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Abstract

We prove a generalisation of Roth’s theorem for arithmetic progressions to d-configurations,
which are sets of the form {ni+nj +a}1≤i≤j≤d with a, n1, ..., nd ∈ N, using Roth’s original density
increment strategy and Gowers uniformity norms. Then we use this generalisation to improve
a result of Sudakov, Szemerédi and Vu about sum-free subsets [10] and prove that any set of n

integers contains a sum-free subset of size at least log n
(

log(3) n
)1/32772−o(1)

.

1 Introduction

In 1953 Roth [8] proved his famous theorem about arithmetic progressions of length 3.

Theorem 1.1. Let 0 < α < 1. Any subset of {1, . . . , N} of size αN with N ≥ N0(α) contains a

non-trivial arithmetic progression of length 3.

A d-configuration is a set of the form {ni+nj+a}1≤i≤j≤d with a, n1, ..., nd ∈ N. The d-configuration
is non-trivial if for all i 6= j, ni 6= nj .

Our aim is to prove the following generalisation of Roth’s theorem:

Theorem 1.2. Let 0 < α < 1 and d ≥ 1. Any subset of {1, . . . , N} of size αN with N ≥ N0(α, d)
contains a non-trivial d-configuration.

If d = 2, this is equivalent to Roth’s theorem because 2-configurations are exactly arithmetic
progressions of length 3.

Theorem 1.2 can be proved easily by using Szemerédi’s theorem [11], presented here in a quantitative
form due to Gowers [4]. We write p ↑ q for pq, with the convention that p ↑ q ↑ r stands for p ↑ (q ↑ r).

Theorem 1.3. Let 0 < α < 1, and k be a positive integer. Let N ≥ 2 ↑ 2 ↑ (α)−1 ↑ 2 ↑ 2 ↑ (k+9) and
let A be a subset of [N ] with cardinality αN . Then A contains a non-trivial arithmetic progression of

length k.

Now to prove Theorem 1.2 we can locate in A a progression P of length 2d− 1, set the 2ni+ a’s to
be the elements with odd indices of P , and notice that P is a d-configuration. By Theorem 1.3, this
is possible if N ≥ 2 ↑ 2 ↑ (α)−1 ↑ 2 ↑ 2 ↑ (2d+ 8), but this bound is very unsatisfactory. Therefore we
give a proof that does not involve such a deep theorem as Szemerédi’s, and show that Theorem 1.2 is

true for N ≥ exp
(

exp
(

(

C
α

)d(d+1)−1
))

, where C is some absolute constant.

In the second part of this paper we use Theorem 1.2 to prove a result about sum-free subsets.
For two finite sets of real numbers A and B, one says that B is sum-free with respect to A if the set
{b+b′|b, b′ ∈ B, b 6= b′} is disjoint from A. Let φ(n) denote the largest integer such that any set A of size
n contains a subset of cardinality φ(n) which is sum-free with respect to A. An interesting question is to
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find a lower bound for φ(n). Erdős first mentioned in [3] that φ(n) ≥ c logn for some constant c, and the
first published proof of this result was done by Choi [2] who proved that φ(n) ≥ log2 n. Then Ruzsa [9]
improved this result slightly by showing that φ(n) ≥ 2 log3 n − 1. Recently Sudakov, Szemerédi and

Vu [10] gave the first superlogarithmic bound by showing that φ(n) ≥ logn
(

log(5) n
)1−o(1)

, where

log(i) n denotes the iterated logarithm (log(0) x = x, log(i+1) x = log(log(i) x)). By modifying a small

part of their proof using Theorem 1.2, we prove that φ(n) ≥ logn
(

log(3) n
)1/32772−o(1)

.

2 Proof of Theorem 1.2

As in several proofs of Roth’s theorem [8, 6, 7, 12], we use the density increment strategy to prove
Theorem 1.2. It consists of showing that either A contains a non-trivial d-configuration or it has
increased density on some arithmetic progression.

In the following, we will use the notation [N ] := {1, ..., N} and e(θ) := e2iπθ.

2.1 Complexity and Gowers uniformity norms

Gowers’ uniformity norms play an important role in his proof of Szemeredi’s theorem [4], and therefore
in the particular case of Roth’s theorem, as explained in Green’s course notes [6].

