪ {−∞}).
Hence the set of paths (e0, . . . , e2n) in E−1 is a formal expression for the set of admissible paths described
graphically in the CMPP conjecture.

Thus the CMPP conjecture can be reformulated as follows.

Conjecture 1.14 (Reformulation of the CMPP conjecture). Let k0, . . . , kn be non-negative integers and

denote by Pk0,...,kn

1 the set of partitions with parts in E1 such that, letting fu be the frequency of u for all
u ∈ E1, and setting fictitious frequencies f(−1)2n−2i

= ki for i ∈ {0, . . . , n}, we have

fe0 + · · ·+ fe2n ≤ k0 + · · ·+ kn

for all paths (e0, . . . , e2n) in E−1. Then,∑
π∈Pk0,...,kn

1

q|π| = 1
(
e−k0Λ0−···−knΛn ch(L(k0Λ0 + · · ·+ knΛn))

)
.

On the other hand, the principal specialisation of Theorem 1.13 gives the following.

Theorem 1.15 (CMPP for L(Λi), principal specialisation of Theorem 1.13). Let i ∈ {0, . . . , n}, and denote
by P(−1)2n−2i the set of partitions with parts in E1 such that, letting fu be the frequency of u for all u ∈ E1,
and setting fictitious frequencies fu = χ(u = (−1)2n−2i) for all u ∈ E−1 \ E1, we have

fe0 + · · ·+ fe2n ≤ 1

for all paths (e0, . . . , e2n) in E−1. Then,∑
π∈P(−1)2n−2i

q|π| = 1(e−Λi ch(L(Λi))) =
(q2n+4, q2i+2, q2n−2i+2; q2n+4)∞

(q; q)∞
.

Here the product formula follows from (1.1).
Theorem 1.13, which is a non-specialised version of Theorem 1.15, gives us a good hint for what the

non-specialised generalisation of the CMPP conjecture could be. We conjecture the following.

Conjecture 1.16 (Non-specialised CMPP conjecture). Let k0, . . . , kn be non-negative integers, and denote

by Pk0,...,kn

S the set of partitions with parts in Z+
S such that, if (fu)u∈Z+

S
are the frequencies of the parts and

if we consider fictitious frequencies fωi
= ki for all i ∈ {0, . . . , n}, we have

fe0 + . . .+ fe2n ≤ k0 + . . .+ kn

for all paths (e0, . . . , e2n) of Ω⊔Z+
S . By setting q = e−δ, ci = e

αn
2 +

∑n−1
u=i αu and ci = c−1

i for all i ∈ {1, . . . , n},
we have ∑

π∈Pk0,...,kn
S

C(π)q|π| = e−k0Λ0−···−knΛn ch(L(k0Λ0 + · · ·+ knΛn)) .

Studying perfect crystals of C
(1)
n of higher levels may be a good way to approach this conjecture.

The paper is organised as follows. In Section 2, we describe the level 1 perfect crystal of C
(1)
n more

rigorously and we prove the formula for the energy function given in Theorem 1.7. In Section 3, we give
the general version of the bijection between P≫

cbi
and Pi,ρ ×P, and prove Theorem 1.9 and 1.10. In Section

4, we describe the bijection between Pi,ρ and C
(1)
n -Frobenius partitions in a general setting. In Section 5,

we describe the bijection with partitions described by frequencies on paths in a general setting and consider
some particular cases of our general bijections to establish the CMPP conjecture for all level 1 standard

modules of C
(1)
n .
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2. A level 1 perfect crystal of C
(1)
n

2.1. Description of the crystal. The following perfect crystal of type C
(1)
n was introduced by Kang,

Kashiwara and Misra in [KKM94] together with an energy function. Here we use the particular case of level
1 as stated in [HKL04].

Theorem 2.1 (Kang–Kashiwara–Misra 1994). A perfect crystal of level 1 of type C
(1)
n can be defined as

B =
{
(x1, . . . , xn, xn, . . . , x1)

∣∣∣xi, xi ∈ Z≥0,
∑n

i=1(xi + xi) = 0 or 2
}
. (2.1)

The action of the Kashiwara operator f̃i on b = (x1, . . . , xn, xn, . . . , x1) ∈ B is given by

f̃0b =


(x1 + 2, x2, . . . , x2, x1) if x1 ≥ x1,

(x1 + 1, x2, . . . , x2, x1 − 1) if x1 = x1 − 1,

(x1, x2, . . . , x2, x1 − 2) if x1 ≤ x1 − 2,

for i = 1, . . . , n− 1,

f̃ib =

{
(x1, . . . , xi − 1, xi+1 + 1, . . . , x1) if xi+1 ≥ xi+1,

(x1, . . . , xi+1 − 1, xi + 1, . . . , x1) if xi+1 < xi+1,

and

f̃nb = (x1, . . . , xn − 1, xn + 1, . . . , x1).

Conversely, the action of the operator ẽi on B is given by

ẽ0b =


(x1 − 2, x2, . . . , x2, x1) if x1 ≥ x1 + 2,

(x1 − 1, x2, . . . , x2, x1 + 1) if x1 = x1 + 1,

(x1, x2, . . . , x2, x1 + 2) if x1 ≤ x1,

for i = 1, . . . , n− 1,

ẽib =

{
(x1, . . . , xi + 1, xi+1 − 1, . . . , x1) if xi+1 > xi+1,

(x1, . . . , xi+1 + 1, xi − 1, . . . , x1) if xi+1 ≤ xi+1,

and

ẽnb = (x1, . . . , xn + 1, xn − 1, . . . , x1).

Moreover, an energy function for B is given, for all b = (x1, . . . , xn, xn, . . . , x1) and
b′ = (x′

1, . . . , x
′
n, x

′
n, . . . , x

′
1) ∈ B, by

H(b⊗ b′) = max
{
θj(b⊗ b′), θ′j(b⊗ b′), ηj(b⊗ b′), η′j(b⊗ b′) : j ∈ {1, . . . , n}

}
, (2.2)

where

θj(b⊗ b′) =

j−1∑
k=1

(xk − x′
k) +

s(b′)− s(b)

2
,

θ′j(b⊗ b′) =

j−1∑
k=1

(x′
k − xk) +

s(b)− s(b′)

2
,

ηj(b⊗ b′) =

j−1∑
k=1

(xk − x′
k) + (xj − xj) +

s(b′)− s(b)

2
,

η′j(b⊗ b′) =

j−1∑
k=1

(x′
k − xk) + (x′

j − x′
j) +

s(b)− s(b′)

2
,

and

s(b) =

n∑
k=1

xk +

n∑
k=1

xk.
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Using the set

[n] = {1, . . . , n, n, . . . , 1}
and order

1 < 2 < · · · < n− 1 < n < n < n− 1 < · · · < 2 < 1

defined in the introduction, the crystal B can be rewritten as

B = {(0, . . . , 0)} ⊔
{
ex + ey

∣∣∣x ≤ y, x, y ∈ [n]
}
,

where ej is the vector with entries indexed by [n] having all entries 0 except a 1 in position j.
Thus we can identify B with the crystal

{∅} ⊔ {(x, y)|x ≤ y ∈ [n]},
via the correspondence

(0, . . . , 0) ↔ ∅,
ex + ey ↔ (x, y) for all 1 ≤ x ≤ y ≤ 1.

From now on, for simplicity of notation, we will always consider that

B = {∅} ⊔ {(x, y)|x ≤ y ∈ [n]},
as shown on Figure 1.1.

Moreover, with the same correspondence, the functions θj , θ
′
j , ηj , η

′
j can be rewritten as follows.

Proposition 2.2. For all x ≤ y ∈ [n] and j ∈ {1, . . . , n}, we have

θj((x, y)⊗ (x′, y′)) = χ(x > j) + χ(y > j)− χ(x′ > j)− χ(y′ > j),

θ′j((x, y)⊗ (x′, y′)) = χ(x′ < j) + χ(y′ < j)− χ(x < j)− χ(y < j),

ηj((x, y)⊗ (x′, y′)) = χ(x ≥ j) + χ(y ≥ j)− χ(x′ > j)− χ(y′ > j)− χ(x = j)− χ(y = j),

η′j((x, y)⊗ (x′, y′)) = χ(x′ ≤ j) + χ(y′ ≤ j)− χ(x < j)− χ(y < j)− χ(x′ = j)− χ(y′ = j).

The proof follows immediately from the correspondence above and the fact that xk = χ(x = k)+χ(y = k).

2.2. Rewriting the energy function. Now that the perfect crystal and energy function have been defined,
we prove our alternative formulation of the energy function from Theorem 1.7. To do so, we show that the
energy function H defined in (2.2) is actually the same as the function H ′ defined by{

H ′(∅ ⊗ ∅) = 0,

H ′(∅ ⊗ (x, y)) = H((x, y)⊗ ∅) = 1,

and

H ′((x, y)⊗ (x′, y′)) =

{
χ(x ≥ x′) + χ(y ≥ y′)− χ(y ≥ y′ > x ≥ x′) if y′ ̸= x,

χ(x > x′) + χ(y > y′)− χ(y > y′ > x > x′) if y′ = x.
(2.3)

We prove this in several steps. First, we prove the following lemma.

Lemma 2.3. For all x ≤ y ∈ [n], {
H(∅ ⊗ ∅) = 0,

H(∅ ⊗ (x, y)) = H((x, y)⊗ ∅) = 1.

Proof. By definition, for all 1 ≤ j ≤ n,

θj(∅ ⊗ ∅) = θ′j(∅ ⊗ ∅) = ηj(∅ ⊗ ∅) = η′j(∅ ⊗ ∅) = 0,

and hence H(∅ ⊗ ∅) = 0.

Now let x ≤ y ∈ [n]. We have for all 1 ≤ j ≤ n,

θj((x, y)⊗ ∅) = χ(x > j) + χ(y > j)− 1,

θ′j((x, y)⊗ ∅) = −χ(x < j)− χ(y < j) + 1,
10



ηj((x, y)⊗ ∅) = χ(x ≥ j) + χ(y ≥ j)− χ(x = j)− χ(y = j)− 1,

η′j((x, y)⊗ ∅) = −χ(x < j)− χ(y < j) + 1.

Thus for all 1 ≤ j ≤ n, the above quantities are at most 1. Moreover, for all x ≤ y ∈ [n], we have
θ′1((x, y)⊗ ∅) = 1, and thus H((x, y)⊗ ∅) = 1.

The proof of H(∅ ⊗ (x, y)) = 1 works in the same way. □

Now let us show that H((x, y)⊗ (x′, y′)) and H ′((x, y)⊗ (x′, y′)) coincide for all x ≤ y, x′ ≤ y′ ∈ [n]. First
we need a lemma about H ′.

Lemma 2.4. For all x ≤ y, x′ ≤ y′ ∈ [n], 0 ≤ H ′((x, y)⊗ (x′, y′)) ≤ 2. Moreover,

H ′((x, y)⊗ (x′, y′)) = 2 if and only if x ≥ y′, (2.4)

and

H ′((x, y)⊗ (x′, y′)) = 0 if and only if either x < x′ and y < y′ (2.5)

or y ≥ x = y′ = x′ (2.6)

or y = x = y′ < x′. (2.7)

In the other cases, H ′((x, y)⊗ (x′, y′)) = 1.

Remark 2.5. When x, x′, y, y′ are not in Cases (2.6) and (2.7), H ′((x, y)⊗ (x′, y′)) is always equal to the
first line of (2.3).

Proof. The function χ has values in {0, 1}, so from (2.3), H ′ has values in {−1, 0, 1, 2}. But in both lines
of (2.3), the argument of the last χ contains the arguments of the first two χ’s, so the last χ can only be 1
whenever the first two are 1 as well. Therefore H ′ never evaluates to −1. The first statement is proved.

Now let us prove (2.4). By the previous argument, if y′ ̸= x, we have H ′((x, y) ⊗ (x′, y′)) = 2 iff
χ(x ≥ x′) = χ(y ≥ y′) = 1 and χ(y ≥ y′ > x ≥ x′) = 0, i.e. iff x ≥ x′, y ≥ y′ and x ≥ y′. But we always
have x ≤ y and x′ ≤ y′, so these three conditions are equivalent to x ≥ y′ alone.

