
AN OVERPARTITION ANALOGUE OF q-BINOMIAL COEFFICIENTS, II:

COMBINATORIAL PROOFS AND (q, t)-LOG CONCAVITY
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Abstract. In a previous paper, we studied an overpartition analogue of Gaussian polynomials
as the generating function for overpartitions �tting inside an m × n rectangle. Here, we add one
more parameter counting the number of overlined parts, obtaining a two-parameter generalization[m+n

n

]
q,t

of Gaussian polynomials, which is also a (q, t)-analogue of Delannoy numbers. First

we obtain �nite versions of classical q-series identities such as the q-binomial theorem and the
Lebesgue identity, as well as two-variable generalizations of classical identities involving Gaussian
polynomials. Then, by constructing involutions, we obtain an identity involving a �nite theta

function and prove the (q, t)-log concavity of
[m+n

n

]
q,t
. We particularly emphasize the role of

combinatorial proofs and the consequences of our results on Delannoy numbers. We conclude with

some conjectures about the unimodality of
[m+n

n

]
q,t
.

1. Introduction

Gaussian polynomials (or q-binomial coe�cients) are de�ned by[
m+ n

n

]
q

=
(q)m+n

(q)m(q)n
,

where (a)k = (a; q)k :=
∏k

j=1(1 − aqj−1) for k ∈ N0 ∪ {∞}. They are the generating functions for

partitions �tting inside an m× n rectangle. In our previous paper [10], we studied an overpartition

analogue
[
m+n
n

]
q
of these polynomials as the generating function for the number of overpartitions

�tting inside an m × n rectangle. We recall that an overpartition is a partition in which the last
occurrence of each distinct number may be overlined [9], the eight overpartitions of 3 being

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

In this paper, we add a variable t counting the number of overlined parts in our over q-binomial
coe�cients and de�ne [

m+ n

n

]
q,t

:=
∑
k,j≥0

p(m,n, k,N)tkqN ,

where p(m,n, k,N) counts the number of overpartitions of N , with k overlined parts, �tting inside
an m× n rectangle, i.e. with largest part ≤ m and number of parts ≤ n. We call these two-variable
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polynomials
[
m+n
n

]
q,t

over-(q, t)-binomial coe�cients or (q, t)-overGaussian polynomials. If we set

t = 0, meaning that no part is overlined, we obtain the classical q-binomial coe�cients, and if we set
t = 1 we obtain the over q-binomial coe�cients of [10]. As we shall see in Section 2, the polynomials[
m+n
n

]
q,t

are also (q, t)-analogues of the Delannoy numbers D(m,n) [7].

Again, by conjugation of the Ferrers diagrams, it is clear that[
m+ n

n

]
q,t

=

[
m+ n

m

]
q,t

.

Most of our results of [10] easily generalize to this new setting. Moreover, the new variable t also
allows us to do more precise combinatorial reasoning. Therefore in this paper we mainly focus on
combinatorial proofs, which turn out to be very powerful and often simpler than q-theoretic proofs.

The limiting behavior of over-(q, t)-binomial coe�cients is interesting, with

lim
n→∞

[
n

j

]
q,t

=
(−tq)j
(q)j

,

as when n tends to in�nity, the restriction on the size of the largest part (or equivalently the number
of parts) disappears. From this limiting behavior, we expect natural �nite versions of identities in
which overpartitions naturally arise. In this direction, we consider �nite versions of classical q-series
identities. For example, we prove a �nite version of the q-binomial theorem.

Theorem 1.1. For every positive integer n,∑
k≥0

[
n+ k − 1

k

]
q,t

zkqk =
(−tzq2)n−1

(zq)n
. (1.1)

By taking the limit as n→∞, we �nd that∑
k≥0

(−tq)k
(q)k

zkqk =
(−tzq2)∞
(zq)∞

.

Replacing z by z/q and t by −t/q gives the q-binomial theorem.
We also prove a �nite version of a special case of the Rogers-Fine identity.

Theorem 1.2. For a positive integer n,∑
k≥0

[
n+ k − 1

k

]
q,t

zkqk =
∑
k≥0

zkqk
2+k(−tzq2)k
(zq)k+1

([
n− 1

k

]
q,t

+ tzq2k+2

[
n− 2

k

]
q,t

)
.

By taking the limit as n→∞, we obtain∑
k≥0

(−tq)k
(q)k

zkqk =
∑
k≥0

zkqk
2+k(−tzq2)k(−tq)k
(q)k(zq)k+1

(
1 + tzq2k+2

)
,

which is the case a = 1 of the Rogers-Fine identity [11]∑
k≥0

(−tq)k
(aq)k

zkqk =
∑
k≥0

akzkqk
2+k(−tzq2/a)k(−tq)k
(aq)k(zq)k+1

(
1 + tzq2k+2

)
.

We also prove the following very curious identity, which contains a truncated theta function.

Theorem 1.3. For each nonnegative integer n,
n∑

k=0

(−1)k
[
n

k

]
q,1

=

{
0 if n is odd,∑n/2

j=−n/2(−1)
jqj

2

if n is even.
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This identity is interesting in several aspects. First of all, it is not clear at all how the cancella-
tion occurs. Its proof is reminiscent of Franklin's proof on Euler's pentagonal number theorem [5,
Theorem 1.6]. Secondly, it also resembles Zagier's �strange� identity [20]:∑

k≥0

(q)k = −1

2

∑
k≥1

χ(k)q(k
2−1)/24.

In our case, by taking the limit as n goes to in�nity, we obtain the �formal� identity∑
k≥0

(−1)k (−q)k
(q)k

=
∑
k∈Z

(−1)kqk
2

.

Here by �formal� identity, we mean that the left-hand side does not converge as a power series in q.
Thirdly, in a q-theoretic sense, Theorem 1.3 is equivalent to∑

|j|≤n

(−1)jqj
2

= 2

n−1∑
j=0

j∑
k=0

(−1)jqk(k+1)/2

[
2n− k
j

]
q

[
j

k

]
q

+ (−1)n
n∑

k=0

qk(k+1)/2

[
2n− k
n

]
q

[
n

k

]
q

.

Lastly, the involution to prove Theorem 1.3 implies the following identity.

Corollary 1.4. For each positive integer n, we have

1 +

n∑
k=1

(−q)k
([

n

k

]
q,1

+

[
n− 1

k − 1

]
q,1

)
=

∑
|j|≤b(n+1)/2c

(−1)jqj
2

.