We will use these norms in our proof too, but we first need the notion of complexity, introduced
by Green and Tao in [5].

Definition. Let Ψ = (ψ1, ..., ψt) be a system of affine-linear forms. If 1 ≤ i ≤ t and s ≥ 0, we say that
Ψ has i-complexity at most s if one can cover the t− 1 forms {ψj : j ∈ [t] \ {i}} by s+ 1 classes, such
that ψi does not lie in the affine-linear span of any of these classes. The complexity of Ψ is defined
to be the least s for which the system has i-complexity at most s for all 1 ≤ i ≤ t, or ∞ if no such s
exists.

We will now define the Gowers uniformity norms.
Let f be a function from Z/NZ to C. The expectation of f is defined to be the quantity

Ex∈Z/NZf(x) :=
1

N

∑

x∈Z/NZ

f(x).

Definition. Suppose that f : Z/NZ → C is a function. Let k ≥ 2 be an integer. The Gowers Uk-norm

is defined by

‖f‖Uk :=



Ex,h1,...,hk∈Z/NZ

∏

(ω1,...,ωk)∈{0,1}k

C|ω1|+...+|ωk|f(x+ ω1h1 + ...+ ωkhk)





1/2k

,

where we use the notation Cf := f.

In particular the Gowers U2-norm which we will use later is defined by

‖f‖U2 :=
(

Ex,h1,h2∈Z/NZf(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)
)1/4

.

To establish a link between complexity and Gowers uniformity norms, we will use the following
theorem [5], which allows to control systems of complexity s by the Gowers Us+1-norm.

Theorem 2.1. Let f1, ..., ft : Z/NZ → R be functions such that |fi(x)| ≤ 1 for all i ∈ [t] and all

x ∈ Z/NZ. Suppose that Ψ = (ψ1, ..., ψt) is a system of affine-linear forms of complexity s consisting

of t forms in d variables. Then

| Ex1,...,xd∈Z/NZ

t
∏

i=1

fi(ψi(x1, ..., xd)) |≤ min
1≤i≤t

‖fi‖Us+1 .
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We will now show that d-configurations have complexity 1, in order to be able to control averages
using the Gowers U2-norm.

Lemma 2.2. Let (ni + nj + a)1≤i≤j≤d be a d-configuration. Then it has complexity 1.

Proof: Let i0, j0 ∈ [d] such that i0 < j0. We take the first class to consist of all forms involving ni0 ,
and the second one to consist of all other forms. Then the form ni0 + nj0 + a is in the linear span of
neither of those classes, because the first one does not involve nj0 at all, and the second one does not
involve ni0 .

Let us now consider the form 2ni0 + a. As in the previous case, we take the first class to consist of
all forms involving ni0 , and the second one to consist of all other forms. Clearly 2ni0 + a is not in the
linear span of the second class because it does not involve ni0 at all. And it is also not in the linear
span of the first class, because in each of its forms, ni0 appears with a different nj , and we cannot
cancel them to obtain 2ni0 + a.

Therefore the system has (i0, j0)-complexity 1 for all 1 ≤ i0 ≤ j0 ≤ d, so the d-configuration has
complexity at most 1. It does not have complexity 0 because if we consider the form ni0 +nj0 + a and
put all other forms in the same class, it is in its linear span. Indeed for example 2(ni0 + nj0 + a) =
(2ni0 + a) + (2nj0 + a). So the d-configuration has complexity 1.

As a particular case of Theorem 2.1, using the fact that d-configurations have complexity 1, we
have the following theorem:

Theorem 2.3. Let fij : Z/NZ → R be functions such that |fij(x)| ≤ 1 for all 1 ≤ i ≤ j ≤ d, and a be

an integer. Then

| En1,...,nd∈Z/NZ

∏

1≤i≤j≤d

fij(ni + nj + a) |≤ min
1≤i≤j≤d

‖fij‖U2 .

2.2 Obtaining a large Gowers U
2-norm

In this subsection, we prove that either A contains non-trivial d-configurations or a particular function
fA has a large Gowers U2-norm.