Similarly, if y′ = x, we have H ′((x, y) ⊗ (x′, y′)) = 2 iff χ(x > x′) = χ(y > y′) = 1 and χ(y > y′ > x >
x′) = 0, i.e. iff x > x′, y > y′ and x ≥ y′. As before, the conditions x ≥ x′ and y ≥ y′ are already included
in x ≥ y′. Moreover, we never have (x = x′ and x ≥ y′) or (y = y′ and x ≥ y′) at the same time, because it
would mean that y′ = x′ = x = y′, which is impossible. Thus if y′ = x, x > x′, y > y′ and x ≥ y′ iff x ≥ y′.

Summarising, we have H ′((x, y) ⊗ (x′, y′)) = 2 iff (y′ ̸= x and x ≥ y′) or (y′ = x and x ≥ y′), i.e. iff
x ≥ y′.

Finally we treat the cases where H ′((x, y)⊗ (x′, y′)) = 0. Observing that in the definition of H ′, the last
χ can only be 1 whenever the two first are 1 too, we deduce that H ′ is equal to 0 if and only if the three
χ’s in its definition are all equal to 0, i.e. iff (y′ ̸= x and x < x′ and y < y′) or (y′ = x and x ≤ x′ and
y ≤ y′). The statement (x ≤ x′ and y ≤ y′) can be decomposed as ((x < x′ and y < y′) or (x = x′ and
y ≤ y′) or (x < x′ and y = y′)). Thus H ′((x, y)⊗ (x′, y′)) = 0 if and only if we are in one of the three cases
(2.5)–(2.7). □

From the definition of H and the fact that for all x ≤ y, x′ ≤ y′ ∈ [n], θ1((x, y) ⊗ (x′, y′)) = 0, we know
that H takes values in {0, 1, 2}. So we only have to prove that the values of (x, y)⊗ (x′, y′) for which H and
H ′ are equal to 2 (resp. 1, 0) coincide.

Lemma 2.6. For all x ≤ y, x′ ≤ y′ ∈ [n],

H((x, y)⊗ (x′, y′)) = 2 if and only if x ≥ y′.

Proof. We first prove that if x ≥ y′, then H((x, y)⊗ (x′, y′)) = 2. We have the following:

• If x > y′ and x > n, then for j = x− 1, we have θj((x, y)⊗ (x′, y′)) = 2.
• If x > y′ and x ≤ n, then for j = y′ + 1, we have θ′j((x, y)⊗ (x′, y′)) = 2.
• If x > y′ and x = n, then ηn((x, y)⊗ (x′, y′)) = 2.
• If x = y′ and x ≥ n, then for j = x, we have ηj((x, y)⊗ (x′, y′)) = 2.
• If x = y′ and x ≤ n, then for j = x, we have η′j((x, y)⊗ (x′, y′)) = 2.
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In all the cases above, i.e. for x ≥ y′, we have indeed that H((x, y)⊗ (x′, y′)) = 2.

Now we prove that if x < y′, then H((x, y)⊗ (x′, y′)) ≤ 1. If x < y′, we have:

• For all j, θj((x, y)⊗ (x′, y′)) ≤ 1, because if χ(x > j) = 1, then also χ(y′ > j) = 1.
• For all j, θ′j((x, y)⊗ (x′, y′)) ≤ 1, because if χ(y′ < j) = 1, then also χ(x < j) = 1.

• For all j, ηj((x, y)⊗ (x′, y′)) ≤ 1, because if χ(x ≥ j) = 1, then also χ(y′ > j) = 1.
• For all j, η′j((x, y)⊗ (x′, y′)) ≤ 1, because if χ(y′ ≤ j) = 1, then also χ(x < j) = 1.

Thus as soon as x < y′, we have H((x, y)⊗ (x′, y′)) ≤ 1. □

Now let us turn to the values for which H = 0.

Lemma 2.7. Let x ≤ y, x′ ≤ y′ ∈ [n]. If x, y, x′, y′ are in Cases (2.5), (2.6) or (2.7), then H((x, y) ⊗
(x′, y′)) = 0.

Proof. Note that, by definition of θj and θ′j , if x ≤ x′ and y ≤ y′, then θj ≤ 0 and θ′j ≤ 0 for all j. Similarly,
if x < x′ and y < y′, then ηj ≤ 0 and η′j ≤ 0 for all j. So we already know that when we are in Case (2.5),
i.e. x < x′ and y < y′, we have H((x, y)⊗ (x′, y′)) = 0.

Now let us study Case (2.6), i.e. y ≥ x = y′ = x′. When x = x′, the only j for which ηj could be equal
to 1 is j = x, which can only happen if x ∈ {n, . . . , 1}. Indeed it is the only case where χ(x ≥ j) − χ(x′ >
j) = 1. But then we do not have x ≤ y (because x ≤ y and x is an overlined number), so we never have
ηj((x, y)⊗ (x′, y′)) = 1 in Case (2.6).

Similarly, the only j for which η′j could be equal to 1 is j = x, which can only happen if x ∈ {1, . . . , n}.
In that case we have

η′j((x, y)⊗ (x′, y′)) = 1− χ(y′ = j),

which equals 0 iff y′ = j = x.
Thus in Case (2.6), for all j, the functions θj , θ

′
j , ηj and η′j are at most 0 and thus H((x, y)⊗ (x′, y′)) = 0.

Finally we treat Case (2.7), i.e. y = x = y′ < x′. When y = y′, the only j for which ηj could be equal to
1 is j = y, which can only happen if y ∈ {n, . . . , 1}. In that case we have

ηj((x, y)⊗ (x′, y′)) = 1− χ(x = j),

which equals 0 iff x = j = y.
Similarly, the only j for which η′j could be equal to 1 is j = y, which can only happen if y ∈ {1, . . . , n}.

But then we do not have x = y (because x ≤ y and y is an non-overlined number), so we never have
ηj((x, y)⊗ (x′, y′)) = 1 in Case (2.7).

Thus in Case (2.7), for all j, the functions θj , θ
′
j , ηj and η′j are at most 0 and H((x, y)⊗ (x′, y′)) = 0. □

The only thing left to do is prove that in all the cases not treated in Lemmas 2.6 and 2.7, H has value 1.

Lemma 2.8. In all the other cases, i.e. if

x < y′ and (x > x′ or y > y′), (2.8)

or x < y′ and x = x′ ̸= y′ and y ≤ y′, (2.9)

or x < y′ and y = y′ ̸= x and x ≤ x′, (2.10)

we have
H((x, y)⊗ (x′, y′)) = 1.

Proof. Thanks to Lemmas 2.4 and 2.6, we know that H takes values in {0, 1} when x < y′. Thus to prove this
lemma, we only need, for all the possible values of x, y, x′, y′ under consideration, to exhibit some θj , θ

′
j , ηj

or η′j which are equal to 1.

Let us start with Case (2.8).

• If x > x′, x < y′ and x = j for some j ∈ {1, . . . , n− 1}, then θj+1((x, y)⊗ (x′, y′)) = 1.
• If x > x′, x < y′ and x = n, then ηn((x, y)⊗ (x′, y′)) = 1.
• If x > x′, x < y′ and x = j for some j ∈ {1, . . . , n}, then θ′j((x, y)⊗ (x′, y′)) = 1.

• If y > y′, x < y′ and y = j for some j ∈ {1, . . . , n− 1}, then θj+1((x, y)⊗ (x′, y′)) = 1.
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• If y > y′, x < y′ and y = n, then ηn((x, y)⊗ (x′, y′)) = 1.
• If y > y′, x < y′ and y = j for some j ∈ {1, . . . , n}, then θ′j((x, y)⊗ (x′, y′)) = 1.

So we always have H((x, y)⊗ (x′, y′)) = 1 in Case (2.8).

Now we consider Case (2.9).

• If x = x′ ̸= y′, x < y′, y ≤ y′ and x = j for some j ∈ {1, . . . , n}, then ηj((x, y)⊗ (x′, y′)) = 1.

• If x = x′ ̸= y′, x < y′, y ≤ y′ and x = j for some j ∈ {1, . . . , n}, then η′j((x, y)⊗ (x′, y′)) = 1.

Thus we always have H((x, y)⊗ (x′, y′)) = 1 in Case (2.9).

We proceed similarly for Case (2.10).

• If y = y′ ̸= x, x < y′, x ≤ x′ and y = j for some j ∈ {1, . . . , n}, then ηj((x, y)⊗ (x′, y′)) = 1.
• If y = y′ ̸= x, x < y′, x ≤ x′ and y = j for some j ∈ {1, . . . , n}, then η′j((x, y)⊗ (x′, y′)) = 1.

Thus we always have H((x, y)⊗ (x′, y′)) = 1 in Case (2.10), and the lemma is proved. □

We have shown that for all x ≤ y, x′ ≤ y′ ∈ [n], H((x, y) ⊗ (x′, y′)) = H ′((x, y) ⊗ (x′, y′)), and thus
Theorem 1.7 is proved.

3. Deleting a colour

In this section we present a method given in [Kon20b] and use it to simplify the difference conditions given
by the energy function H introduced in Theorem 1.7. This method is a generalisation of the connection
between generalisations of Primc’s and Capparelli’s identities established in [DK22a], which itself generalised
a bijection of the first author [Dou20] between Primc’s and Capparelli’s identities.

3.1. The setup.

Definition 3.1. Let C be a set of colours, and let Csup ⊔ Cfree ⊔ Cinf be a set-partition of C. Let c∞ be an
additional colour. A function ϵ from C × (C ⊔ {c∞}) to {0, 1, 2} is said to be well-defined according to the
decomposition Csup ⊔ Cfree ⊔ Cinf and c∞ if it satisfies the following conditions:

(1) For c, c′ ∈ Cfree, ϵ(c, c′) = χ(c ̸= c′).
(2) For (c, c′) ∈ Csup × Cfree, ϵ(c, c′) ∈ {0, 1} and ϵ(c′, c) ∈ {1, 2}. Moreover, for c ∈ Csup, there exists

δ(c) ∈ Cfree such that ϵ(c, δ(c)) = 0.
(3) For (c, c′) ∈ Cfree × Cinf , ϵ(c, c′) ∈ {0, 1} and ϵ(c′, c) ∈ {1, 2}. Moreover, for c ∈ Cinf , there exists

δ(c) ∈ Cfree such that ϵ(δ(c), c) = 0.
(4) For (c, c′) ∈ Csup × Cinf , ϵ(c, c′) ∈ {0, 1} and ϵ(c′, c) ∈ {1, 2}. Moreover, if ϵ(c, c′) = 0, there then

exists γ(c, c′) ∈ Cfree such that ϵ(c, γ(c, c′)) = ϵ(γ(c, c′), c′) = 0.
(5) For c, c′ ∈ Csup, if ϵ(c, c′) ∈ {0, 1}, there then exists γ(c, c′) ∈ Cfree such that ϵ(c, γ(c, c′)) = 0 and

ϵ(γ(c, c′), c′) = 1.
(6) For c, c′ ∈ Cinf , if ϵ(c, c′) ∈ {0, 1}, there then exists γ(c, c′) ∈ Cfree such that ϵ(c, γ(c, c′)) = 1 and

ϵ(γ(c, c′), c′) = 0.
(7) Border conditions: ϵ(Cfree, c∞) = {1} , ϵ(Cinf , c∞) ⊂ {1, 2} and ϵ(Csup, c∞) ⊂ {0, 1}.

For the entirety of Sections 2.1 to 2.3, let C = Csup⊔Cfree⊔Cinf be a set of colours, let c0 ∈ Cfree, let c∞ be an
additional colour not in C, and let ϵ be a well-defined function according to the decomposition Csup⊔Cfree⊔Cinf
and c∞. Additionally, for all c ∈ Csup ⊔ Cinf , let δ(c) be a particular colour satisfying Conditions (2) and
(3) of Definition 3.1, and for all (c, c′) in {(c, c′) ∈ Csup × Cinf : ϵ(c, c′) = 0} ⊔ {(c, c′) ∈ C2

sup : ϵ(c, c′) ∈
{0, 1}}⊔ {(c, c′) ∈ C2

inf : ϵ(c, c
′) ∈ {0, 1}}, let γ(c, c′) be a particular colour satisfying Conditions (4) to (6) of

Definition 3.1.
Throughout the paper, if kc and k′c′ are two coloured integers, then we use the notation

kc ≫ϵ k
′
c′ if and only if k − k′ ≥ ϵ(c, c′).

Finally, adding an integer l to a coloured integer kc consists in adding this integer to its size while keeping
its colour, i.e. kc + l = (k + l)c.