Corollary 1.4 is a �nite version of a special case of Alladi's weighted partition theorem [1].
We also study q-log concavity properties. In [8], Butler showed that q-binomial coe�cients are

q-log concave, namely that for all 0 < k < n,[
n

k

]2
q

−
[

n

k − 1

]
q

[
n

k + 1

]
q

has non-negative coe�cients as a polynomial in q. Actually, Butler [8, Theorem 4.2] proved a much
stronger result, namely that [

n

k

]
q

[
n

`

]
q

−
[

n

k − 1

]
q

[
n

`+ 1

]
q

(1.2)

has non-negative coe�cients as a polynomial in q for 0 < k ≤ ` < n. Here we prove that over-
(q, t)-binomial coe�cients satisfy a generalization of this property, and therefore are also (q, t)-log
concave.

Theorem 1.5. For all 0 < k ≤ ` < n,[
n

k

]
q,t

[
n

`

]
q,t

−
[

n

k − 1

]
q,t

[
n

`+ 1

]
q,t

has non-negative coe�cients as a polynomial in t and q.

Our proof is again combinatorial, as we construct an injection to show the non-negativity. The
q-log concavity of q-binomial coe�cients and of Sagan's q-Delannoy numbers [17], as well as the
log-concavity (and therefore unimodality) of Delannoy numbers follow immediately from the proof
of Theorem 1.5, as we shall see in Section 6.

The remainder of this paper is organized as follows. In Section 2, we study basic properties
of over q-binomial coe�cients and give connections with Delannoy numbers. Then in Section 3,
we study �nite versions of the q-binomial theorem, a special case of the Rogers-Fine identity and
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the Lebesgue identity. In section 4, we focus on two-variable generalizations of classical identities
involving binomial coe�cients. Then in Section 5, we give the involution proof of Theorem 1.3.
In Section 6, we prove Theorem 1.5 by constructing an involution and study its implications. In
Section 7, we conclude with some observations and conjectures concerning the unimodality of the

over-(q, t)-binomial coe�cients
[
m+n
n

]
q,t
.

2. Basic properties and connection to Delannoy numbers

The Delannoy numbers [7] D(m,n), also sometimes called Tribonacci numbers [2], are the number
of paths from (0, 0) to (m,n) on a rectangular grid, using only East, North and North-East steps,
namely steps from (i, j) to (i+ 1, j), (i, j + 1), or (i+ 1, j + 1). Let Dm,n be the set of such paths.
For a path p ∈ Dm,n, we de�ne the weight of each of its steps pk as

wt(pk) :=


0, if it goes from (i, j) to (i+ 1, j),

i, if it goes from (i, j) to (i, j + 1),

i+ 1, if it goes from (i, j) to (i+ 1, j + 1).

Then we de�ne the weight wt(p) of p to be the sum of the weights of its steps, and d(p) to be the
number of North-East steps in p. By mapping North-East steps to overlined parts, we obtain a
bijection between Ferrers diagrams of overpartitions �tting inside a m × n rectangle and Delannoy
paths from the origin to (m,n). Therefore, we can see that over-(q, t)-binomial coe�cient are
generating functions for Delannoy paths.

Proposition 2.1. For non-negative integers m and n,[
m+ n

n

]
q,t

=
∑

p∈Dm,n

td(p)qwt(p).

In this sense, we can say that over-(q, t)-binomial coe�cients are (q, t)-analogues of Delannoy
numbers, which generalize the q-Delannoy numbers introduced by Sagan [17] (after exchanging t
and q),

Dq(m,n) =
∑

p∈Dm,n

qd(p).

In particular when q = t = 1 we have [
m+ n

n

]
1,1

= D(m,n).

A di�erent q-analogue of Delannoy numbers has been given by Ramirez in [15].
Most of our results of [10] generalize to the new setting with the additional variable t. It is

su�cient to keep track of the number of overlined parts in the original proofs. Here we present
two of them which have an interesting connection with Delannoy numbers. Now we give an exact

formula for
[
m+n
n

]
q,t
.

Theorem 2.2. For non-negative integers m and n,[
m+ n

n

]
q,t

=

min{m,n}∑
k=0

tkq
k(k+1)

2
(q)m+n−k

(q)k(q)m−k(q)n−k
. (2.1)
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Proof. As in [10], let G(m,n, k) denote the generating function for overpartitions �tting inside an
m× n rectangle and having exactly k overlined parts. We have

G(m,n, k) = q
k(k+1)

2

[
m

k

]
q

[
n+m− k
n− k

]
q

= q
k(k+1)

2
(q)m+n−k

(q)k(q)m−k(q)n−k
.

Since G(m,n, k) is non-zero if and only if 0 ≤ k ≤ min{m,n}, we have[
m+ n

n

]
q,t

=

min{m,n}∑
k=0

tkG(m,n, k) =

min{m,n}∑
k=0

tkq
k(k+1)

2
(q)m+n−k

(q)k(q)m−k(q)n−k
.

�

The case t = 0 gives the classical formula for Gaussian polynomials and the case t = 1 corresponds
to Theorem 1.1 in [10]. Lemma 3 in [4] is essentially another formulation of Theorem 2.2, but their
proof is more complicated as it involves several q-series identities, while ours is purely combinatorial.
Moreover, when t = q = 1, we obtain the following classical formula for Delannoy numbers:

D(m,n) =

min{m,n}∑
k=0

(
n

k

)(
m+ n− k

n

)
.

Note that using q-multinomial coe�cients[
a+ b+ c

a, b, c

]
q

:=
(q)a+b+c

(q)a(q)b(q)c
,

we can rewrite (2.1) as [
m+ n

n

]
q,t

=

min{m,n}∑
k=0

tkq
k(k+1)

2

[
m+ n− k

k,m− k, n− k

]
q

. (2.2)

In the same way, the analogues of Pascal's triangle of [10] can also be generalized.

Theorem 2.3. For positive integers m and n, we have[
m+ n

n

]
q,t

=

[
m+ n− 1

n− 1

]
q,t

+ qn
[
m+ n− 1

n

]
q,t

+ tqn
[
m+ n− 2

n− 1

]
q,t

, (2.3)[
m+ n

n

]
q,t

=

[
m+ n− 1

n

]
q,t

+ qm
[
m+ n− 1

n− 1

]
q,t

+ tqm
[
m+ n− 2

n− 1

]
q,t

. (2.4)

Again t = 0 gives the classical recurrences for q-binomial coe�cients, t = 1 gives Theorem 1.2
of [10], and t = q = 1 gives the classical recurrence for Delannoy numbers:

D(m,n) = D(m− 1, n) +D(m,n− 1) +D(m− 1, n− 1).