Let P be an arithmetic progression of length N , and A ⊆ P a set of size αN . By linear rescaling,
we may assume that P = [N ], because it does not change either the density α or the number of
d-configurations in A. Indeed let us assume that the forms (ni + nj + a)1≤i≤j≤d are located in the
progression P . Adding some constant to each element of P , and changing a accordingly, we may
assume that P is equal to {k, 2k, ..., Nk} for some integer k and that for every 1 ≤ i ≤ j ≤ d,
ni + nj + a = yi,jk. By linearly rescaling P to [N ], our d-configuration becomes (yi,j)1≤i≤j≤d. Let us
show that this is still a d-configuration. We have for every 1 ≤ i ≤ d− 1, ni+1 − ni = (yi,i+1 − yi,i)k,
which means that the ni’s are also inside an arithmetic progression with common difference k. Let us
write ni = βik+b where βi ∈ N for all 1 ≤ i ≤ d. Then we have ni+nj+a = βik+βjk+2b+a = yi,jk,
so if we set a′ := 2b+a

k , we have βi+βj + a′ = yi,j for all 1 ≤ i ≤ j ≤ d, which means that we still have
a d-configuration.

Conversely if (mi + mj + a)1≤i≤j≤d is a d-configuration in [N ], then the linear system (k(mi +
mj + a) + b)1≤i≤j≤d = (kmi + kmj + (ak + b))1≤i≤j≤d is a d-configuration located in the progression
{k + b, ..., Nk + b}.

Let us set N ′ := 2N + 1 and let Ã denote A considered as a subset of Z/N ′Z. The number of d-
configurations in Ã is the same as that in A, so we will identify Ã and A. Let us also note that to
count once and only once each d-configuration (ni + nj + a)1≤i≤j≤d we shall assume that a is equal
either to 0 or 1.

Given functions (fij)1≤i≤j≤d, set

Πd((fij)1≤i≤j≤d) := En1,...,nd∈Z/N ′Z

∏

1≤i≤j≤d

fij(ni + nj) + En1,...,nd∈Z/N ′Z

∏

1≤i≤j≤d

fij(ni + nj + 1).
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The quantity Πd(1A, ..., 1A), where 1A is the characteristic function of A (1A(x) = 1 if x ∈ A, 0
otherwise), is equal to 1/N ′d times the number of d-configurations in A, including the trivial ones.
We shall compare this with Πd(α1[N ], ..., α1[N ]), where α1[N ](x) is defined to be α if x ∈ [N ] and 0 if
x ∈ Z/N ′

Z \ [N ].
To compute the difference between the two we introduce the balanced function of A, defined by

fA := 1A − α1[N ].

Let us note that the expectation of fA is equal to 0. This property will be useful later in the proof.
Since Πd is multilinear, we may expand Πd(1A, ..., 1A) as a main term Πd(α1[N ], ..., α1[N ]) =

αd(d+1)/2Πd(1[N ], ..., 1[N ]) plus 2
d(d+1)/2 − 1 other terms Πd((gij)1≤i≤j≤d) where at least one the gij ’s

is equal to fA.

Lemma 2.4. Suppose that N > 16dα− d(d+1)
2 and that A contains fewer than αd(d+1)/2Nd

2d−1+1
non-trivial

d-configurations. Then there are 1-bounded functions (gij)1≤i≤j≤d, at least one of which being equal to

fA, such that

| Πd((gij)1≤i≤j≤d) |≥
( α

C

)

d(d+1)
2

for some absolute constant C > 0, where Πd((gij)1≤i≤j≤d) is one of the 2d(d+1)/2 − 1 other terms.

Proof: We have

α
d(d+1)

2 Πd(1[N ], ..., 1[N ]) ≥ α
d(d+1)

2 × 1

N ′d × 2

(

N

2

)d

,

because if we choose 1 ≤ ni ≤ N/2 for all 1 ≤ i ≤ d, then for all 1 ≤ i ≤ j ≤ d, 1 ≤ ni+nj ≤ N , giving

at least
(

N
2

)d
d-configurations of the form (ni + nj)1≤i≤j≤d, and if we choose 0 ≤ ni ≤ N/2− 1 for all