Definition 3.2. Define Pc∞
ϵ to be the set of generalised coloured partitions π = (π0, . . . , πs−1, πs = 0c∞)

such that for all i ∈ {0, . . . , s− 1}, c(πi) ∈ C and πi ≫ϵ πi+1.
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In this paper, a pattern denotes a finite sequence of coloured integers well-ordered according to ≫ϵ. We
say that a generalised coloured partition π = (π0, . . . , πs) contains the pattern λ0, . . . , λk if there exists an
index i such that

πi = λ0, πi+1 = λ1, . . . , πi+k = λk.

If a partition does not contain a pattern, we say that it avoids it.

Definition 3.3. Denote by c0
δ,γPc∞

ϵ the set of generalised coloured partitions of Pc∞
ϵ which are c0-regular

(i.e. have no part of colour c0) and avoid the following patterns for all p ∈ N≥0:

(1) for c ∈ Cfree \ {c0}, the pattern pc, pc,
(2) for (c, c′) ∈ Csup × Cinf such that ϵ(c, c′) = 0, the pattern pc, pγ(c,c′), pc′ ,

(3) for (c, c′) ∈ C2
sup such that ϵ(c, c′) ∈ {0, 1}, the pattern pc, pγ(c,c′), (p− 1)c′ ,

(4) for (c, c′) ∈ C2
inf such that ϵ(c, c′) ∈ {0, 1}, the pattern (p+ 1)c, pγ(c,c′), pc′ ,

(5) for all c ∈ Csup,
(a) for all c′ ∈ (Cfree \ {c0}) ⊔ Cinf ⊔ {c∞}, the pattern pc, pδ(c), (p− 1)c′ ,
(b) for all c′ ∈ (C \ {c0}) ⊔ {c∞}, and for all positive integers u ≥ 2, the pattern pc, pδ(c), (p− u)c′ ,

(6) for all c′ ∈ Cinf ,
(a) at the beginning of the partition, the pattern pδ(c′), pc′ ,
(b) for all c ∈ (Cfree \ {c0}) ⊔ Csup, the pattern (p+ 1)c, pδ(c′), pc′ ,
(c) for all c ∈ C \ {c0}, and for all positive integers u ≥ 2, the pattern (p+ u)c, pδ(c′), pc′ .

We are now ready to state the main result of this section.

Theorem 3.4. Assume that c0 ∈ Cfree is such that for all c ∈ C \ {c0}, ϵ(c0, c) = ϵ(c, c0) = 1. Then, there
exists a bijection Φ between Pc∞

ϵ and the product set c0
δ,γPc∞

ϵ × P, where P is the set of classical integer

partitions. Furthermore, for Φ(λ) = (µ, ν), we have |λ| = |µ| + |ν|, ℓ(λ) = ℓ(µ) + ℓ(ν), and the colour
sequence of λ restricted to the colours in Csup ⊔ Cinf is the same as the colour sequence of µ restricted to the
colours in Csup ⊔ Cinf .

We prove Theorem 3.4 bijectively, by inserting the parts of ν into the generalised coloured partition µ. In
Section 3.2, we explain the insertion process and the properties it satisfies. In Section 3.3, we explicitly give
the bijection Φ. In Section 3.4, we apply Theorem 3.4 to the grounded partitions related to our 1 perfect

crystal B of type C
(1)
n and prove Theorem 1.9.

3.2. Insertion of parts. We start by defining the notion of insertion. Let f ∈ Cfree, p ∈ Z and π =
(π0, . . . , πs−1) a generalised coloured partition with relation ≫ϵ. Inserting pf into π consists in transforming
π into π̃ = (π0, . . . , πj−1, pf , πj , . . . , πs−1) for some j ∈ {0, . . . , s} in such a way that π̃ is a generalised
coloured partition with relation ≫ϵ. Inserting a part into a pattern is the same as inserting the part into
the generalised coloured partition consisting exactly of the parts of the pattern. In particular, when s = 1
and j = 0, we say that say that we insert pf to the left of π0, and when s = 1 and j = 1, we say that say
that we insert pf to the right of π0.

First we study the patterns where all the parts have the same size, using (1)–(4) of Definition 3.1. The
following proposition, which follows directly from the definition of ϵ, gives an exhaustive list of such patterns.

Proposition 3.5. A sequence pc1 , . . . , pcs with p ≥ 0 is is a pattern if and only if c1, . . . , cs is a sequence
of colours such that for all i ∈ {1, . . . , s − 1}, ϵ(ci, ci+1) = 0. In this case, there exist unique integers
1 ≤ u ≤ v ≤ s+ 1 such that

{c1, . . . , cu−1} ⊂ Csup ,
cu = · · · = cv−1 ∈ Cfree , (3.1)

{cv, . . . , cs} ⊂ Cinf ,

with the convention that {ca, . . . , cb} = ∅ if a > b.
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3.2.1. Insertion between two parts. In this section, we study all the possible insertions of a part pf with

colour f ∈ Cfree between the two parts of a pattern p
(1)
c1 , p

(2)
c2 such that p ∈ {p(1), p(2)}.

Observe that a part pf can be inserted between the two parts of a pattern p
(1)
c1 , p

(2)
c2 with p = p(1) and

c1 ∈ Cfree (resp. p = p(2) and c2 ∈ Cfree) iff f = c1 (resp. f = c2). The only remaining cases to study are
insertions such that p = p(1) and c1 ∈ Csup or p = p(2) and c2 ∈ Cinf .

We start with the case p = p(1) = p(2), which corresponds to a pattern of the form pc1 , pc2 . By Proposition

3.5, inserting pf between p
(1)
c1 and p

(2)
c2 is not possible when c1 and c2 are either both in Csup or both in Cinf .

The following propositions deals with the remaining case, i.e. (c1, c2) ∈ Csup × Cinf .

Proposition 3.6. For any pair (c1, c2) ∈ Csup × Cinf such that ϵ(c1, c2) = 0, a part pf with f ∈ Cfree can be
inserted between the parts pc1 , pc2 to obtain

pc1 , pf , pc2

if and only if ϵ(c1, f) = ϵ(f, c2) = 0.

We now study the case where p(1) ̸= p(2). This necessarily means that p(1) > p(2). We start with the case
where p = p(1) and c1 ∈ Csup.

Proposition 3.7. For (c1, f) ∈ Csup × Cfree, the exhaustive list of possible insertions of pf between parts

pc1 , p
(2)
c2 is as follows:

(1) for any colour c2 in C ⊔ {c∞}, and any integer u ≥ 2, we can insert a part pf between the parts of
the pattern pc1 , (p− u)c2 to obtain

pc1 , pf , (p− u)c2

if and only if ϵ(c1, f) = 0,
(2) for any colour c2 ∈ Cfree ⊔ Cinf ⊔ {c∞}, we can insert a part pf between the parts of the pattern

pc1 , (p− 1)c2 to obtain

pc1 , pf , (p− 1)c2

if and only if ϵ(c1, f) = 0,
(3) for any colour c2 ∈ Csup such that ϵ(c1, c2) ∈ {0, 1}, we can insert a part pf between the parts of the

pattern pc1 , (p− 1)c2 to obtain

pc1 , pf , (p− 1)c2

if and only if ϵ(c1, f) = 0 and ϵ(f, c2) = 1.

We conclude with the case where p = p(2) and c2 ∈ Csup.

Proposition 3.8. For (c2, f) ∈ Cinf × Cfree, the exhaustive list of possible insertions of pf between parts

p
(1)
c1 , pc2 is as follows:

(1) for any colour c1 in C, and any integer u ≥ 2, we can insert a part pf between the parts of the pattern
(p+ u)c1 , pc2 to obtain

(p+ u)c1 , pf , pc2

if and only if ϵ(c1, f) = 0,
(2) for any colour c1 ∈ Csup ⊔Cfree, we can insert a part pf between the parts of the pattern (p+1)c1 , pc2

to obtain

(p+ 1)c1 , pf , pc2

if and only if ϵ(f, c2) = 0,
(3) for any colour c1 ∈ Cinf such that ϵ(c1, c2) ∈ {0, 1}, we can insert a part pf between the parts of the

pattern (p+ 1)c1 , pc2 to obtain

(p+ 1)c1 , pf , pc2

if and only if ϵ(c1, f) = 1 and ϵ(f, c2) = 0.
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The set of admissible colours f for the part pf possibly inserted between p
(1)
c1 and p

(2)
c2 depends on both

colours c1 and c2 only if (c1, c2) ∈ {(c, c′) ∈ Csup × Cinf : ϵ(c, c′) = 0} ⊔ {(c, c′) ∈ C2
sup : ϵ(c, c′) ∈ {0, 1}} ⊔

{(c, c′) ∈ C2
inf : ϵ(c, c′) ∈ {0, 1}}. In that case, it is in particular possible to insert a part with colour

f = γ(c1, c2). Otherwise, when the colour f only depends on the colour c of the part pc with the same size
as pf , it is possible to insert pf with f = δ(c). These particular choices for f allow us to forbid, for all the

pairs p
(1)
c1 , p

(2)
c2 of consecutive parts, a unique insertion, giving rise to the forbidden patterns in c0

δ,γPc∞
ϵ (see

Definition 3.3).

Remark 3.9. For any (c1, c2) ∈ Csup×Cinf , we can insert between the parts (p+1)c1 , pc2 two parts (p+1)f1
and pf2 with f1, f2 in Cfree if only if ϵ(c1, f1) = ϵ(f2, c2) = 0. The admissible colours f1 depend only on c1,
and the allowed colours f2 depend only on c2.

3.2.2. Insertion at the extremities. Recall that

ϵ(Cfree, c∞) = {1} , ϵ(Cinf , c∞) ⊂ {1, 2} and ϵ(Csup, c∞) ⊂ {0, 1} .

Then, similarly to Proposition 3.5, if a partition in Pc∞
ϵ has several parts of size 0, then these parts are of

the form

0c1 , . . . , 0cs , 0c∞

with c1, . . . , cs ∈ Csup. Thus it is not possible to insert a part 0f with f ∈ Cfree. We now study the insertion
of 1f for some f ∈ Cfree at the end of the partition.

• When the partition ends with 1c, 0c∞ with c ∈ Csup, the insertion of 1f to the right of 1c is allowed
if and only if ϵ(c, f) = 0.

• When the partition ends with 1c, 0c∞ with c ∈ Cinf , if the insertion of 1f is allowed, it will always be
to the left of 1c. Thus 1c remains the last part before 0c∞ .

We finally study the case of an insertion at the beginning of the partition.

• When the first part is pc with c ∈ Csup, for any free colour f , if the insertion of pf is allowed, it will
always be to the right of pc. Thus pc remains the first part of the partition.

• When the first part is pc with c ∈ Cinf , the insertion of pf to the leftt of pc is allowed if and only if
ϵ(f, c) = 0.

Thus we can extend Propositions 3.6, 3.7 and 3.8 as follows to include the insertions at the extremities:

• the insertion of pf at the end of the partition corresponds to inserting it between pc1 and 0c∞ with
c1 ∈ Csup and p ≥ 1,

• the insertion of pf at the beginning of the partition corresponds to inserting it between ∞ and pc2
with c2 ∈ Cinf and p ≥ 1 (here ∞ is a virtual part, not considered to belong to the partition).

3.3. Bijective proof of Theorem 3.4.

3.3.1. The map Φ. Let us consider a partition λ ∈ Pc∞
ϵ . We want to build Φ(λ) = (µ, ν) ∈ c0

δ,γPc∞
ϵ × P.

First, recall that ϵ(c, c0) = ϵ(c0, c) = χ(c ̸= c0) for any colour c ∈ C. This is equivalent to saying that, in λ,
the parts coloured by c0 have sizes different from all the parts whose colour is not c0. We first consider ν to
be the empty partition. Then we transform some parts pf with f ∈ Cfree into colourless parts p and insert
them into ν as follows.

(1) Take all the parts of λ with colour c0 and move them to ν (after removing their colour c0). Since
the parts which were to the left and to the right of the pc0 ’s in λ have respectively sizes greater and
smaller than p, this means that their sizes differ by at least 2. Given that ϵ(C, C ⊔ {c∞}) ⊂ {0, 1, 2},
by removing the parts with colour c0 from λ, the remaining partition λ′ is still in Pc∞

ϵ . Furthermore,
the parts of λ′ have sizes different from the sizes of the parts of ν.