We also obtain (q, t)-analogues of two other classical formulas for Delannoy numbers. Recall that
the basic hypergeometric series rφs are de�ned by

rφs(a1, a2, . . . , ar; b1, . . . , bs; q, z) :=
∑
n≥0

(a1)n(a2)n · · · (ar)n
(q)n(b1)n · · · (bs)n

[
(−1)nqn(n−1)/2

]1+s−r
zn.

We can express over-(q, t)-binomial coe�cients using a basic hypergeometric series.

Proposition 2.4. For all m,n positive integers,[
m+ n

n

]
q,t

=

[
m+ n

n

]
q
2φ1(q

−n, q−m; q−n−m; q,−tq).
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Proof. We may assume m ≥ n, as otherwise we could consider the conjugate of Ferrers diagram of
the overpartitions. Using the fact that

(q−n; q)k =
(q; q)n

(q; q)n−k
(−1)kq(

k
2)−nk,

we derive that

2φ1(q
−n, q−m; q−n−m; q,−tq) =

n∑
k=0

(q−n)k(q
−m)k

(q)k(q−n−m)k
(−tq)k

=
(q)n(q)m
(q)n+m

n∑
k=0

(q)m+n−kt
kqk(k+1)/2

(q)n−k(q)m−k(q)k

=
(q)n(q)m
(q)n+m

[
m+ n

n

]
q,t

as desired. �

By setting t = q = 1, we can recover the well-known formula for Delannoy numbers

D(m,n) =

(
m+ n

n

)
2F1(−n,−m;−m− n;−1),

where 2F1 is a hypergeometric function.
Moreover, from [12, Appendix III.8] we have a transformation formula for the terminating series

2φ1(q
−n, b; c; q, z) =

(c/b)n
(c)n

bn3φ1(q
−n, b, q/z; bq1−n/c; q, z/c).

By setting b = q−m, c = q−n−m, and z = −tq, we �nd another expression for over-(q, t)-binomial
coe�cients.

Proposition 2.5. For all non-negative integers m and n,[
m+ n

n

]
q,t

=

min{m,n}∑
k=0

xkqk(k+1)/2(−1/x)k
[
m

k

]
q

[
n

k

]
q

.

By setting q = t = 1, we can obtain another well-known formula for Delannoy numbers

D(m,n) =

min{m,n}∑
k=0

2k
(
m

k

)(
n

k

)
.

Actually, the bijection given in [9, Theorem 1.1] gives a combinatorial proof for Proposition 2.5. As
details are lengthy and we do not use this bijection later, we omit details here.

3. Finite versions of classical q-series identities

3.1. The q-binomial theorem. In this section we use the (q, t)-overGaussian polynomials
[
m+n
n

]
q,t

to prove new �nite versions of classical q-series identities. Recall the q-binomial theorem.

Theorem 3.1 (q-binomial theorem). For |t|, |z| < 1,∑
k≥0

(t)k
(q)k

zk =
(tz)∞
(z)∞

.

We start by giving two di�erent �nite versions of the q-binomial theorem involving over-(q, t)-
binomial coe�cients. We �rst prove combinatorially Theorem 1.1.
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Proof of Theorem 1.1. Notice that zkqk generates a column of k unoverlined 1's. We append the

partition generated by
[
n+k−1

k

]
q,t

to the right of these 1's. Therefore, we �nd that the left-hand

side of (1.1) is the generating function for the number of overpartitions with largest part ≤ n and
no overlined 1, where the exponent of z counts the number of parts and the exponent of t counts
the number of overlined parts. It is clear that the right-hand side of (1.1) generates the same
partitions. �

Moreover Proposition 3.1 of [10] can be easily generalized by keeping track of the number of
overlined parts in the original proof, and gives another �nite version of the q-binomial theorem.

Theorem 3.2 (Generalization of Proposition 3.1 of [10]). For every positive integer n, we have

(−tzq)n
(zq)n

= 1 +
∑
k≥1

zkqk

([
n+ k − 1

k

]
q,t

+ t

[
n+ k − 2
k − 1

]
q,t

)
.

By letting n tend to in�nity, we obtain the following.

Corollary 3.3 (Generalization of Corollary 3.2 of [10]). Let p(n, k, `) be the number of overpartitions

of n with k parts and ` overlined parts. Then,∑
n,k,`≥0

p(n, k, `)zkt`qn =
(−tzq)∞
(zq)∞

= 1 +
∑
k≥1

zkqk(−t)k
(q)k

.

Now replacing z by z/q and t by −t in the above gives the q-binomial theorem.

3.2. A special case of the Rogers-Fine identity. We now turn to the proof of Theorem 1.2,
which uses Durfee decomposition.

Proof of Theorem 1.2. We �rst observe that for every positive integer n,

∑
k≥0

[
n+ k − 1

k

]
q,t

zkqk =
∑
k≥0

zkqk
2+k(−tq2)k
(zq)k+1

[
n− 1

k

]
q,t

+
∑
k≥0

tzkqk
2+k(−tq2)k−1
(zq)k

[
n− 2

k − 1

]
q,t

.

The left-hand side is the generating function for the number of overpartitions with largest part ≤ n
and no overlined 1, where the exponent of z counts the number of parts and the exponent of t
counts the number of overlined parts, as in the proof of Theorem 1.1. Now we consider the Durfee
rectangle of size (k + 1) × k. We can distinguish two cases according to whether the bottom-right

corner of Durfee rectangle is overlined or not. When it is not overlined, zkqk
2+k generates the Durfee

rectangle. Moreover, (−tzq2)k
(zq)k+1

generates the overpartition below the Durfee rectangle and
[
n−1
k

]
q,t

generates the overpartition to the right of the Durfee rectangle. When the bottom-right corner of

the Durfee rectangle is overlined, tzkqk
2+k generates the Durfee rectangle. Since the parts below

the Durfee rectangle are less then k + 1 in this case, they are generated by (−tzq2)k−1

(zq)k
. Moreover,

there could be no further overlined k + 1, so
[
n−2
k−1
]
q,t

generates the overpartition to the right of the

Durfee rectangle. By replacing k by k + 1 in the second sum, we obtain the desired identity. �
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3.3. The Lebesgue identity. Finally we also have a generalization of Sylvester's identity [18],
which is a �nite version of the Lebesgue identity. We de�ne

S(n; t, y, q) := 1 +
∑
j≥1

(
t

[
n− 1
j − 1

]
q,t

(−tyq)j−1
(yq)j−1

yjqj
2

+

[
n
j

]
q,t

(−tyq)j
(yq)j

yjqj
2

)
.