1 ≤ i ≤ d, then for all 1 ≤ i ≤ j ≤ d, 1 ≤ ni + nj + 1 ≤ N , giving at least
(

N
2

)d
d-configurations of

the form (ni + nj + 1)1≤i≤j≤d. Therefore we have at least 2
(

N
2

)d
d-configurations in total (including

trivial ones).
Recall that a d-configuration (ni + nj)1≤i≤j≤d is trivial if at least two of the ni’s are equal. Let us

find an upper bound for the number of trivial d-configurations of the form (ni+nj)1≤i≤j≤d in A. First,

we have
(

d
2

)

ways to choose i0 and j0 for which we set ni0 = nj0 . We know that 2ni must be in A for
all i, so there are at most |A| = αN choices for ni0 (we have an equality here if A only contains even
integers). Then nj0 is forced to be equal to ni0 , and we have at most |A| = αN choices for each one the

d−2 other ni’s too, giving at most
(

d
2

)

(αN)d−1 trivial d-configurations of the form (ni+nj)1≤i≤j≤d in
A. Note that we may have counted some d-configurations that are not fully contained in A, but we only
want an upper bound so this is not a problem here. The d-configurations of the form (ni+nj+1)1≤i≤j≤d

work exactly in the same way, and in total we have at most 2
(

d
2

)

(αN)d−1 = d(d − 1)(αN)d−1 trivial

d-configurations in A. Therefore, using the fact that A contains fewer than αd(d+1)/2Nd

2d−1+1
non-trivial

d-configurations, we obtain

Πd(1A, ..., 1A) ≤
α

d(d+1)
2

2d−1 + 1

(

N

N ′

)d

+ d(d− 1)
(αN)d−1

N ′d .

After some calculation we find that if N satisfies the condition N > 16dα− d(d+1)
2 then the second

term is negligible and we obtain

Πd(1A, ..., 1A) ≤
2

2d + 1
α

d(d+1)
2

(

N

N ′

)d

.

Note that the bound we chose for N is not optimal, but it has the advantage of not being too compli-
cated and does not change the final bound in Theorem 1.2.
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Therefore the sum of the 2d(d+1)/2 − 1 other terms involving fA must have magnitude at least

(

1

2d−1
− 2

2d + 1

)

α
d(d+1)

2

(

N

N ′

)d

.

Since N ′ ≤ 3N , one of those terms must have magnitude larger than

1

3d × 2
d(d+1)

2 +2d
α

d(d+1)
2 .

To avoid heavy expressions, we will say that | Πd((gij)1≤i≤j≤d) |≥
(

α
C

)

d(d+1)
2 for some absolute constant

C > 0.

Now we will use Lemma 2.4 and Theorem 2.3 to establish the following corollary.

Corollary 2.5. Let α, 0 < α < 1, be a real number. Suppose that N > 16dα− d(d+1)
2 and that A

is a subset of [N ] with |A| = αN containing fewer than αd(d+1)/2Nd

2d−1+1 non-trivial d-configurations. Let

fA : Z/N ′Z → R be the balanced function of A. Then

‖ fA ‖U2≥
(α

C

)

d(d+1)
2

for some constant C > 0.

Proof: Let Πd((gij)1≤i≤j≤d) be the same term as in Lemma 2.4.
By Theorem 2.3, we have

| Πd((gij)1≤i≤j≤d) | =| En1,...,nd∈Z/N ′Z

∏

1≤i≤j≤d

gij(ni + nj) + En1,...,nd∈Z/N ′Z

∏

1≤i≤j≤d

gij(ni + nj + 1) |

≤| En1,...,nd∈Z/N ′Z

∏

1≤i≤j≤d

gij(ni + nj) | + | En1,...,nd∈Z/N ′Z

∏

1≤i≤j≤d

gij(ni + nj + 1) |

≤ 2 min
1≤i≤j≤d

‖gij‖U2 ≤ 2 ‖ fA ‖U2 .

And by Lemma 2.4, we have

|Πd((gij)1≤i≤j≤d)| ≥
(α

C

)

d(d+1)
2

for some constant C > 0.
Therefore

2 ‖ fA ‖U2≥ |Πd((gij)1≤i≤j≤d)| ≥
( α

C

)

d(d+1)
2

.

2.3 Inverse results for the Gowers U
2-norm

In this subsection, we use the fact that fA has a large Gowers U2-norm to show that it also has a large
Fourier coefficient.