(2) For all the parts pf in λ′ with f ∈ Cfree \ {c0} which appear at least twice, transform all the
occurrences of pf but one into p and move them to ν. Since one occurrence remains for all such
parts, we obtain a partition λ′′ that is still in Pc∞

ϵ , and has no repeated parts pf with free colours
and no part coloured c0. Also, the only parts of λ′′ having the same size as some part of ν are
coloured with f ∈ Cfree \ {c0}.
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(3) For all the parts pf that appear in patterns p
(1)
c1 , pf , p

(2)
c2 of λ′′ which are forbidden in c0

δ,γPc∞
ϵ ,

transform the parts pf into p and move them to ν. Note that such parts pf may have been among

those which were repeated in Step (2), and can only appear in forbidden patterns with p = p(1)

and c1 ∈ Csup, or p = p(2) and c2 ∈ Cinf . One can also observe that, when removing pf from such

patterns, the remaining patterns p
(1)
c1 , p

(2)
c2 are always allowed in c0

δ,γPc∞
ϵ . At the end of this step, the

partition obtained from λ′′ does not contain any forbidden pattern nor any part coloured c0, and
the parts pf with f ∈ Cfree cannot be repeated. We set this partition to be µ.

At the end, we obtain a pair of partitions (µ, ν) ∈ c0
δ,γPc∞

ϵ × P as desired.

Remark 3.10. The only parts in ν which do not have the same size as some part in µ are those coming
from the parts of λ with colour c0 in Step (1).

3.3.2. The map Φ−1. We now describe the inverse map Φ−1. Let us start with (µ, ν) ∈ c0
δ,γPc∞

ϵ × P, and

insert the parts p of ν into the partition µ as follows (note that at Step (1), we only insert one copy of each
part):

(1) If µ does not contain any part pf with f ∈ Cfree \ {c0}, but contains a part pc with c ∈ Csup ⊔ Cinf ,
we proceed as follows.

• If there is a pair of colours (c1, c2) ∈ Csup × Cinf such that the pattern pc1 , pc2 is in µ, then
necessarily ϵ(c1, c2) = 0. By Proposition 3.5, there is only one such pair among the parts of
size p. Set f = γ(c1, c2), transform the part p into pf , and insert pf between pc1 and pc2 . By
Proposition 3.6, we obtain the pattern

pc1 , pγ(c1,c2), pc2

which is forbidden in c0
δ,γPc∞

ϵ .

Note that this is the only suitable insertion of a part of size p to ensure that Φ−1 is well-defined
and indeed the inverse bijection of Φ, as we now show.
(a) It is not possible to insert a part pf with f ∈ Cfree in the sequence to the left of pc1 by

Proposition 3.5.
(b) Similarly, we cannot insert a part pf with f ∈ Cfree in the sequence to the right of pc2 .
(c) Finally, inserting a part pf with f ̸= γ(c1, c2) and ϵ(c1, f) = ϵ(f, c2) = 0 into the pair

pc1 , pc2 would be allowed according to the definition of ϵ, but the pattern pc1 , pf , pc2 is
allowed in c0

δ,γPc∞
ϵ , and this insertion would make the map Φ−1 non-injective.

• If all the parts of size p in µ have colours in Csup, denote by c1 the colour of the last of these
parts. With the same reasoning as above, we cannot insert a part pf with f ∈ Cfree in the
sequence to the left of pc1 . Note that the part to the right of pc1 has necessarily a size less than
p. Using Proposition 3.7, insert p in the following way:
(a) If the part to the right of pc1 has size less than p − 1, transform p into pδ(c1) and insert

it to the right of pc1 . We obtain the pattern

pc1 , pδ(c1), (p− u)c2

for some integer u ≥ 2, which is forbidden in c0
δ,γPc∞

ϵ .

(b) If the part to the right of pc1 has size p − 1 and colour c2 ∈ (Cfree \ {c0}) ⊔ Cinf ⊔ {c∞},
transform p into pδ(c1) and insert it to the right of pc1 . We obtain the pattern

pc1 , pδ(c1), (p− 1)c2

which is forbidden in c0
δ,γPc∞

ϵ .

(c) If the part to the right of pc1 has size p − 1 and colour c2 ∈ Csup, then necessarily
ϵ(c1, c2) ∈ {0, 1}. In that case, transform p into pγ(c1,c2) and insert it to the right of pc1 .
We obtain the pattern

pc1 , pγ(c1,c2), (p− 1)c2

which is forbidden in c0
δ,γPc∞

ϵ .
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• We finish with the remaining case, where all the parts pc in µ are such that c ∈ Cinf . Let c2
be the colour of the first part of size p. It is not possible to insert pf with f ∈ Cfree in the
sequence to the right of pc2 by Proposition 3.5. Also, the part to the left of pc2 , if it exists, has
necessarily a size greater than p. Using Proposition 3.8, insert p in the following way:
(a) If there is no part to the left of pc2 , transform the part p into pδ(c2) and insert it to the

left of pc2 . We obtain the pattern

pδ(c2), pc2

which is forbidden in c0
δ,γPc∞

ϵ .

(b) If the part to the left of pc2 has a size greater than p+1, transform the part p into pδ(c2)
and insert it to the left of pc2 . We obtain the pattern

(p+ u)c1 , pδ(c2), pc2

for some integer u ≥ 2, which is forbidden in c0
δ,γPc∞

ϵ .

(c) If the part to the left of pc2 has size p+ 1 and colour c1 ∈ (Cfree \ {c0}) ⊔ Csup, transform
the part p into pδ(c2) and insert it to the left of pc2 . We obtain the pattern

(p+ 1)c1 , pδ(c2), pc2

which is forbidden in c0
δ,γPc∞

ϵ .

(d) If the part to the left of pc2 has size p+1 and colour c1 ∈ Cinf , then necessarily ϵ(c1, c2) ∈
{0, 1}. Transform the part p into pγ(c1,c2) and insert it to the left of pc2 . We obtain the
pattern

(p+ 1)c1 , pγ(c1,c2), pc2
which is forbidden in c0

δ,γPc∞
ϵ .

Let µ′ denote the resulting partition.
The order in which the parts pf were inserted does not matter. Indeed, when the insertion between

a part of colour c1 and a part of colour c2 depends both on c1 and c2, then there is only one possibility
for the inserted part pf . And in the other cases, the insertion of a part of size p does never interfere
with the insertion of a part of another size.

Moreover, for the above cases, which form an exhaustive list of insertions pf into a pair p
(1)
c1 , p

(2)
c2

with p = p(1) and c1 ∈ Csup, or p = p(2) and c2 ∈ Cinf , the choice of colour f so that the obtained

pattern p
(1)
c1 , pf , p

(2)
c2 is forbidden in c0

δ,γPc∞
ϵ is unique. The partition µ′ has some forbidden patterns

of c0
δ,γPc∞

ϵ , no repeated part pf with f ∈ Cfree and no part coloured by c0. Thus Step (1) is the exact

inverse of Step (3) of Φ.
(2) If there is a part pf in µ′ with f ∈ Cfree \ {c0}, transform all the parts p into pf and insert them into

µ′. We obtain a partition µ′′ with some forbidden patterns of c0
δ,γPc∞

ϵ and repeated parts pf with

f ∈ Cfree \ {c0}, but no part coloured c0. This is the inverse of Step (2) of Φ.
(3) After Steps (1) and (2), the only remaining parts in ν are such that there is no part in µ′′ with the

same size. We transform these parts p into pc0 and insert them into µ′′. The resulting partition has
some forbidden patterns of c0

δ,γPc∞
ϵ , repeated parts pf with f ∈ Cfree, and parts coloured c0. Set this

partition to be λ. This is the exact inverse of the Step (1) of Φ.

The partition λ is a partition of Pc∞
ϵ , and we set Φ−1(µ, ν) = λ.

3.4. Application to the level one perfect crystal of C
(1)
n . Recall that we consider the crystal of Figure

1.1, with vertex set

B = {∅} ⊔ {(x, y) : x ≤ y ∈ [n]},
and energy function H given in Theorem 1.7.

Let C = {cb : b ∈ B} be the set of colours with indices in B, where we write cx,y instead of c(x,y). Define
C = Csup ⊔ Cfree ⊔ Cinf with

Cfree = {c∅, cx,x : x ∈ {1, . . . , n}},
Csup = {cx,y : y < x ≤ y},
Cinf = {cx,y : x ≤ y < x}.
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Let c∞ be an additional colour and ϵ be a function on C × (C ⊔ {c∞}) such that ϵ(cb′ , cb) := H(b⊗ b′) for all
b, b′ ∈ C and ϵ satisfies Condition (7) of Definition 3.1. Thus in particular ϵ takes values in {0, 1, 2}.

Define δ and γ in the following way:

δ(cx,y) :=

{
cy,y for all cx,y ∈ Csup,
cx,x for all cx,y ∈ Cinf ,

γ(cx,y, cx′,y′) :=


cz,z for all (cx,y, cx′,y′) ∈ Csup × Cinf such that ϵ(cx,y, cx′,y′) = 0,

cy,y for all (cx,y, cx′,y′) ∈ C2
sup such that ϵ(cx,y, cx′,y′) ∈ {0, 1},

cx′,x′ for all (cx,y, cx′,y′) ∈ C2
inf such that ϵ(cx,y, cx′,y′) ∈ {0, 1},

where z = max{x′, y}.

Lemma 3.11. The function ϵ is well-defined according to the decomposition Csup ⊔ Cfree ⊔ Cinf and c∞.
Moreover the functions δ and γ defined above satisfy Conditions (2)-(6) from Definition 3.1.

Proof. The function ϵ satisfies the following.

(1) For all x, y ∈ {1, . . . , n} with x ̸= y,
ϵ(c∅, c∅) = 0,

ϵ(c∅, cx,x) = ϵ(cx,x, c∅) = 1,

ϵ(cx,x, cx,x) = 0,

ϵ(cx,x, cy,y) = 1.

(2) For all y < x ≤ y, ϵ(cx,y, c∅) = ϵ(c∅, cx,y) = 1. Let z ∈ {1, . . . , n}. By (2.4), we have ϵ(cx,y, cz,z) ̸= 2
because y ≥ n > n ≥ z. Moreover, ϵ(cz,z, cx,y) ̸= 0 since
(a) we do not have (2.5) which is equivalent to x < z < y,
(b) we do not have (2.6) which is equivalent to y ≥ x = z,
(c) we do not have (2.7) which is equivalent to y = x = z.
Finally, by (2.7), ϵ(cx,y, δ(cx,y)) = ϵ(cx,y, cy,y) = 0.

(3) For all x ≤ y < x, ϵ(cx,y, c∅) = ϵ(c∅, cx,y) = 1. Let z ∈ {1, . . . , n}. Hence, by (2.4), ϵ(cz,z, cx,y) ̸= 2
because z ≥ n > n ≥ x. Moreover, ϵ(cx,y, cz,z) ̸= 0 since
(a) we do not have (2.5) which is equivalent to y < z < x,
(b) we do not have (2.6) which is equivalent to z = y = x,
(c) we do not have (2.7) which is equivalent to z = y ≤ x.
Finally, by (2.6), ϵ(δ(cx,y), cx,y) = ϵ(cx,x, cx,y) = 0.

(4) For all y < x ≤ y and x′ ≤ y′ < x′, by (2.4), ϵ(cx,y, cx′,y′) ̸= 2 because y ≥ n > n ≥ x′. Moreover,
ϵ(cx′,y′ , cx,y) ̸= 0 since

(a) we do not have (2.5) which is equivalent to y′ < y < x < x′,
(b) we do not have (2.6) as y′ ̸= x′,
(c) we do not have (2.7) as y ̸= x.
Finally, by (2.5),(2.6) and (2.7), ϵ(cx,y, cx′,y′) = 0 if and only if x > x′ and y > y′. In that case,

setting z = max{x′, y},
• we first show that ϵ(cx,y, γ(cx,y, cx′,y′)) = ϵ(cx,y, cz,z) = 0. If y < z = x′ < x, then ϵ(cx,y, cz,z) =
0 by (2.5). Otherwise, z = y < x and ϵ(cx,y, cz,z) = 0 by (2.7);

• we then show that ϵ(γ(cx,y, cx′,y′), cx′,y′) = ϵ(cz,z, cx′,y′) = 0. If x′ < z = y < y′, then

ϵ(cz,z, cx′,y′) = 0 by (2.5). Otherwise, z = x′ < y′ and ϵ(cz,z, cx′,y′) = 0 by (2.6).
(5) For all y < x ≤ y, ϵ(cx,y, cy,y) = 0 by (2.7).