Theorem 3.4 (Generalization of Theorem 3.4 of [10]). For any positive integer n,

S(n; t, y; q) =
(−tyq)n
(yq)n

. (3.1)

The new variable t allows us to deduce Lebesgue's identity from Theorem 3.4.

Corollary 3.5 (Lebesgue's identity). For |q| < 1,∑
k≥0

(−tq)kqk(k+1)/2

(q)k
=

(−tq2; q2)∞
(q; q2)∞

.

Proof. In (3.1), we replace q by q2, t by tq, and y by 1/q. Then, by taking the limit as n goes to
in�nity, we �nd that

(−tq2; q2)∞
(q; q2)∞

= 1 +
∑
j≥1

tq
(−tq3; q2)j−1(−tq2; q2)j−1

(q2; q2)j−1(q; q2)j−1
q2j

2−j +
(−tq3; q2)j(−tq2; q2)j

(q2; q2)j(q; q2)j
q2j

2−j

= 1 +
∑
j≥1

tq
(−xq2)2j−2
(q)2j−2

q2j
2−j +

(−tq2)2j
(q)2j

q2j
2−j

= 1 +
∑
j≥1

(−tq)2j−1
(q)2j−1

tq(1− q2j−1)
1 + tq

q2j
2−j +

(−tq)2j
(q)2j

1 + tq2j+1

1 + tq
q2j

2−j

= 1 +
∑
j≥1

(−tq)2j−1
(q)2j−1

(
1− 1 + tq2j

1 + tq

)
q2j

2−j +
(−tq)2j
(q)2j

(
q2j − 1− q2j

1 + tq

)
q2j

2−j

= 1 +
∑
j≥1

(−tq)2j−1
(q)2j−1

q2j
2−j +

(−tq)2j
(q)2j

q2j
2+j

=
∑
j≥0

(−tq)jqj(j+1)/2

(q)j
.

�

Thus we can see Theorem 3.4 as a �nite version of the Lebesgue identity. Two di�erent �nite
versions were given by Rowell [16], and Alladi and Berkovich [4], respectively. Alladi [3] gave another
proof of the Lebesgue identity in terms of partitions into distinct odd parts.

4. Generalizations of q-binomial coefficients identities

In this section, we prove two-variable generalizations of Gaussian polynomial identities. As a �rst
example, by tracking the number of parts, one can easily see that the following identity [5, Eqn.
(3.3.9)] holds:

n∑
j=0

qj
[
m+ j

j

]
q

=

[
n+m+ 1

m+ 1

]
q

, (4.1)
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which is a q-analogue of the classical identity
n∑

j=0

(
m+ j

j

)
=

(
n+m+ 1

m+ 1

)
.

By tracking the number of overlined and non-overlined parts separately, we can prove the following
two-parameter generalization of (4.1).

Proposition 4.1. For positive integers m and n,[
m+ n+ 1

m+ 1

]
q,t

= 1 +

n∑
j=1

qj

([
m+ j

j

]
q,t

+ t

[
m+ j − 1

j − 1

]
q,t

)
.

By taking the limit when m→∞, we also �nd that

(−tq)n
(q)n

= 1 +

n∑
j=1

qj
(
(−tq)j
(q)j

+ t
(−tq)j−1
(q)j−1

)
= 1 +

N∑
j=1

(−t)jqj

(q)j
.

By setting q = t = 1, we �nd that

D(m+ 1, n) = 1 +

n∑
j=1

(D(m, j) +D(m, j − 1)) .

Secondly, we �nd an over-Gaussian polynomial generalization of the identity [5, Eqn. 3.3.10]

h∑
k=0

[
n

k

]
q

[
m

h− k

]
q

q(n−k)(h−k) =

[
m+ n

h

]
q

,

which is a q-analogue of the classical identity

h∑
k=0

(
n

k

)(
m

h− k

)
=

(
n+m

h

)
.

Proposition 4.2. For positive integers m,n ≥ h,
h∑

k=0

q(n−k)(h−k)

([
n

k

]
q,t

[
m

h− k

]
q,t

+ t

[
n− 1

k

]
q,t

[
m− 1

h− k − 1

]
q,t

)
=

[
m+ n

h

]
q,t

.

Proof. For an overpartition λ generated by the right hand side, we consider the largest rectangle of
the form (n − k) × (h − k) �tting inside the Ferrers diagram of λ, i.e. its Durfee rectangle of size
(n− k)× (h− k). It is clear that such a k is uniquely determined, and as λ has at most h parts, k
is between 0 and h. We have two cases according to whether the bottom right corner of the Durfee
rectangle is overlined or not. In the case where it is non-overlined, the overpartition on the right side
of the Durfee rectangle does �t inside a (m− h+ k)× (h− k) rectangle and the overpartition below
the Durfee rectangle is inside a (n − k) × k rectangle. The generating function of such partitions

is q(n−k)(h−k)
[
n
k

]
q,t

[
m

h−k
]
q,t
. In the case where the bottom right corner is overlined, we can see that

the overpartition on the right side should be inside a (m − h + k) × (h − k − 1) rectangle and the
overpartition below the Durfee rectangle �ts inside a (n−k−1)×k rectangle, the generating function
of such partitions equals tq(n−k)(h−k)

[
n−1
k

]
q,t

[
m−1

h−k−1
]
q,t
. �

By setting q = t = 1 and m = m+ h in Proposition 4.2, we �nd that for n,m ≥ h > 0,

D(m+ n, h) =

h∑
k=0

(D(n− k, k)D(m+ k, h− k) +D(n− k − 1, k)D(m+ k, h− k − 1)) .
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Finally, in [14], Prellberg and Stanton used the following identity

1

(x)n
=

n−1∑
m=0

([
n+m− 1

2m

]
q2m

2 x2m

(x)m
+

[
n+m

2m+ 1

]
q2m

2+m x2m+1

(x)m+1

)
to prove that for all n, the coe�cients of

(1− q) 1

(qn)n
+ q

are non-negative.
By employing Durfee rectangle dissection according to whether the size of the Durfee rectangle

is (m+1)× 2m or m× (2m− 1) and whether the corner of Durfee rectangles is overlined or not, we
can deduce an overpartition version.