Let f be a function from Z/NZ to C. The Fourier transform f̂ of f is defined, for all ξ ∈ Z/NZ,
by the formula:

f̂(ξ) := Ex∈Z/NZf(x)e(−ξx/N).

Let us recall the following theorem proved in [6].
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Theorem 2.6. Suppose that f : Z/N ′Z → C is a 1-bounded function with ‖ f ‖U2≥ δ. Then there is

some r ∈ Z/N ′Z such that

|f̂(r)| ≥ δ2.

By Corollary 2.5 and Theorem 2.6, we have the following result.

Proposition 2.7. Let α, 0 < α < 1, be a real number. Suppose that N > 16dα− d(d+1)
2 and that A

is a subset of [N ] with |A| = αN containing fewer than αd(d+1)/2Nd

2d−1+1 non-trivial d-configurations. Let

fA : Z/N ′Z → R be the balanced function of A. Then there is some r ∈ Z/N ′Z and some constant

C > 0 such that

|f̂A(r)| ≥
(α

C

)d(d+1)

.

2.4 Obtaining a density increment

In this subsection, we will use the fact that fA has a large Fourier coefficient to find a density increment
on some arithmetic progression and thus complete the proof of Proposition 2.10.

Since f is supported on [N ] and N ′ = 2N + 1, Proposition 2.7 immediately implies the next
proposition.

Proposition 2.8. Let α, 0 < α < 1, be a real number. Suppose that N > 16dα− d(d+1)
2 and that A is

a subset of [N ] with |A| = αN containing fewer than αd(d+1)/2Nd

2d−1+1
non-trivial d-configurations. Let fA

be the balanced function of A, considered now as a function on [N ]. Then there is some θ ∈ [0, 1] and
some constant C > 0 such that

∣

∣

∣

∣

∣

∣

∑

x∈[N ]

fA(x)e(θx)

∣

∣

∣

∣

∣

∣

≥
(α

C

)d(d+1)

N. (2.1)

Let us recall a lemma proved in [13], adapted from Roth’s original argument [8].

Lemma 2.9. Let f : Z → R be a function supported on [N ] such that |f(n)| ≤ 1 for all n,
∑

n f(n) = 0
and

∣

∣Ex∈[N ]f(x)e(θx)
∣

∣ ≥ σ

for some θ ∈ [0, 1] and σ > 0. Then there exists a non-trivial arithmetic progression P ⊆ [N ] with
|P | ≥ cσ2

√
N and

Ex∈P f(x) ≥
σ

4
.

We have −α ≤ fA(n) ≤ 1 − α for all n, so |fA(n)| ≤ 1 for all n. We also have
∑

n fA(n) = 0.
Therefore, using the conclusion of Proposition 2.8, we can apply Lemma 2.9 with f = fA and σ =
(

α
C

)d(d+1)
. We obtain an arithmetic progression P ⊆ [N ] of length |P | ≥

(

α
C

)2d(d+1)√
N and

Ex∈P fA(x) ≥
1

4

(α

C

)d(d+1)

≥
( α

C′

)d(d+1)

,

which means that
|A ∩ P |
|P | ≥ α+

( α

C′

)d(d+1)

.

We obtain the following proposition.

Proposition 2.10. Suppose that 0 < α < 1 and N > 16dα− d(d+1)
2 . Suppose that P ⊆ Z is an

arithmetic progression of length N and that A ⊆ P is a set with cardinality αN . Then one of the

following two alternatives holds:
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• A contains at least αd(d+1)/2Nd

2d−1+1 d-configurations;

• There is an arithmetic progression P ′ of length ≥
(

α
C

)2d(d+1)
N1/2 such that, writing A′ := A∩P ′

and α′ := |A′|/|P ′|, we have α′ > α+
(

α
C

)d(d+1)
for some absolute constant C > 0.

2.5 The final bound

Finally, using Proposition 2.10, we obtain the following quantitative version of Theorem 1.2:

Theorem 2.11. There is an absolute constant C such that any subset A ⊆ [N ] with cardinality at

least CN

(log logN)
1

d(d+1)−1
contains a non-trivial d-configuration.