For all y′ < x′ ≤ y′, by (2.4), ϵ(cx,y, cx′,y′) ̸= 2 if and only if y > x′. In that case, by (2.4),
ϵ(cy,y, cx′,y′) ̸= 2, and since ϵ(cy,y, cx′,y′) ̸= 0, we necessarily have ϵ(cy,y, cx′,y′) = 1. Thus

ϵ(cx,y, γ(cx,y, cx′,y′)) + 1 = ϵ(γ(cx,y, cx′,y′), cx′,y′) = 1 .

(6) For all x′ ≤ y′ < x′, by (2.6), ϵ(cx′,x′ , cx′,y′) = 0.
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For all x ≤ y < x, by (2.4), ϵ(cx,y, cx′,y′) ̸= 2 if and only if y > x′. In that case, by (2.4),
ϵ(cx,y, cx′,x′) ̸= 2, and since ϵ(cx,y, cx′,x′) ̸= 0, we necessarily have ϵ(cx,y, cx′,x′) = 1. Thus

ϵ(cx,y, γ(cx,y, cx′,y′)) = ϵ(γ(cx,y, cx′,y′), cx′,y′) + 1 = 1 .

□

In the following, set S = C \ {c∅}.

Lemma 3.12. Let ρ be the function defined on S × (S ⊔ {c∞}) by ρ(S, c∞) = ϵ(S, c∞) and for all x ≤ y ∈
[n], x′ ≤ y′ ∈ [n], by

ρ(cx′,y′ , cx,y) = χ(x ≥ x′) + χ(y ≥ y′)− χ(y ≥ y′ > x ≥ x′).

Let P̃c∞
ρ be the set of partitions π = (π0, . . . , πs−1, πs = 0c∞) with colours in S ⊔ {c∞} such that for all

i ∈ {0, . . . , s− 1},
c(πi) ̸= c∞ and |πi| − |πi+1| ≥ ρ(c(πi), c(πi+1)).

Then, setting c0 = c∅, we have
c0
δ,γP

c∞
ϵ = P̃c∞

ρ .

Proof. We first observe that, by Remark 2.5, ρ(cx′,y′ , cx,y) = ϵ(cx′,y′ , cx,y) except for the cases y ≥ x = y′ = x′

and y = x = y′ < x′, where ρ(cx′,y′ , cx,y) = ϵ(cx′,y′ , cx,y) + 1 = 1. These exceptions can be divided in three
disjoint cases: 

y = x = y′ = x′,

y > x = y′ = x′,

y = x = y′ < x′.

Thus P̃c∞
ρ is exactly exactly the set of c∅-regular partitions of Pc∞

ϵ which avoid the patterns:

(1) pcx,x , pcx,x for all x ∈ {1, . . . , n},
(2) pcx,x , pcx,y for all x ≤ y < x,
(3) pcx,y

, pcy,y
for all y < x ≤ y.

Since each forbidden pattern for the set c0
δ,γPc∞

ϵ contains at least one of the patterns (1)-(3), this implies that

P̃c∞
ρ ⊂ c0

δ,γPc∞
ϵ .

We now prove that c0
δ,γPc∞

ϵ ⊂ P̃c∞
ρ by showing that the forbidden patterns of P̃c∞

ρ are also forbidden in
c0
δ,γPc∞

ϵ .

(1) For all x ∈ {1, . . . , n}, the pattern pcx,x
, pcx,x is forbidden in in c0

δ,γPc∞
ϵ .

(2) For all x ≤ y < x, we show that pcx,x
, pcx,y

is forbidden in c0
δ,γPc∞

ϵ . To do so, we first prove that all

the patterns of the form qcx′,y′ , pcx,x
, pcx,y

allowed in Pc∞
ϵ are forbidden in c0

δ,γPc∞
ϵ .

(a) If q = p, then ϵ(cx′,y′ , cx,x) = 0, and either y′ ≤ x < x′ by the union of (2.5) and (2.7), or y =

x = y′ = x′ by (2.6). In the first case, we have x < x′ and y′ ≥ x > y, so that ϵ(cx′,y′ , cx,y) = 0 by

(2.5). Since max{y′, x} = x, we obtain the pattern pcx′,y′ , pγ(cx′,y′ ,cx,y), pcx,y
, which is forbidden

in c0
δ,γPc∞

ϵ . In the second case, the pattern pcx,x
, pcx,x

, pcx,y
is forbidden in c0

δ,γPc∞
ϵ .

(b) If q = p + 1, then ϵ(cx′,y′ , cx,x) ≤ 1. If y′ ≤ x′ ≤ y′, the pattern (p + 1)cx′,y′ , pcx,x , pcx,y is

forbidden in c0
δ,γPc∞

ϵ . Otherwise, x′ ≤ y′ < x′. In that case, as ϵ(cx′,y′ , cx,x) ̸= 2, by (2.4),

y′ > x so that ϵ(cx′,y′ , cx,y) ̸= 2. Once again, the pattern (p+1)cx′,y′ , pcx,x
, pcx,y

is forbidden in
c0
δ,γPc∞

ϵ .

(c) If q ≥ p+ 2, the pattern qcx′,y′ , pcx,x
, pcx,y

is forbidden in c0
δ,γPc∞

ϵ .

The pattern pcx,x
, pcx,y

is forbidden in c0
δ,γPc∞

ϵ at the beginning of the partition. Therefore, together

with the cases above, we conclude that the pattern pcx,x
, pcx,y

is simply forbidden in c0
δ,γPc∞

ϵ .

(3) Similarly to what we did in (2), we show that the pattern pcx,y
, pcy,y

is forbidden in c0
δ,γPc∞

ϵ for all
y < x ≤ y.

□
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Now we modify the minimal differences with the last part coloured c∞ in the functions ϵ and ρ to make
the connection with grounded partitions.

Let b0 = ∅, and for i ∈ {1, . . . , n}, let bi = (i, i). Then, for i ∈ {0, . . . , n} define the function ϵi on
C × (C ⊔ {c∞}) as follows:

ϵi(c
′, c) :=


H(b⊗ b′) if (c′, c) = (cb′ , cb) ∈ C2,

H(bi ⊗ b′) if (c′, c) = (cb′ , c∞) with cb′ ∈ C \ {cbi},
1 if c′ = cbi and c = c∞.

The function ρi is defined on S × (S ⊔ {c∞}) by ρi(S, c∞) = ϵi(S, c∞) and for all x ≤ y ∈ [n], x′ ≤ y′ ∈ [n],

ρi(cx′,y′ , cx,y) = χ(x ≥ x′) + χ(y ≥ y′)− χ(y ≥ y′ > x ≥ x′).

Applying Theorem 3.4 with c0 = c∅ and combining it with Lemma 3.12, we obtain the following.

Corollary 3.13. For all i ∈ {0, . . . , n}, there exists a bijection Φ between Pc∞
ϵi and the product set P̃c∞

ρi
×P.

Furthermore, for Φ(λ) = (µ, ν), we have |λ| = |µ| + |ν|, ℓ(λ) = ℓ(µ) + ℓ(ν), and the colour sequence of λ
restricted to the colours in Csup ⊔ Cinf is the same as the colour sequence of µ restricted to the colours in
Csup ⊔ Cinf .

Let Pϵi (resp. Pi,ρ) be the set obtained from Pc∞
ϵi (resp. P̃c∞

ρi
) by transforming the final part 0c∞ into

0cbi . Then Pϵi is exactly the set P≫
cbi

of grounded partitions with ground cbi and relation ≫. Theorem 1.9 is

proved.

4. Connection with Frobenius partitions

Let i ∈ {0, . . . , n}. In this section we show that the partitions of Pi,ρ can be identified with some simpler

objects, namely the C
(1)
n -Frobenius partitions defined in the introduction, which can be seen as coloured

Frobenius partitions [DK22a] with additional interlacing conditions. We give a more general definition of
these objects in Subsection 4.1, before explaining the correspondence with Pi,ρ in the following subsections.

4.1. C
(1)
n -Frobenius partitions. Let (O,≥) be an ordered set and let R = {cu : u ∈ O} be a set of colours

which we will call primary colours. Recall that > denotes the strict order corresponding to ≥, and extend
the order ≥ on the set of primary-coloured integers ZR as follows:

kcu ≥ lcv ⇐⇒ k − l ≥ χ(u < v) . (4.1)

Equivalently, kcu > lcv if and only if k − l ≥ χ(u ≤ v). This is also equivalent to ordering the coloured
integers in the following way

· · · ≤ (k − 1)cu1
≤ (k − 1)cu2

≤ · · · ≤ kcu1
≤ kcu2

≤ · · · ≤ (k + 1)cu1
≤ (k + 1)cu2

≤ · · · ,
where u1 ≤ u2 ≤ · · · in O.

The definition of C
(1)
n -Frobenius partitions with relation > and ground kc, ld given in Definition 1.11 for

the case O = [n] is still valid for general O. Hence we do not repeat it here.
Given a set of primary colours R, define S the corresponding set of secondary colours, which are commu-

tative products of two primary colours, i.e.

S := {cx,y = cxcy = cycx : x ≤ y ∈ O}.
Let ZS denote the set of secondary-coloured integers. In this section, if kcu and lcv are two primary-coloured
integers, then we define their sum to be the secondary-coloured integer

kcu + lcv = (k + l)cucv .

Define the function ρ on S2 by

ρ(cx′,y′ , cx,y) := χ(x ≥ x′) + χ(y ≥ y′)− χ(y ≥ y′ > x ≥ x′).

Note that this ρ has the same expression as the function ρ from Lemma 3.12 restricted to S2. The corre-
sponding relation ≫ρ on ZS is given by

kc ≫ρ ld if and only if k − l ≥ ρ(c, d).
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Finally, denote by Pkc+ld
ρ the set of generalised coloured partitions with parts in ZS , order ≫ρ, and

last part equal to kc + ld. The main result of this section is a bijection between the coloured partitions of

Pkc+ld
ρ and the C

(1)
n -Frobenius partitions of Fkc,ld

> . But before being able to state this bijection, we need to
introduce a decomposition of secondary coloured integers.

4.2. Turning a coloured integer into a pair of coloured integers. We decompose the coloured integers
of ZS in the following way. For all x ≤ y ∈ O and k ∈ Z,{

2kcx,y
= kcy + kcx ,

(2k + 1)cx,y
= (k + 1)cx + kcy .

Denote respectively by η and ζ the larger and smaller component in the decomposition above, namely{
(η(2kcx,y

), ζ(2kcx,y
)) := (kcy , kcx),

(η((2k + 1)cx,y
), ζ((2k + 1)cx,y

)) := ((k + 1)cx , kcy ).
(4.2)

Notice that, by (4.2), for k ∈ Z and x ≤ y ∈ O, we have have the simple relations{
η(kcx,y

+ 1) = ζ(kcx,y
) + 1,

ζ(kcx,y
+ 1) = η(kcx,y

).
(4.3)

By (4.1), we deduce that

ζ(kcx,y
) ≤ η(kcx,y

) ≤ ζ(kcx,y
) + 1. (4.4)

Conversely, if kcu and lcv are primary-coloured integers such that lcv ≤ kcu ≤ lcv + 1, then they are
respectively the η and ζ component of a secondary-coloured integer, namely (k+ l)cucv . Indeed, by (4.1) we
know that

χ(u ≤ v) ≥ k − l ≥ χ(u < v),

and thus by (4.2),

(η((k + l)cucv ), ζ((k + l)cucv )) = (kcu , lcv ).

Hence one can identify ZS with the set of pairs of primary-coloured integers (kcu , lcv ) such that lcv ≤ kcu ≤
lcv + 1.

We now state the bijection.

Proposition 4.1. The map

(π0, . . . , πs−1, u+ v) 7→ ((η(π0), . . . , η(πs−1), u), (ζ(π0), . . . , ζ(πs−1), v))

describes a bijection from Pkc+ld
ρ to Fkc,ld

> which preserves the size and colour sequence.

To prove that it is indeed a bijection, we need the following lemma which relates the relation ≫ρ on ZS
to the order ≥ on ZR through the comparison of their η and ζ components.