Theorem 4.3. For any positive integer n,

(−tzq)n
(zq)n

= 1 +

n−1∑
m=1

([
n+m− 1

2m

]
q,t

+ t

[
n+m− 2

2m− 1

]
q,t

)
z2mq2m

2+2m (−tzq)m
(zq)m

+

n∑
m=1

[
n+m− 1

2m− 1

]
q,t

z2m−1q2m
2−m (−tzq)m

(zq)m

+

n∑
m=1

[
n+m− 2

2m− 2

]
q,t

tz2m−1q2m
2−m (−tzq)m−1

(zq)m−1
.

By taking the limit n→∞, we �nd that

(−tzq)∞
(zq)∞

= 1 +

∞∑
m=1

(
(−tq)2m
(q)2m

+ t
(−tq)2m−1
(q)2m−1

)
z2mq2m

2+2m (−tzq)m
(zq)m

+

∞∑
m=1

(−tq)2m−1
(q)2m−1

z2m−1q2m
2−m (−tzq)m

(zq)m

+

∞∑
m=1

(−tq)2m−2
(q)2m−2

tz2m−1q2m
2−m (−tzq)m−1

(zq)m−1

=

∞∑
m=0

z2mq2m
2+2m (−tq)2m(−tzq)m

(q)2m(zq)m

(
1 + tzqm+1

)
+

∞∑
m=1

z2m−1q2m
2−m (−tq)2m−1(−tzq)m

(q)2m−1(zq)m

(
1 + tzq3m

)
.

This can be viewed as an overpartition analogue of

(−zq)∞ =
∑
k≥0

zkqk(3k+1)/2(1 + zq2k+1)
(−zq)k
(q)k

,

which becomes Euler's pentagonal number theorem when z = −1.
Numerics suggest an overpartition analogue of the result of Prellberg and Stanton.

Conjecture 4.4. For all positive integers n, the coe�cients of

(1− q) (−q
n)n

(qn)n
+ q

are non-negative.
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s(π) s(π)
s(µ)

φ

d2 d2

π

µc µcs(µ)

π

Figure 1. The case 2 of the involution φ

5. The involution proof of Theorem 1.3

We now prove Theorem 1.3, using an involution similar to Franklin's proof of Euler's Pentagonal
Numbers Theorem.

For convenience, we allow non-overlined 0 as a part. Then, we can interpret the coe�cient of qN

in

(−1)k
[
n

k

]
q,1

as the number of overpartitions of N into �exactly� k parts ≤ n − k with weight (−1)k. Let Ok,n

be the set of above-mentioned overpartitions. For an overpartition λ ∈ Ok,n with k ≤ n, we denote
by π the overpartition below its Durfee square and by µ the conjugate of the overpartition on the
right of the Durfee square. If the size of the Durfee square is d (≤ k), then π has k − d parts and µ
has less than N − k − d parts. De�ne s(π) to be the smallest nonzero part of π and s(µ) to be the
smallest part of µ. (Note that µ does not have 0 as a part). If there is no nonzero part in π or µ
then we de�ne s(π) = 0 or s(µ) = 0 accordingly. We also de�ne s2(π) (resp. s2(µ)) to be the second
smallest nonzero part of π (resp. µ).

We build a sign-reversing involution φ on On = ∪0≤k≤nOk,n as follows:

Case 1. If s(π) = s(µ) = 0, then φ(λ) = λ. This case is invariant under this map.
Case 2. If s(π) = 0 and s(µ) > 0 or s(π) > s(µ), φ(λ) is obtained by moving s(µ) below s(π).

Then, the resulting partition is in Ok+1,n since it has now k + 1 parts and the size of the
largest part is decreased by 1, and thus it does not violate the maximum part condition
for Ok+1,n.

Case 3. If s(π) < s(µ),
Case 3.1 if s2(π) = s(π) and s(π) is not overlined, we overline s(π) and s2(π) and move s(π)

to the right of s(µ).
Case 3.2 if s2(π) > s(π) or s(π) is overlined, φ(λ) is obtained by moving s(π) to the right of

s(µ).
In both cases, the resulting overpartition is in Ok−1,N .

Case 4. s(π) = s(µ). We have to consider di�erent subcases according to whether s(π) and s(µ)
are overlined or not.

For convenience, we de�ne χ(a) = 1 if a is an overlined part and χ(a) = 0 if a is a
non-overlined part.
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s(π) s(π)

φ

d2 d2

π

s(µ)

π

s(π)

µc

s(µ)

µc

s(π)

Figure 2. The case 3.1 of the involution φ

Case 4.1. If χ(s(µ)) = χ(s(π)) = 1, we move s(µ) below s(π) and un-overline both s(π) and
s(µ). Note that the resulting overpartition is in Ok+1,n.

Case 4.2. If χ(s(µ)) = 1 and χ(s(π)) = 0, we move s(µ) below s(π). The resulting overpartition
is in Ok+1,n.

Case 4.3. If χ(s(µ)) = 0 and χ(s(π)) = 1, we move s(π) to the right of s(µ) and this gives an
overpartition in Ok−1,n.

Case 4.4. If χ(s(µ)) = χ(s(π)) = 0
Case 4.4.1. if s2(π) = s(π), then overline s2(π) and s(π) and move s(π) to the right of s(µ).
Case 4.4.2. if s2(π) > s(π) or s2(π) = 0, we move s(π) to the right of s(µ).

In both cases, this gives an overpartition in Ok−1,n.

Before proving φ is an involution, here we give one example.

Example. For an overpartition (5, 5, 3, 2, 0) ∈ O5,10, the size of the Durfee square is 3, π = (2, 0),
and µ = (2, 2). Thus, s(π) = s(µ) = 2. Since χ(µ) = 1, we move 2 in µ below s(π). As a

result, we have a new overpartition with π = (2, 2, 0) and µ = (2), which gives the overpartition

(4, 4, 3, 2, 2, 0) ∈ O6,10. Note that φ((4, 4, 3, 2, 2, 0)) = (5, 5, 3, 2, 0) ∈ O5,10 as we expected.

Now we prove that this is true in general.

Proposition 5.1. The map φ is an involution.

Proof. We need to prove that for every overpartition λ in On, we have φ(φ(λ)) = λ. Here also, we
need to distinguish several cases.