Proof: Set P0 := [N ] and assume that we have a set A ⊆ P0 with |A| = αN containing no non-trivial
d-configuration. Then we attempt to use Proposition 2.10 repeatedly to obtain a sequence P0, P1, ...

of progressions and sets Ai := A∩Pi. The densities αi := |Ai|/|Pi| will satisfy αi+1 > αi +
(

αi

C

)d(d+1)

and the length of Pi will be

Ni ≥
(αi−1

C

)2d(d+1)

N
1/2
i−1 ≥

( α

C

)2d(d+1)
∑i−1

k=0(
1
2 )

k

N (1/2)i ≥
(α

C

)4d(d+1)

N (1/2)i ,

using the fact that αi ≥ α and
∑i−1

k=0

(

1
2

)k ≤ 2 for all i ≥ 1.
But this iteration cannot last too long, otherwise we would obtain a set Ai with density more than

1 over the arithmetic progression Pi for some i, which is impossible. In particular there cannot be

more than
(

C′

α

)d(d+1)−1

steps in total. We conclude that the applications of Proposition 2.10 must

have been invalid, which means that the condition Ni > 16dα
− d(d+1)

2

i was violated. Since

Ni ≥
( α

C

)4d(d+1)

N (1/2)(
C′

α )
d(d+1)−1

and αi ≥ α, we infer the bound

16dα− d(d+1)
2 ≥

(α

C

)4d(d+1)

N (1/2)(
C′

α )
d(d+1)−1

.

Rearranging leads to

log logN ≤ log

(

log
(

16dα− d(d+1)
2

)

+ 4d(d+ 1) log

(

C

α

))

+ log 2

(

C′

α

)d(d+1)−1

≤
(

C′′

α

)d(d+1)−1

,

for some constant C′′.

Therefore if α ≥ C′′

(log logN)
1

d(d+1)−1
(ie. N ≥ exp

(

exp

(

(

C′′

α

)(d(d+1)−1)
))

), A contains a non-trivial

d-configuration. Theorem 2.11 is proved.

The bound obtained with this proof is better than the one using Szemerédi’s theorem because we
only have 3 exponentials instead of 5.
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3 The improvement in Sudakov, Szemerédi and Vu’s theorem

Now that we proved Theorem 2.11, we will use it to improve Sudakov, Szemerédi and Vu’s theorem
about sum-free subsets [10].

Let φ(A) denote the maximum cardinality of a subset of A which is sum-free with respect to A.
Let φ(n) be the minimum of φ(A) over all sets A of n integers. Sudakov, Szemerédi and Vu obtained
the first superlogarithmic lower bound for φ(n) by proving the following theorem [10].

Theorem 3.1. There is a function g(n) tending to infinity with n such that the following holds. Any

set A of n integers contains a subset B with cardinality g(n) logn such that B is sum-free with respect

to A.

Their proof shows that we can take g(n) to be of the order (log(5) n)1−o(1). Thus they proved that

φ(n) ≥ logn
(

log(5) n
)1−o(1)

.

It is easier to describe g(n) as the inverse of an iterative exponential function. They set g(n) in
Theorem 3.1 to be c(m/ logm), where c is a sufficiently small positive constant, m = F−1(n1/2) and

F (h) = exp
(

h182 ×
(

2 ↑
(

eh
32770

)

↑ 2 ↑ 2 ↑ (2h+ 9)
))

.

We will show that, using Theorem 2.11, we can set g(n) to be c(m/ logm), where m = G−1(n1/2)
and

G(h) = exp
(

h182 ×
(

e ↑
(

ceh
32770

)

↑ (h(h+ 1)− 1)
))

.

In their proof, Sudakov, Szemerédi and Vu deduce Theorem 3.1 from the following theorem.

Theorem 3.2. Let X, Y be two finite sets of positive integers with 1
h29 |Y | ≥ |X | ≥ F (h), where F is

the function described above and h is a sufficiently large integer. Then Y contains a subset Z of size

h which is disjoint from X and is sum-free with respect to X ∪ Y .

We will show that a modification of the proof of Theorem 3.2 allows us to replace F by G and
obtain the following theorem.

Theorem 3.3. Let X, Y be two finite sets of positive integers with 1
h29 |Y | ≥ |X | ≥ G(h), where G is

the function described above and h is a sufficiently large integer. Then Y contains a subset Z of size

h which is disjoint from X and is sum-free with respect to X ∪ Y .