Lemma 4.2. For all x ≤ y, x′ ≤ y′ ∈ O and k, l ∈ Z, we have

kcx,y
≫ρ lcx′,y′ ⇐⇒

(
η(kcx,y

) > η(lcx′,y′ ) and ζ(kcx,y
) > ζ(lcx′,y′ )

)
. (4.5)

Proof. By (4.3) and (4.4), for all kcx,y
∈ ZS ,

η((k + 1)cx,y ) ≥ η(kcx,y ) and ζ((k + 1)cx,y ) ≥ ζ(kcx,y ). (4.6)

Hence, to show that

kcx,y
≫ρ lcx′,y′ =⇒

(
η(kcx,y

) > η(lcx′,y′ ) and ζ(kcx,y
) > ζ(lcx′,y′ )

)
,

it suffices to show that

η(lcx,y
+ ρ(cx,y, cx′,y′)) > η(lcx′,y′ ) and ζ(lcx,y

+ ρ(cx,y, cx′,y′)) > ζ(lcx′,y′ ). (4.7)

Similarly, showing that

kcx,y
̸≫ρ lcx′,y′ =⇒

(
η(kcx,y

) ≤ η(lcx′,y′ ) or ζ(kcx,y
) ≤ ζ(lcx′,y′ )

)
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is equivalent to showing that

η(lcx,y + ρ(cx,y, cx′,y′)− 1) ≤ η(lcx′,y′ ) or ζ(lcx,y + ρ(cx,y, cx′,y′)− 1) ≤ ζ(lcx′,y′ ). (4.8)

Moreover, by (4.3), the equivalence (4.5) holds for k, l if and only if it holds for k + 1, l + 1. Thus, without
loss of generality, we may assume that l is even, so that by setting l = 2m, we have η(lcx′,y′ ) = mcy′ and

ζ(lcx′,y′ ) = mcx′ .

We break the condition x ≤ y, x′ ≤ y′ ∈ O into an exhaustive list of four cases.

(1) If x > x′ and y > y′, then ρ(cx,y, cx′,y′) = 0, and by (4.1) and (4.3),

η(lcx,y
) = mcy > mcy′ = η(lcx′,y′ ) and ζ(lcx,y

) = mcx > mcx′ ζ(lcx′,y′ ),

so (4.7) is satisfied. Moreover,

η(lcx,y
− 1) = mcx ≤ mcy′ = η(lcx′,y′ ),

so (4.8) is true as well.
(2) If x ≤ x′ ≤ y′ < y, then ρ(cx,y, cx′,y′) = 1, and by (4.1) and (4.3),

η(lcx,y
+ 1) = (m+ 1)cx > mcy′ and ζ(lcx,y

+ 1) = mcy > mcx′ .

so (4.7) is satisfied. Moreover,

ζ(lcx,y
) = mcx ≤ mcx′ ,

proving (4.8).
(3) If x′ < y ≤ y′, then ρ(cx,y, cx′,y′) = 1, and by (4.1) and (4.3),

η(lcx,y + 1) = (m+ 1)cx > mcy′ and ζ(lcx,y + 1) = mcy > mcx′ ,

so (4.7) is true. And

η(lcx,y
) = mcy ≤ mcy′ ,

thus (4.8) is satisfied.
(4) If x′ ≥ y, then ρ(cx,y, cx′,y′) = 2, and by (4.1) and (4.3), we have

η(lcx,y + 2) = (m+ 1)cy > mcy′ and ζ(lcx,y + 2) = (m+ 1)cx > mcx′ ,

which proves (4.7). Also,

ζ(lcx,y
+ 1) = mcy ≤ mcx′ ,

so (4.8) is true.

In all the above cases, hence when x ≤ y, x′ ≤ y′, (4.5) is always true. □

The proof of Proposition 4.1 follows immediately from (4.4) and Lemma 4.2.

4.3. Minimal parts. In this section we study the case O = [n]. The set of secondary colours S is the same
as the one defined in Section 3.4, and the function ρ coincides to the one defined in Lemma 3.12 restricted to

S2. We show that there is a bijection between the set Pi,ρ defined in Section 3.4 and certain C
(1)
n -Frobenius

partitions.

Theorem 4.3. The map

(π0, . . . , πs−1, 0cbi ) 7→ ((η(π0), . . . , η(πs−1), η(ωi)), (ζ(π0), . . . , ζ(πs−1), ζ(ωi)))

describes a bijection from Pi,ρ to F
0c

i+1
,0ci

> (resp. F
0c

1
,−1c

1
> ) for i ∈ {1, . . . , n} (resp. i = 0). Moreover this

bijection preserves the size and colour sequence of all the parts except the last.

To prove Theorem 4.3, we show that for all i ∈ {0, . . . , n}, the set Pi,ρ can be identified with by Pωi
ρ ,

where

ωi :=

{
(−1)c1,1 if i = 0,

0ci,i+1
if i ∈ {1, . . . , n}.

Here we use the convention that n+ 1 = n. Combined with Proposition 4.1, this correspondence establishes
Theorem 4.3 .

23



Lemma 4.4. For i ∈ {0, . . . , n}, the set Pi,ρ can be identified with the set Pωi
ρ through the map

ϕ : (π0, . . . , πs−1, 0cbi ) 7→ (π0, . . . , πs−1, ωi).

Proof. For all π = (π0, . . . , πs−1, 0cbi ) ∈ Pi,ρ, we have:

• πj ∈ ZS for 0 ≤ j ≤ s− 1,
• πj ≫ρ πj+1 for 0 ≤ j < s− 1,
• πs−1 = kcx,y

with

k ≥

{
H(bi ⊗ bx,y) if bx,y ̸= cbi ,

1 if bx,y = cbi .
(4.9)

The map ϕ only modifies the last part. Hence we only need to show that (4.9) is equivalent to

πs−1 ≫ρ ωi. (4.10)

We treat separately the cases i = 0 and i ∈ {1, . . . , n}.
(1) For i = 0, (4.9) simply becomes k ≥ 1. By (4.6), k ≥ 1 implies that

η(kcx,y
) ≥ η(1cx,y

) = 1cx ≥ 1c1 and ζ(kcx,y
) ≥ ζ(1cx,y

) = 0cy ≥ 0c1 ,

and then

η(kcx,y ) > 0c1 = η(ω0) and ζ(kcx,y ) > (−1)c1 = ζ(ω0),

which by Lemma 4.2 is equivalent to (4.10). Conversely, if

η(kcx,y
) > 0c1 and ζ(kcx,y

) > (−1)c1 ,

then

η(kcx,y
) ≥ 1c1 and ζ(kcx,y

) ≥ 0c1
so that k ≥ 1. Thus k ≥ 1 is equivalent to πs−1 ≫ρ ω0.

(2) For i ∈ {1, . . . , n}, by Lemma 4.2 we only need to show that (4.9) is equivalent to

η(kcx,y ) > 0ci+1
= η(ωi) and ζ(kcx,y ) > 0ci = ζ(ωi).

• When we do not have x ≥ y = i, then by Remark 2.5, we have k ≥ H(bi ⊗ bx,y) = ρ(cx,y, ci,i),

and (4.9) is equivalent to kcx,y
≫ρ 0ci,i . By (4.5), the equation (4.9) is also equivalent to

η(kcx,y
) > 0ci and ζ(kcx,y

) > 0ci . (4.11)

It suffices to show that (4.11) is equivalent to

η(kcx,y
) > 0ci+1

and ζ(kcx,y
) > 0ci . (4.12)

It is straightforward that (4.11) implies (4.12) as 0ci > 0ci+1
. Suppose now that we have (4.12).

If we do not have(4.11), then

η(kcx,y
) = 0ci ≥ ζ(kcx,y

) = 0cx > 0ci ,

so that y = i ≥ x > i. Hence, we have x ≥ y = i which is a contradiction.
• When x = y = i, (4.9) becomes k ≥ 1, and by (4.6), (4.9) implies

η(kci,i) ≥ η(1ci,i) = 1ci > 0ci+1
and ζ(kci,i) ≥ η(1ci,i) = 0ci > 0ci .

Conversely, if

η(kci,i) > 0ci+1
and ζ(kci,i) > 0ci ,

then ζ(kci,i) > ζ(0ci,i) so that by (4.6), k > 0.

• Finally, when x > y = i, (4.9) becomes k ≥ H(bi ⊗ bx,y) = 0, and by (4.6), is equivalent to

η(kcx,y ) ≥ η(0cx,y ) = 0ci and ζ(kcx,y ) ≥ ζ(0cx,y ) = 0cx > 0ci .

The above relation is equivalent to saying that

η(kcx,y
) > 0ci+1

and ζ(kcx,y
) > 0ci .

□
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5. Partitions described by frequencies on paths

So far we have worked with difference conditions, while the CMPP conjecture is expressed in terms of
frequencies and paths. Our goal in this section is thus to connect these two different approaches.

We use the notation of Section 4 with O an ordered set with m elements, where m is a positive integer.
Hence we identify O with {1 < · · · < m}.

5.1. Order and paths. Let ≥ be the order on ZS with the following relation:

kc ≥ ld iff η(kc) > η(ld) or
(
η(kc) = η(ld) and ζ(kc) ≤ ζ(ld)

)
. (5.1)

We first define operators on ZR and ZS that will help us formalise the notion of path.

Definition 5.1. Define the operator succ on ZR such that succ(kc) is the smaller primary-coloured integer
which is greater that kc in terms of >. We say that succ(kc) is the successor of kc. Precisely, we have{

succ(kcu) = kcu+1
for u ∈ {1, . . . ,m− 1},

succ(kcm) = (k + 1)c1 .

Note that succ is invertible, and succ−1(kc), called the predecessor of kc, is the largest integer in ZR which
is smaller than kc.

Remark 5.2. For all kc ∈ ZR, succm(kc) = (k + 1)c.

Remark 5.3. By (4.4), for all kc ∈ ZS , there exist a unique integer u such that η(kc) = succu(ζ(kc)).
Moreover u ∈ {0, . . . ,m}.

Now we want to define two operators d and f on ZS such that for kc ∈ ZS ,

η(d(kc)) = η(kc) and ζ(d(kc)) = succ−1(ζ(kc)),

η(f(kc)) = succ(η(kc)) and ζ(f(kc)) = ζ(kc).

In other words, we want d to leave the η component constant and transform the ζ component into its
predecessor, and f to leave the ζ component constant and transform the η component into its successor.

By (5.1), Definition 5.1 and Remark 5.3, writing η(kc) = succu(ζ(kc)), we have for all kc ∈ ZS ,

η(f(kc)) = succu+1(ζ(f(kc))) and f(kc) > kc, (5.2)

η(d(kc)) = succu+1(ζ(d(kc))) and d(kc) > kc. (5.3)

Hence by Remark 5.3, d and f can only be defined for kc such that η(kc) = succu(ζ(kc)) with u ∈ {0, . . . ,m−
1}, i.e. η(kc) < ζ(kc) + 1. Indeed if u was equal to m, we would have η(f(kc)) = succm+1(ζ(f(kc))) or
η(d(kc)) = succu+1(ζ(d(kc))), which is not possible.

Thus we define d and f as follows.

Definition 5.4. Let d and f be two operators defined on kc ∈ ZS such that η(kc) = succu(ζ(kc)) with
u ∈ {0, . . . ,m− 1}, such that

η(d(kc)) = η(kc) and ζ(d(kc)) = succ−1(ζ(kc)),

η(f(kc)) = succ(η(kc)) and ζ(f(kc)) = ζ(kc).

Now we introduce the notion of paths in ZS and show key properties satisfied by these paths.

Definition 5.5. A path in ZS is a sequence (e0, . . . , em) of m + 1 elements of ZS such that for all u ∈
{0, . . . ,m− 1}, either eu+1 = f(eu) or eu+1 = d(eu).

Lemma 5.6. Let (e0, . . . , em) be a path in ZS . Then it satisfies the following properties:

(1) In terms of the order ≥, the sequence (η(ej))
m
j=0 is non-decreasing, the sequence (ζ(ej))

m
j=0 is non-

increasing, and the sequence (ej)
m
j=0 is increasing.

(2) For all u ∈ {0, . . . ,m}, η(eu) = succu(ζ(eu)).
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Proof. Property (1) follows from Definitions 5.1 and 5.4 and Relations (5.2) and (5.3).
Now let us prove Property (2). For a path (e0, . . . , em) such that η(e0) = succu(ζ(e0)), we recursively

have by (5.2) and (5.3) that η(ej) = succu+j(ζ(ej)) for j ∈ {0, . . . ,m}, so that 0 ≤ u and u +m ≤ m, i.e.
u = 0.