Case 1. If s(π) = s(µ) = 0, then φ(λ) = λ, so φ(φ(λ)) = λ.
Case 2. If s(π) > s(µ),

Case 2.a. if s2(µ) > s(µ), then φ(λ) is obtained by moving s(µ) below s(π). Thus φ(λ) is in
the case 3.2 and we obtain φ(φ(λ)) by moving s(µ) back to its initial place. Therefore
φ(φ(λ)) = λ.

Case 2.b. if s2(µ) = s(µ) and s(µ) is overlined, then φ(λ) is in the case 4.3 and φ(φ(λ)) = λ.
Case 2.c. if s2(µ) = s(µ) and s(µ) is non-overlined, then φ(λ) is in the case 4.4.2 and φ(φ(λ)) =

λ.
Case 3. If s(π) < s(µ),

Case 3.a. if s2(π) = s(π) and s(π) is not overlined, λ is in the case 3.1 and φ(λ) is obtained by
overlining s(π) and s2(π) and moving s(π) to the right of s(µ). Thus φ(λ) is in the case



OVER-(q, t)-BINOMIAL COEFFICIENTS 13

4.1 and we obtain φ(φ(λ)) by moving s(π) back to its initial place and un-overlining
s(π) and s2(π) again. Therefore φ(φ(λ)) = λ.

Case 3.b. if s2(π) = s(π) and s(π) is overlined, λ is in the case 3.2 and φ(λ) is obtained by
moving s(π) to the right of s(µ). Thus φ(λ) is in the case 4.2 and we obtain φ(φ(λ))
by moving s(π) back to its initial place. Therefore φ(φ(λ)) = λ.

Case 3.c. if s2(π) > s(π), λ is in the case 3.2, φ(λ) is in the case 2, and φ(φ(λ)) = λ.
Case 4. If s(π) = s(µ),

Case 4.1. if χ(s(µ)) = χ(s(π)) = 1,
Case 4.1.a. if s2(µ) = s(µ), then φ(λ) is obtained by moving s(µ) under s(π) and un-

overlining both. Thus φ(λ) is in case 4.4.1 and we get φ(φ(λ)) by moving
s(µ) back to its initial place and overlining s(π) and s(µ) again. Therefore
φ(φ(λ)) = λ.

Case 4.1.b. if s2(µ) > s(µ), then φ(λ) is in case 3.1 and φ(φ(λ)) = λ.
Case 4.2. if χ(s(µ)) = 1 and χ(s(π)) = 0,

Case 4.2.a. if s2(µ) = s(µ), then φ(λ) is obtained by moving s(µ) under s(π). Thus φ(λ) is
in case 4.3 and φ(φ(λ)) = λ.

Case 4.2.b. if s2(µ) > s(µ), then φ(λ) is in case 3.2 and φ(φ(λ)) = λ.
Case 4.3. if χ(s(µ)) = 0 and χ(s(π)) = 1,

Case 4.3.a. if s2(π) = s(π), then φ(λ) is obtained by moving s(π) to the right of s(µ). Thus
φ(λ) is in case 4.2 and φ(φ(λ)) = λ.

Case 4.2.b. if s2(π) > s(π), then φ(λ) is in case 2 and φ(φ(λ)) = λ.
Case 4.4. if χ(s(µ)) = χ(s(π)) = 0

Case 4.4.1. if s2(π) = s(π), then φ(λ) is obtained by overlining s2(π) and s(π) and moving
s(π) to the right of s(µ). Thus φ(λ) is in case 4.1 and we get φ(φ(λ)) by moving
s(π) back to its initial place and un-overlining s(π) and s(µ) again. Therefore
φ(φ(λ)) = λ.

Case 4.4.2. if s2(π) > s(π), then φ(λ) is in case 2 and φ(φ(λ)) = λ.

Thus in every case, φ(φ(λ)) = λ. �

Now we are �nally ready to prove Theorem 1.3.

Proof. From the sign reversing involution φ, we see that only square overpartitions survive after
pairing λ ∈ On and φ(λ) ∈ On. Moreover, the square overpartition of j2 (with 0 ≤ j ≤ bn/2c) is in
Ok,n for k from j to n− j. Thus, the sum of weights is

n−j∑
k=j

(−1)k =

{
0, if n is odd,

(−1)j , if n is even,

as the summation runs over n − 2j + 1 consecutive integers from j. By considering overlined and
non-overlined square overpartitions, we arrive at

n∑
k=0

(−1)k
[
n

k

]
q,1

=

{
0, if n is odd,

1 + 2
∑n/2

j=1(−1)jqj
2

, if n is even,

as there is no overlined partition for the empty partition. �

A proof of Corollary 1.4 follows from the simple observation that the right-hand side of Corollary
1.4 corresponds to having exactly k positive parts in the involution instead of k non-negative parts.

Finally, by setting q = t = 1 in Theorem 1.3, we obtain the following.
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Corollary 5.2. For all positive integers n,

n∑
k=0

(−1)kD(n− k, k) =


0, if n is odd,

−1, if n ≡ 2 (mod 4),

1, if n ≡ 0 (mod 4).

6. (q, t)-log-concavity of the over q-binomial coefficients

In this section, we prove Theorem 1.5 by constructing an involution. Before starting the proof,
we introduce some notation. Let P denote the set of overpartitions of non-negative integers, and
P(m,n) the set of overpartitions �tting inside am×n rectangle. We also write #o(λ) for the number
of overlined parts in λ and |λ| for the weight of λ (i.e. the sum of its parts).

Proof of Theorem 1.5. To prove Theorem 1.5, we want to �nd an injection φ from P(n− k+ 1, k−
1)×P(n−`−1, `+1) to P(n−k, k)×P(n−`, `), such that, if φ(λ, µ) = (η, ρ), then |λ|+|µ| = |η|+|ρ|
and #o(λ) + #o(µ) = #o(η) + #o(ρ).

We generalize the proof in [8] to overpartitions. We de�ne two maps A and L on P ×P, and take
φ to be the restriction of L ◦ A to the domain P(n− k + 1, k − 1)× P(n− `− 1, `+ 1). We obtain
the injectivity of φ by showing that

(i) A and L are involutions on P × P,
(ii) A

(
P(n− k + 1, k − 1)× P(n− `− 1, `+ 1)

)
⊂ P(n− k, k − 1)× P(n− `, `+ 1),

(iii) L
(
P(n− k, k − 1)× P(n− `, `+ 1)

)
⊂ P(n− k, k)× P(n− `, `).