In particular, the proof of Theorem 3.2 uses the following corollary, proved using Szemerédi’s
theorem.

Corollary 3.4. If A ⊆ {1, ..., N} is a set of size αN , and if N > 2 ↑ 2 ↑ (α)−1 ↑ 2 ↑ 2 ↑ (2k+9), then
there is a subset A′ ⊆ A of k elements such that, for any two elements x, y ∈ A′, there is an element

z of A satisfying x+ y = 2z.

But by using Theorem 2.11, we can replace Corollary 3.4 by the following corollary, which comes
with a better bound.

Corollary 3.5. If A ⊆ {1, ..., N} is a set of size αN , and if N > e ↑ e ↑
(

C
α

)

↑ (k(k + 1) − 1), then
there is a subset A′ ⊆ A of k elements such that, for any two elements x, y ∈ A′, there is an element

z of A satisfying x+ y = 2z.

Proof: By Theorem 2.11, A contains a non-trivial k-configuration (ni + nj + a)1≤i≤j≤k. Now we can
take A′ = {2n1 + a, ..., 2nk + a}, and so for any two elements 2ni + a and 2nj + a ∈ A′, (2ni + a) +
(2nj + a) = 2(ni + nj + a) with ni + nj + a ∈ A.
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To prove Theorem 3.3 we leave all Sudakov, Szemerédi and Vu’s proof of Theorem 3.2 unchanged,
except at the end, where we replace their bound by ours. We advise the reader to read the proof in [10],

because we won’t copy the beginning of the proof here. Thus when they need m1 ≥ 2 ↑ 2 ↑
(

eh
32770

)

↑

2 ↑ 2 ↑ (2h + 9), we only need m1 ≥ e ↑ e ↑
(

Ceh
32770

)

↑ (h(h + 1) − 1). As in their proof, we have

logm1 ≥ log |Y |
h182 . Then we only need to verify that log |Y | ≥ h182 ×

(

e ↑
(

Ceh
32770

)

↑ (h(h+ 1)− 1)
)

.

Since the right-hand side is equal to logG(h), this inequality follows from the assumption of Theo-
rem 3.3 that |Y | ≥ |X | ≥ G(h). This completes the proof.

Now we can derive Theorem 3.1 from Theorem 3.3 in the same way as in [10], except that we
replace F by G.

After some calculation, we obtain that we can take g(n) to be of the order (log(3) n)
1

32772−o(1).
Therefore we obtain the following stronger version of Theorem 3.1.

Theorem 3.6. There is a function g(n) of the order (log(3) n)
1

32772−o(1) such that any set A of n
integers contains a subset B with cardinality g(n) logn such that B is sum-free with respect to A.

4 Conclusion

We generalised Roth’s theorem to d-configurations and showed that any set A ⊆ {1, ..., N} with density
α such that N > e ↑ e ↑

(

C
α

)

↑ (d(d + 1) − 1) contains a non-trivial d-configuration. Then we used
this result to improve Sudakov, Szemeredi and Vu’s theorem about sum-free subsets and proved that

φ(n) ≥ logn
(

log(3) n
)1/32772−o(1)

, which is the best lower bound known to date for φ(n).

Bourgain [1] modified Roth’s original Fourier analytic proof [8] of Roth’s theorem by increasing the
density of A on Bohr sets instead of arithmetic progressions. By doing so, he improved Roth’s bound

N ≥ exp
(

exp
(

C
α

))

and showed that N ≥
(

C
α

)C′/α2

suffices. Therefore it should be possible to do a
similar modification to our proof in order to obtain a stronger version of Theorem 1.2 with a bound

of the type N ≥
(

c(d)
α

)

(

c′(d)
α

)d(d−1)

. This would hopefully improve our result about sum-free subsets

and lead to a bound of the form φ(n) ≥ logn(log(2) n)c−o(1). Even if the technical details of such a
proof might be considerable, it would constitute an interesting subject for further research. However
this lower bound is still far from the best upper bound currently known, φ(n) ≤ O(e

√
logn), proved

by Ruzsa in [9], so we can assume that many interesting results about sum-free subsets are still to be
found.
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