□

We can now state a key result which characterises the relation ≫ρ in terms of paths in ZS .

Lemma 5.7. For all kc ≥ ld ∈ ZS , we have kc ≫ρ ld if and only if there is no path in ZS which contains
both kc and ld.

Proof. Let kc ≥ ld ∈ ZS . Showing the equivalence above is equivalent to showing that kc ̸≫ρ ld if and only
if there is a path which contains both kc and ld.

⇒) If kc ̸≫ρ ld, by (4.5) and (5.1), then either
(
η(kc) > η(ld) and ζ(kc) ≤ ζ(ld)

)
, or

(
η(kc) = η(ld) and

ζ(kc) ≤ ζ(ld)
)
. In both cases, we have

ζ(kc) ≤ ζ(ld) ≤ η(ld) ≤ η(kc) ≤ ζ(kc) + 1 .

Hence, there exist 0 ≤ u ≤ v ≤ w ≤ m such that

ζ(ld) = succu(ζ(kc)), η(ld) = succv(ζ(kc)) and η(kc) = succw(ζ(kc)) .

Let e0 ∈ ZS be such that η(e0) = ζ(e0) = ζ(ld), and for all t ∈ {1, . . . ,m}, let

et :=


f t(e0) if t ∈ {1, . . . , v − u},
dt−v+u(fv−u(e0)) if t ∈ {v − u+ 1, . . . , v},
f t−v(du(fv−u(e0))) if t ∈ {v + 1, . . . ,m}.

Hence (e0, . . . , em) is a path in ZS .
Moreover, we have
– ev−u = ld,
– ev is such that (η(ev), ζ(ev)) = (η(ld), ζ(kc)),
– ew = kc.

Therefore, kc and ld both belong to the path (e0, . . . , em).
⇐) Conversely, suppose that kc and ld belong to a path (e0, . . . , em) in ZS . As kc ≥ ld, we either have

η(kc) > η(ld), or η(kc) = η(ld) and ζ(kc) ≤ ζ(ld).
– If η(kc) > η(ld), we know that (η(eu))

m
u=0 is non-decreasing by Lemma 5.6. Thus there exist

u < v such that ld = eu and kc = ev. Again, by Lemma 5.6, (ζ(eu))
m
u=0 is non-increasing, and

we have

ζ(kc) = ζ(ev) ≤ ζ(eu) = ζ(ld) .

Therefore, by (4.5), kc ̸≫ρ ld.
– If η(kc) = η(ld), then by (4.5), kc ̸≫ρ ld.

□

5.2. Frequencies, paths and partitions. In this section, we connect generalised coloured partitions with
order ≫ρ to partitions with frequency conditions on paths in ZS .

For x ∈ {1, . . . ,m}, set x := m+1−x. Also set ω0 := (−1)cm,m
, and for i ∈ {1, . . . , ⌊m/2⌋}, ωi := 0ci,i+1

.
Let

Ω = {ωu : u ∈ {0, . . . , ⌊m/2⌋}} ⊔ {0cu,u
: u ∈ {1, . . . , ⌈m/2⌉}}.

When O = [n], the bars and ωi’s are defined as in the previous sections.
The sequence E = (e0, . . . , em) defined by em−2u := ωu for u ∈ {0, . . . , ⌊m/2⌋} and em−2u+1 := 0cu,u

for u ∈ {1, . . . , ⌈m/2⌉} is a path in ZS . Indeed em−2u = d(em−2u−1) for u ∈ {0, . . . , ⌈m/2⌉ − 1} and
em−2u+1 = f(em−2u) for u ∈ {1, . . . , ⌊m/2⌋}. Finally, set

Z+
S = {0cx,y

: m ≥ y ≥ x > y ≥ 1} ⊔ (Z>0)S ,
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Let PS denote the set of generalised coloured partitions with parts in Z+
S and order ≥. Recall that any

partition π ∈ PS can be written as its frequency sequence (fu)u∈Z+
S
, where fu is the number of occurrences

of u in π. We then have

C(π)q|π| =
∏

u∈Z+
S

(
c(u)q|u|

)fu
.

The main result of this section is the following.

Theorem 5.8. Let ω ∈ Ω. Let Pω
S be the set of partitions of PS whose frequency sequence (fu)u∈Z+

S
is such

that, by considering fictitious occurrences of elements in Ω with fω = 1, we have

fe0 + . . .+ fem ≤ 1

for all paths (e0, . . . , em) in Ω ⊔ Z+
S .

Recall that Pω
ρ denotes the set of generalised coloured partitions with parts in ZS , order ≫ρ, and last part

equal to ω.
There exists a bijection Λ between Pω

ρ and Pω
S which preserves the size and the colour sequence when

omitting the last part ω.

To prove Theorem 5.8, we first need two lemmas.

Lemma 5.9. Let ld ∈ Ω ⊔ Z+
S and let kc ∈ ZS such that η(kc) ≥ η(ld) and ζ(kc) ≥ ζ(ld). Then

(1) if ld ∈ Z+
S , then kc ∈ Z+

S ,

(2) if ld ∈ Ω, then kc ∈ Ω ⊔ Z+
S . In particular, if kc ≫ρ ld, then kc ∈ Z+

S .

Proof. Let kc, ld ∈ Ω ⊔ Z+
S such that η(kc) ≥ η(ld) and ζ(kc) ≥ ζ(ld) (and thus k ≥ l). Write c = cx,y and

d = cx′,y′ . Observe that when k ≥ 1, the result is straightforward as kc ∈ Z+
S .

(1) Suppose that ld ∈ Z+
S . If l > 0, then k ≥ l > 0 and we conclude.

Otherwise, l = 0, 1 ≤ y′ < x′ ≤ m and k ≥ l ≥ 0. The case k > 0 being obvious, suppose that
k = 0. By (4.2), 0cy = η(kc) ≥ η(ld) = 0cy′ and 0cx = ζkc

≥ ζ(ld) = 0cx′ so that, by (4.1),

1 ≤ y ≤ y′ < x′ ≤ x ≤ m. Therefore, kc ∈ Z+
S .

(2) Suppose that ld ∈ Ω.
(a) When ld = ω0, we have η(kc) ≥ 0cm and ζ(kc) ≥ (−1)cm .

• If ζ(kc) = (−1)cm , then η(kc) ≤ ζ(kc) + 1 = 0cm so that η(kc) = 0cm and kc = ω0 ∈ Ω.
• If ζ(kc) > (−1)cm , then ζ(kc) ≥ 0c1 , and k ≥ 0. The case k > 0 being obvious, suppose
that k = 0. By (4.2), ζ(kc) = 0cy ≤ 0cm , so that ζ(kc) = 0cm and 1 = m = y ≤ x. If

x > 1, then kc ∈ Z+
S , else, kc = 0c1,1 ∈ Ω.

In particular, when kc ≫ρ ld = ω0, then by (4.5), η(kc) > 0cm and ζ(kc) > (−1)cm so that
η(kc) ≥ 1c1 and ζ(kc) ≥ 0c1 . Hence, k ≥ 1 and kc ∈ Z+

S .
(b) When ld ̸= ω0, ld is of the form 0ci,i or 0ci,i+1

. Hence, by (4.2), ζ(kc) ≥ ζ(ld) = 0ci and

η(kc) ≥ η(ld) ≥ 0ci+1
, and thus k ≥ 0. The case k > 0 being obvious, suppose that k = 0.

Then, by (4.2), 0cx ≥ 0ci and 0cy ≥ 0ci+1
, i.e. x ≥ i and y ≥ i+ 1.

• If y = i+ 1 and i ≤ x ≤ i+ 1, then kc ∈ Ω.
• If y = i+ 1 and x > i+ 1, then y < x and kc ∈ Z+

S .

• If y = i and x = i, then kc ∈ Ω.
• If y = i and x > i, then y < x and kc ∈ Z+

S .

• If y > i, then y < i ≤ x and kc ∈ Z+
S .

In particular, when k = 0 and kc ≫ρ ld, by (4.5) and (4.2), 0cx = ζ(kc) ≥ ζ(ld) = 0ci and
0cy = η(kc) > η(ld) ≥ 0ci+1

. Hence, y < i+ 1 ≤ x and kc ∈ Z+
S .

□

Lemma 5.10. Let kc, ld ∈ Ω ⊔ Z+
S such that kc and ld belong to a same path in ZS . Then, there exists a

path in Ω ⊔ Z+
S which contains both kc and ld.
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Proof of Lemma 5.10. Without loss of generality, suppose that kc ≥ ld ∈ Ω ⊔ Z+
S that kc and ld belong to a

same path in ZS . Similarly to the proof of Lemma 5.7, we have

η(kc)− 1 ≤ ζ(kc) ≤ ζ(ld) ≤ η(ld) ≤ η(kc).

Set 0 ≤ u ≤ v ≤ w ≤ m such that

η(kc) = succu(η(lc)) = succv(ζ(ld)) = succw(ζ(kc)).

Let (e0, . . . , em) be the path defined by
(η(ej), ζ(ej)) = (η(ld), succ

−j(η(ld))) for j ∈ {0, . . . , v − u},
(η(ej), ζ(ej)) = (succj−v+u(η(ld)), ζ(ld)) for j ∈ {v − u+ 1, . . . , v},
(η(ej), ζ(ej)) = (η(kc), succ

v−j(ζ(ld)))) for j ∈ {v + 1, . . . , w},
(η(ej), ζ(ej)) = (succj−w(η(kc)), ζ(kc)) for j ∈ {w + 1, . . . ,m}.

Then, ev−u = ld and ew = kc. For all j ∈ {0, . . . , v}, η(ej) ≥ η(ld) and ζ(ej) ≥ ζ(ld), and Lemma 5.9 implies
that ej ∈ Ω⊔Z+

S . Similarly, for all j ∈ {v + 1, . . . ,m}, η(ej) ≥ η(kc) and ζ(ej) ≥ ζ(kc) so that ej ∈ Ω⊔Z+
S .

Hence (e0, . . . , em) is a path in Ω ⊔ Z+
S which contains both kc and ld. □

We are now ready to prove Theorem 5.8.

Proof of Theorem 5.8. Let π = (π0, . . . , πs−1, ω) ∈ Pω
ρ . By (4.5), the relation ≫ρ is transitive. Thus, since

π0 ≫ρ · · · ≫ρ πs−1 ≫ρ ω, we have πu ≫ρ πv for all 0 ≤ u < v ≤ s − 1 and πu ≫ρ ω for all 0 ≤ u ≤ s − 1.
Hence, by (2) of Lemma 5.9, π0, . . . , πs−1 ∈ Z+

S . Since by (4.5) and (5.1), kc ≫ρ ld implies that kc > ld, then
π̃ := (π0, . . . , πs−1) belongs to PS .

Set Λ(π) := π̃. The frequencies of π̃ are fu = 1 for all u ∈ {π0, . . . , πs−1} and fu = 0 for all u ∈
Z+
S \ {π0, . . . , πs−1}. Finally, add fictitious frequencies (fu)u∈Ω with fu = χ(u = ω) for all u ∈ Ω.

By Lemma 5.7, any path (e0, . . . , em) in Ω ⊔ Z+
S ⊂ ZS contains at most one element of {π0, . . . , πs−1, ω},

and then

fe0 + . . .+ fem ≤ 1.

Thus Λ(π) ∈ Pω
S .

Conversely, let π̃ = (π0, . . . , πs−1) ∈ Pω
S and let (fu)u∈Z+

S
be its frequency sequence. Then fu = 0 for

all u ∈ Ω \ {ω} as E is a path in Ω. Moreover, fu ≤ 1 for all u ∈ Z+
S , since there exists a path in Ω ⊔ Z+

S
containing u by Lemma 5.10 in the case u = kc = ld. Hence, π0 > · · · > πs−1. By Lemma 5.10, two distinct
elements in {π0, . . . , πs−1, ω} do not belong to the same path in ZS , otherwise they would belong to a path
in Ω⊔Z+

S . Therefore, by Lemma 5.7, for all u ∈ {0, . . . , s−2}, we have πu ≫ρ πu+1. Finally, by Lemma 5.7,
we have either πs−1 ≫ρ ω or ω ≫ρ πs−1 according to whether πs−1 > ω or πs−1 < ω. But, by Lemma 5.9,
as πs−1 ∈ Z+

S , ω ̸≫ρ πs−1. Therefore, πs−1 ≫ρ ω. The sequence π = (π0, . . . , πs−1, ω) is then well-ordered
by ≫ρ and belongs to Pω

ρ . We set Λ−1(π̃) := π.