Let us start by de�ning A. For a given overpartition pair (λ, µ) ∈ P × P, we de�ne I by the
largest integer satisfying

λI − µI+1 ≥

{
`− k + 1, if λI is not overlined,

`− k + 2, if λI is overlined,
(6.1)

where we de�ne µi+1 = 0 if λi > 0, but the number of parts in µ is less than i + 1. If there is no
such I, we de�ne I = 0. Now we de�ne

A(λ, µ) = (γ, τ),

where
γ := (µ1 + (`− k + 1), . . . , µI + (`− k + 1), λI+1, λI+2, . . .),

τ := (λ1 − (`− k + 1), . . . , λI − (`− k + 1), µI+1, µI+2, . . .).

Note that if λi (resp. µi), i ≤ I was overlined (resp. non-overlined) in λ (resp. µ), then λi−(`−k+1)
(resp. µi + (`− k + 1)) is overlined (resp. non-overlined) in τ (resp. γ).

Before de�ning L, let us introduce two maps S and C on P × P by

S(λ, µ) := (µ, λ) and C(λ, µ) := (λc, µc).

Then we de�ne L as

L := S ◦ C ◦ A ◦ C ◦ S.

We now want to verify that (i) is satis�ed. Since S and C are involutions on P ×P, we only need
to show that A is an involution.

First of all, let us verify that A is well de�ned, i.e. if A(λ, µ) = (γ, τ) and (λ, µ) ∈ P ×P, then γ
and τ are also overpartitions. By de�nition (µ1 + (`− k+1), . . . , µI + (`− k+1)), (λI+1, λI+2, . . .),
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(λ1 − (` − k + 1), . . . , λI − (` − k + 1)) and (µI+1, µt+2, . . .) are overpartitions so we only need to
check that

µI + (`− k + 1) ≥

{
λI+1 if µI + (`− k + 1) is not overlined

λI+1 + 1 if µI + (`− k + 1) is overlined,
(6.2)

and

λI − (`− k + 1) ≥

{
µI+1 if λI − (`− k + 1) is not overlined

µI+1 + 1 if λI − (`− k + 1) is overlined.
(6.3)

Equation (6.3) is clear by (6.1). Let us turn to (6.2). By de�nition of I, we have

µI+2 + (`− k + 1) ≥

{
λI+1 + 1, if λI+1 is not overlined,

λI+1, if λI+1 is overlined,

If µI is not overlined, then µI ≥ µI+2, so

µI + (`− k + 1) ≥ λI+1.

If µI is overlined, then by de�nition of an overpartition µI ≥ µI+2 + 1, so

µI + (`− k + 1) ≥ λI+1 + 1.

This completes the veri�cation of (6.2).
Now we want to check that A is an involution. Let (λ, µ) ∈ P ×P and (γ, τ) = A(λ, µ). We want

to show that A(γ, τ) = (λ, µ). By de�nition of I and A, the parts with indices ≥ I + 1 of γ (resp.
τ) are exactly the same as those of λ (resp. µ) and will therefore not be moved when we apply A
again. Therefore the only thing left to check is that

γI − τI+1 ≥

{
`− k + 1, if γI is not overlined,

`− k + 2, if γI is overlined,

that is that

µI + (`− k + 1)− µI+1 ≥

{
`− k + 1, if µI is not overlined,

`− k + 2, if µI is overlined,

which is clear by de�nition of an overpartition. Thus the I of (γ, τ) is the same as the one of (λ, µ),
and A(γ, τ) = (λ, µ). The point (i) is proved.

Then, point (ii) is obvious from the de�nition of A.
Finally let us verify (iii). We have, by de�nition of S, C and A,

S
(
P(n− k, k − 1)× P(n− `, `+ 1)

)
= P(n− `, `+ 1)× P(n− k, k − 1),

C
(
P(n− `, `+ 1)× P(n− k, k − 1)

)
= P(`+ 1, n− `)× P(k − 1, n− k),

A
(
P(`+ 1, n− `)× P(k − 1, n− k)

)
⊂ P(`, n− `)× P(k, n− k),

C
(
P(`, n− `)× P(k, n− k)

)
= P(n− `, `)× P(n− k, k),

S
(
P(n− `, `)× P(n− k, k)

)
= P(n− k, k)× P(n− `, `).

Thus (iii) is satis�ed.
�

Here we give an example to illustrate the map φ = L ◦ A = S ◦ C ◦ A ◦ C ◦ S ◦ A.
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Example. When n = 10, k = 4, and ` = 5, we consider the partition pair (λ, µ) ∈ P(7, 3)×P(4, 6),
where

λ = (7, 6, 4), and µ = (4, 4, 3, 3, 2, 2).

Then, we see that

(λ, µ)
A7−−→ ((6, 6, 4), (5, 4, 3, 3, 2, 2))

S7−−→ ((5, 4, 3, 3, 2, 2), (6, 6, 4))

C7−−→ ((6, 6, 4, 2, 1), (3, 3, 3, 3, 2, 2))

A7−−→ ((5, 5, 4, 2, 1), (4, 4, 3, 3, 2, 2))

C7−−→ ((5, 4, 3, 3, 2), (6, 6, 4, 2))

S7−−→ ((6, 6, 4, 2), (5, 4, 3, 3, 2)),

which is in P(6, 4)× P(5, 5) as desired.

If we forbid overlined parts (i.e. if we set t = 0), the above proof becomes Butler's proof of (1.2).
From Theorem 1.5, we can deduce several interesting corollaries.

Corollary 6.1. The over-(q, t)-binomial coe�cients are (q, t)-log-concave, namely for all 0 < k < n,[
n

k

]2
q,t

−
[

n

k − 1

]
q,t

[
n

k + 1

]
q,t

has non-negative coe�cients as a polynomial in q and t.

By setting t = 0, we obtain Butler's result on the q-log-concavity of q-binomial coe�cients.
Recall that we have shown that L is an injection from P(n − k, k − 1) × P(n − `, ` + 1) to

P(n− k, k)× P(n− `, `). From this we obtain the following.

Theorem 6.2. For all 0 < k ≤ ` < n,[
n

k

]
q,t

[
n

`

]
q,t

−
[
n− 1

k − 1

]
q,t

[
n+ 1

`+ 1

]
q,t

has non-negative coe�cients as a polynomial in q and t.

By setting q = t = 1 in Theorems 1.5 and 6.2, we deduce the following result on Delannoy
numbers.

Corollary 6.3. For all 0 < k ≤ ` < n, we have

D(n− k, k)D(n− `, `) ≥ D(n− k + 1, k − 1)D(n− `− 1, `+ 1),

D(n− k, k)D(n− `, `) ≥ D(n− k, k − 1)D(n− `, `+ 1).

Now by setting ` = k and n = n + k in Corollary 6.3 this yields the log-concavity of Delannoy
numbers, which also implies their unimodality.

Corollary 6.4. For all n > k > 0, the Delannoy numbers D(n, k) satisfy

D(n, k)2 ≥ D(n+ 1, k − 1)D(n− 1, k + 1),

D(n, k)2 ≥ D(n, k − 1)D(n, k + 1).

In particular, the Delannoy numbers D(n, k) are log-concave.
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Similarly, by setting q = 1 and t = q, in Theorems 1.5 and 6.2, we deduce the following result on
Sagan's q-Delannoy numbers.

Corollary 6.5. For all 0 < k ≤ ` < n, we have

Dq(n− k, k)Dq(n− `, `) ≥ Dq(n− k + 1, k − 1)Dq(n− `− 1, `+ 1),

Dq(n− k, k)Dq(n− `, `) ≥ Dq(n− k, k − 1)Dq(n− `, `+ 1).

And by setting ` = k and n = n + k in Corollary 6.5, we obtain the q-log-concavity of Sagan's
q-Delannoy numbers.

Corollary 6.6. For all n > k > 0, Sagan's q-Delannoy numbers Dq(n, k) satisfy that

Dq(n, k)
2 −Dq(n+ 1, k − 1)Dq(n− 1, k + 1)

and

Dq(n, k)
2 −Dq(n, k − 1)Dq(n, k + 1)

have non-negative coe�cients as polynomials in q. In particular Sagan's q-Delannoy numbers Dq(n, k)
are q-log-concave.

Moreover, we can also generalize Corollary 4.5 of [8] to over-(q, t)-binomial coe�cients.

Corollary 6.7. For 0 ≤ k − r ≤ k ≤ ` ≤ `+ r ≤ n,[
n

k

]
q,t

[
n

`

]
q,t

−
[

n

k − r

]
q,t

[
n

`+ r

]
q,t

has non-negative coe�cients as a polynomial in t and q.

Proof. The proof is similar to the one in [8]. By Theorem 1.5, all the terms of the telescoping sum[
n

k

]
q,t

[
n

`

]
q,t

−
[

n

k − r

]
q,t

[
n

`+ r

]
q,t

=

r−1∑
i=0

([
n

k − i

]
q,t

[
n

`+ i

]
q,t

−
[

n

k − i− 1

]
q,t

[
n

`+ i+ 1

]
q,t

)
have non-negative coe�cients. �

As usual, setting q = t = 1 yields some interesting result on Delannoy numbers.

Corollary 6.8. For 0 ≤ k − r ≤ k ≤ ` ≤ `+ r ≤ n,
D(n− k, k)D(n− `, `) ≥ D(n− k + r, k − r)D(n− `+ r, `+ r).

7. Unimodality conjectures

We now present a few conjectures and observations about the unimodality of over-(q, t)-binomial
coe�cients. Recall that a polynomial p(x) = a0 + a1x+ · · ·+ arx

r is unimodal if there is an integer
` (called the peak) such that

a0 ≤ a1 ≤ · · · ≤ a`−1 ≤ a` ≥ a`+1 ≥ · · · ≥ ar.
It is well-known that Gaussian polynomials [19] and q-multinomial coe�cients [5, Theorem 3.11] are
unimodal.

We extend this de�nition to polynomials in two variables. We say that a polynomial P (q, t) =∑r
k=0

∑s
n=0 ak,nt

kqn is doubly unimodal if
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(i) for every �xed k ∈ {0, . . . , r}, the coe�cient of tk in P (q, t) is unimodal in q, that is there
exists an integer ` such that

ak,0 ≤ ak,1 ≤ · · · ≤ ak,`−1 ≤ ak,` ≥ ak,`+1 ≥ · · · ≥ ak,s,
(ii) for every �xed n ∈ {0, . . . , s}, the coe�cient of qn in P (q, t) is unimodal in t, that is there

exists an integer `′ such that

a0,n ≤ a1,n ≤ · · · ≤ a`′−1,n ≤ a`′,n ≥ a`′+1,n ≥ · · · ≥ ar,n.
Computer experiments suggest that the following conjectures are true.

Conjecture 7.1. For every positive integers m and n, the over-(q, t)-binomial coe�cient
[
m+n
n

]
q,t

is doubly unimodal.

Remark 1. By the formula (2.2) and using the fact that q-multinomial coe�cients are unimodal, we
can easily deduce that part (i) of the de�nition is satis�ed. Therefore the challenging part of the

conjecture is to prove that for every N , the coe�cient of qN in
[
m
n

]
q,t

is unimodal in t.

Conjecture 7.2. For every positive integers m and n,
[
m+n
n

]
q,1

is unimodal in q.

Remark 2. Conjecture 7.1 doesn't immediately imply Conjecture 7.2, as the peaks in q are not the
same for each tk. Therefore, even if they might be related, the two conjectures are of independent
interest.

We illustrate our conjectures for m = n = 4 in Table 1.

n The coe�cient of qn The coe�cient of qn when t = 1
0 1 1
1 1 + t 2
2 2 + 2t 4
3 3 + 4t+ t2 8
4 5 + 7t+ 2t2 14
5 5 + 10t+ 5t2 20
6 7 + 13t+ 7t2 + t3 28
7 7 + 16t+ 11t2 + 2t3 36
8 8 + 17t+ 12t2 + 3t3 40
9 7 + 17t+ 14t2 + 4t3 42
10 7 + 16t+ 12t2 + 4t3 + t4 40
11 5 + 13t+ 11t2 + 3t3 32
12 5 + 10t+ 7t2 + 2t3 24
13 3 + 7t+ 5t2 + t3 16
14 2 + 4t+ 2t2 8
15 1 + 2t+ t2 4
16 1 + t 2

Table 1. The coe�cients of
[
8
4

]
t,q
.

Remark 3. Pak and Panova [13] recently proved that the classical q-binomial coe�cients are strictly

unimodal. Experiments show that it should also be the case for
[
m+n
N

]
q,1

, and for the coe�cients of

qN in
[
m+n
n

]
q,t

(as a polynomial in t). However it is not the case for the coe�cients of tk in
[
m+n
n

]
q,t

(as a polynomial in q).
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