It is then straightforward that Λ and Λ−1 are inverses of each other as we only add/delete a part ω. The
size and colour sequence are preserved by omitting the part ω. □

5.3. Specialisation. The CMPP conjecture expresses the principally specialised characters of standard

modules of C
(1)
n as a generating function for partitions. So far the present paper has only dealt with

non-dilated character formulas and partitions (which is more general). To make the connection with the
conjecture, in this section, we give a dilated version of Theorem 5.8 which corresponds to the principal
specialisation.

Recall that (O,≥) be an ordered set which can be identified with {1, . . . ,m} for some integer m, that the
set of primary colours is R = {cu : u ∈ O}, and that the set of secondary colours is S = {cx,y = cxcy =
cycx : x ≤ y ∈ O}.

Let 1 denote the transformation defined, for all kcj ∈ ZR, by

1(kcj ) = km− m+ 1

2
+ j.
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We have the relation 1(succ(kc)) = 1(kc) + 1 for all kc ∈ ZR. Therefore, the map 1 describes a bijection
from ZR to Zm, where

Zm =

{
Z if m odd

Z+ 1
2 if m even.

For all kc ∈ ZS , let 1(kc) be the part of size 1(η(kc)) + 1(ζ(kc)) with subscript 1(η(kc)) − 1(ζ(kc)). By
(4.4), the subscript belongs to {0, . . . ,m}. For example,

1((2k)c1,1) = ((2k − 1)m+ 1)0 and 1((2k + 1)c1,1) = (2km+ 1)m ,

1((2k)c1,m) = (2km)m−1 and 1((2k + 1)c1,m) = ((2k + 1)m)1 ,

1((2k)cm,m
) = ((2k + 1)m− 1)0 and 1((2k − 1)cm,m

) = (2km− 1)m .

Observe that the difference between the size and subscript of 1(kc) has the same parity as m+1. Conversely,
for l, d ∈ Z such that d ∈ {0, . . . ,m} and l − d ≡ m + 1 mod 2, one can find a unique kc ∈ ZS such that
1(kc) = ld. Indeed, 1(η(kc)) = l+d

2 and 1(ζ(kc)) = l−d
2 belong to Zm, and η(kc), ζ(kc) are uniquely

determined in ZR. In the following, set for k ∈ Z ∪ {−∞},
Ek := {ld : l ≥ k , d ∈ {0, . . . ,m} , l − d ≡ m+ 1 mod 2} .

Hence, the map 1 is a bijection from ZS to E−∞, and the following statement holds.

Lemma 5.11. We have

(1) 1
(
Z+
S
)
= E1,

(2) 1(0cj,j ) = 0m−2j+1 for j ∈ {1, . . . , ⌈m/2⌉},
(3) 1(ωj) = (−1)m−2j for j ∈ {0, . . . , ⌊m/2⌋}.

Proof. Note that for all kc ∈ ZS , 1(kc + 2) = 1(kc) + 2m, since by (4.3), 1(η(kc + 2)) = 1(η(kc) + 1) =
1(η(kc)) +m, and 1(ζ(kc + 2)) = 1(ζ(kc) + 1) = 1(ζ(kc)) +m. Hence, writing

Z := {0cx,y
: 1 ≤ y < x ≤ y ≤ m} ⊔ {1c : c ∈ S} ⊔ {2cx,y

: 1 ≤ x ≤ y < x ≤ m},
we have

Z+
S = {z + 2k : k ≥ 0, z ∈ Z} ⊔ {Ocjj

+ 2k : k > 0, j ∈ {1, . . . , ⌈m/2⌉}}.
Thus, to prove (1) and (2), it suffices to show that 1 (Z) = E1 \ E2m and 1(0cj,j ) = 0m−2j+1 for j ∈
{1, . . . , ⌈m/2⌉}.

For i ∈ {1, . . . , ⌈m/2⌉}, we have

1(ζ(0cj,j )) = 1(0cj ) = −m+ 1

2
+ j,

1(η(0cj,j )) = 1(0cj ) =
m+ 1

2
− j,

and then 1(0cj,j ) = 0m+1−2j . For 1 ≤ y < x ≤ y ≤ m,

1(η(0cx,y
)) = 1(0cy ) ≤ 1(0cm) =

m− 1

2
,

1(ζ(0cx,y
)) = 1(0cx) > 1(0cy ) = −1(0cy ),

and then 0 < 1(η(0cx,y
)) + 1(η(0cx,y

)) < m. For 1 ≤ x ≤ y < x ≤ m,

1(ζ(2cx,y
)) = 1(1cx) ≥ 1(1c1) =

m+ 1

2
,

1(η(2cx,y
)) = 1(1cy ) < 1(1cx) = m+ 1(0cx) = m− 1(0cx) = 2m− 1(1cx),

and then m < 1(η(0cx,y )) + 1(η(0cx,y )) < 2m. Finally, for 1 ≤ x ≤ y ≤ m,

m+
m− 1

2
= 1(1cm) ≥ 1(η(1cx,y

)) = 1(1cx) ≥ 1(1c1) = m+
1−m

2
,

m− 1

2
= 1(0cm) ≥ 1(ζ(1cx,y

)) = 1(0cy ) ≥ 1(0c1) =
1−m

2
,
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and then 0 < 1(η(0cx,y )) + 1(η(0cx,y )) < 2m. Hence, 1 (Z) ⊂ E1 \ E2m.
Moreover, as

S = {cx,y : 1 ≤ x ≤ y ≤ m}
= {cx,y : 1 ≤ x ≤ y < x ≤ m} ⊔ {cx,y : 1 ≤ x ≤ y = x ≤ m} ⊔ {cx,y : 1 ≤ y < x ≤ y ≤ m},

we have |Z| = 2|S| − ⌈m/2⌉ = m(m + 1) − ⌈m/2⌉. Furthermore, in E1 \ E2m, the m odd numbers appear
with subscripts of the same parity as m, and the m − 1 even numbers appear with subscripts of the same
parity as m+ 1. Thus

|E1 \ E2m| = m(1 + ⌊m/2⌋) + (m− 1)⌈m/2⌉ = m(1 + ⌊m/2⌋+ ⌈m/2⌉)− ⌈m/2⌉ = m(m+ 1)− ⌈m/2⌉.
Along with the fact that 1 is injective, we obtain that 1 (Z) = E1 \ E2m. Thus (1) and (2) are proved.

Let us now prove (3). We compute 1(ωi) for i ∈ {0, . . . , ⌊m/2⌋}. For i = 0,

1(η(ω0)) = 1(0cm) =
m− 1

2
and 1(ζ(ω0)) = 1((−1)cm) = −m+ 1

2
,

and then 1(ω0) = (−1)m. For 1 ≤ j ≤ ⌊m/2⌋,

1(η(ωj)) = 1(0cj+1
) = −j +

m− 1

2
and 1(ζ(ωj)) = 1(0cj ) = −m+ 1

2
+ j,

and then 1(ωj) = (−1)m−2j . □

By Lemma 5.11, 1(Ω) = E−1 \ E1. If (e0, . . . , em) is a path in ZS , then 1(ej) is of the form (l(j))j with

l(j+1) =

{
l(j) + 1 if ej+1 = f(ej),

l(j) − 1 if ej+1 = d(ej).

A sequence ((l(0))0, . . . , (l
(m))m) such that for all j ∈ {0, . . . ,m − 1}, l(j+1) = l(j) ± 1 and (l(j))j ∈ Ek

(k ∈ Z ∪ {−∞}) is called a path in Ek.
Conversely, any path in E−∞ is the image by 1 of a path in ZS . By Theorem 5.8 and Lemma 5.11, we

derive the following theorem.

Theorem 5.12 (Dilated version of Theorem 5.8). Let ω ∈ Ω. Denote by P1(ω) the set of partitions with
parts in E1 such that, letting fu be the frequency of u for all u ∈ E1, and setting fictitious frequencies
fu := χ(u = 1(ω)) for all u ∈ E−1 \ E1, we have

fe0 + · · ·+ fem ≤ 1

for all paths (e0, . . . , em) in E−1. Then,

∑
π∈P1(ω)

q|π| = 1

c(ω)−1q−|ω|
∑

π∈Pω
ρ

C(π)q|π|

 .

Remark 5.13. In the formula above, multiplying
∑

π∈Pω
ρ
C(π)q|π| with the factor c(ω)−1q−|ω| amounts to

not counting the fictitious part ω in the generating function.

5.4. Proof of the CMPP conjecture of level one weights and generalisation. Finally, we use par-
ticular cases of the results of the previous sections to prove Theorem 1.15, i.e. that the CMMP conjecture

in the case of level 1 standard modules L(Λ0), . . . , L(Λn) of C
(1)
n .

Let m = 2n. One can then identify O with the set [n] = {1, . . . , n, n, . . . , 1} associated to the crystal B of

C
(1)
n , and the parts ωi defined in Section 5.2 are exactly those of Section 4.3. By setting

c−1

j
= cj = e

1
2αn+

∑n−1
u=j αu for j ∈ {1, . . . , n},

where the αi’s are the simple roots, we have cx,y = cxcy = ewt(x,y) for all (x, y) ∈ B \ {∅}. The principal

specialisation is the transformation e−αj 7→ q, and since δ = α0 + αn + 2
∑n−1

j=1 αj , we have that e−δ 7→
q2n. Hence, the principal specialisation corresponds exactly to 1. Thus Theorem 5.12, together with the
identification of Pi,ρ to Pωi

ρ in Lemma 4.4, implies Theorem 1.15.
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6. Conclusion

In [CMPP21], Capparelli–Meurman–Primc–Primc gave an analogue of their conjecture for odd moduli,
which would correspond in our setting to the case m = 2n− 1. We reformulate this conjecture as follows.

Conjecture 6.1 (Reformulation of the CMPP odd conjecture). Let k0, . . . , kn be non-negative integers and

denote by Qk0,...,kn

1 the set of partitions into parts in E1 such that, by setting fu the frequency of u ∈ E1 and
fictitious occurrences of u ∈ E−1 \ E1 with f(−1)2n−1−2i

= ki for i ∈ {0, . . . , n− 1} and f(0)0 = kn,

fe0 + · · ·+ fe2n−1 ≤ k0 + · · ·+ kn

for all path (e0, . . . , e2n−1) of E−1. Then,∑
π∈Qk0,...,kn

1

q|π| =

∏
a∈{2n+2k+1}n;b∈∆(k1+1,...,kn+1);j=a,b,2n+2k+1−b(q

j ; q2n+2k+1)∞

(q; q)n∞
,

where k = k0 + · · ·+ kn.

In the case n = 1, we retrieve the Andrews-Gordon identities, which, in the literature, are linked to the

representations of type A
(1)
1 . It is then legitimate to look for some Lie-algebraic interpretation of the general

conjecture. The non-specialised version of the conjecture would then be in the following form.

Conjecture 6.2 (Non-specialized version of the conjecture). Let k0, . . . , kn be non-negative integers, and

denote by Qk0,...,kn

S the set of partitions into parts in Z+
S such that, by setting (fu)u∈Z+

S
the frequencies of

the parts and considering fictitious occurrences of elements in Ω with fωi = ki for i ∈ {0, . . . , n − 1} and
f0cn,n

= kn, we have

fe0 + . . .+ fe2n−1
≤ k0 + . . .+ kn

for all path (e0, . . . , e2n−1) of Ω ⊔ Z+
S . Hence, for some suitable variables q and ci for all i ∈ {1, . . . , n}, we

have ∑
π∈Qk0,...,kn

S

C(π)q|π| = e−k0Λ0−···−knΛn ch(M(k0Λ0 + · · ·+ knΛn)) (6.1)

for a certain highest weight module M(k0Λ0 + · · ·+ knΛn) of a certain type T .

In the case of A
(1)
n which we treated in [DK22a], we were also able to rewrite our generating functions for

coloured Frobenius partitions as the constant term in an infinite product, and as a sum of infinite products.
This yielded two non-specialised character formulas with obviously positive coefficients and allowed us to
retrieve the Kac-Peterson [KP84] formula. Unfortunately we have not yet been able to find an equally

simple formula for the generating function of C
(1)
n -Frobenius partitions. Progress in that direction would be

interesting as it would lead to non-specialised character formulas with obviously positive coefficients for level

1 standard modules of C
(1)
n as well.
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