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Foreword

The material presented in these notes corresponds to the content of the Cours Péccot
given by the author in Collège de France in January 2015, as well as a class given
in Princeton from March to May 2015. The aim of these lectures is to provide an
introduction to the theory of graphical representations and its applications to so-called
spin models. We chose to present a few examples of recent results proved using these
representations. Since the theory of graphical representations of spin models has now
branched in many directions, we did not attempt to present a complete picture. We
rather focus on a few graphical representations. References to more complete books
are often included.

The first chapter introduces the notion of lattice spin model. After recalling a few
elementary definitions, several examples are discussed. In order to put the results of
the next chapters in perspective, a few results and conjectures on lattice spin models
are mentioned and discussed. We also introduce non-rigorously what we will call a
graphical representation. This chapter should be understood as an introduction and a
motivation for what comes next.

As mentioned before, we then sacrifice generality for clarity, and focus on graphi-
cal representations of one specific lattice spin model known under the name of Potts
model.

The second chapter is devoted to the theory of Bernoulli percolation. Graphical
representations are percolation models which usually exhibit long-range dependency.
Before diving into the theory of such dependent percolation models, we first take a
detour and present the simpler theory of Bernoulli percolation. In this context, we
present a few important results which will play an essential role in the more general
context of dependent percolation models. This chapter gives us the opportunity to
present recent proofs of famous results.

The third chapter introduces our first example of graphical representation, namely
the Fortuin-Kasteleyn percolation, also known as the random-cluster model. This
model is related to the Potts model. We then explain how the study of the Fortuin-
Kasteleyn percolation, which in many aspects is similar to the theory of Bernoulli
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percolation, enables one to show that Potts models undergo a phase transition on Zd .
In the specific case of Z2, we also explain how this theory can be used to compute
the critical temperature and to prove that the phase transition is sharp (see later for a
definition).

The fourth chapter deals with an intimately related graphical representation,
known as the loop representation of the planar Fortuin-Kasteleyn percolation. We
explain how this representation can be used to study the order of the phase transition
of the Potts model onZ2. In particular, we show that the phase transition is continuous
when the number of colors q is less or equal to 4, and that it is discontinuous when
the number of colors is larger than 38 (this constant is obviously not optimized). We
also explain how conformal invariance of the model can be proved for the planar
Ising model (i.e. the Potts model with two colors).

The fifth chapter is devoted to another graphical representation, called the random
current representation, which is specific to the Ising model on Zd . We explain how
this representation can be used to prove some correlation inequalities and to show that
the phase transition of the (nearest-neighbor ferromagnetic) Ising model is continuous
and sharp on Zd .

E a e
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Chapter 1Chapter 1

Lattice spin models

We will work on the lattice Zd = (V (Zd ), E(Zd )) with d ¾ 1: the vertex-set V (Zd ),
which will be identified with Zd , is given by

Zd :=
{

x = (x1, . . . , xd ) : x1, . . . , xd ∈Z
}

,

and the edge-set is composed of pairs of nearest neighbors, i.e.

E(Zd ) :=
{
{x, y} ⊂Zd :

d∑
i=1

|xi − yi |= 1
}

.

We will consider finite subgraphs G = (V (G), E(G)) of Zd . For such a graph, ∂ G
designates the inner (vertex) boundary of G, i.e.

∂ G :=
{

x ∈V (G) : there exists y /∈V (G) such that {x, y} ∈ E(Zd )
}

.

We also set Λn := [−n, n]d for the box of size n.
The lattice Z2 is called the square lattice; see Fig. 1.1. We will set 0 for the origin

(0, . . . , 0) ∈Zd .

11 Definitions

Let ν be a positive integer and G be a finite subgraph of a latticeZd . We denote the
scalar product onRν by 〈x|y〉=

∑ν
i=1 xi yi . Let us introduce the following formalism.

Spin space. The spin space is an arbitrary subset Ω of Rν (see examples below).

Spin configuration. A spin configuration is an element of ΩV (G), which will be
denoted by σ = (σx : x ∈V (G)). For every x ∈V (G), σx is called the spin at x.

Boundary condition. A boundary condition is an element of ΩZ
d \V (G) which will

be denoted by τ = (τx : x ∈Zd \V (G)).
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2 La�ice spin models chap. 1 sec. 1

Figure 1.1. The square la�ice (top le�), its dual la�ice (top right), its medial la�ice

(bo�om le�) and a natural orientation on the medial la�ice (bo�om right).

Hamiltonian. Let (Jxy )x,y∈Zd be a family of coupling constants. We will always
assume invariance under translation, i.e. that Jxy = J (x − y) for every x, y ∈Zd . The
Hamiltonian on G with boundary condition τ is given by

H τ
G(σ) :=−

∑
{x,y}⊂V (G)

Jxy〈σx |σy〉−
∑

x∈V (G),y /∈V (G)

Jxy〈σx |τy〉.

for every spin configuration σ ∈ΩV (G). We also define

H free
G (σ) :=−

∑
{x,y}⊂V (G)

Jxy〈σx |σy〉.

Product measure. Let dσ0 be a measure on Ω. We consider the product measure

dσ =
⊗

x∈V (G)

dσx
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chap. 1 sec. 2 Examples of la�ice spin models 3

onΩV (G), where dσx are copies of dσ0. Typical examples include the counting measure
ifΩ is discrete, the Lebesgue measure dλ ifΩ=R, or more generally the Haar measure
if Ω is a continuous Lie group.

Gibbs measure. The Gibbs measure on G at inverse temperature β with boundary
condition τ, is defined by the formula

µτG,β[ f ] :=

∫
ΩV (G)

f (σ)exp
[
−βH τ

G(σ)
]

dσ∫
ΩV (G)

exp
[
−βH τ

G(σ)
]

dσ
(1.1)

for every f : ΩV (G) −→ R. Similarly, one defines the measure with free boundary
condition by replacing τ by free.

When Jxy ¾ 0 for every x, y ∈Zd , the model is said to be ferromagnetic. It is said
to be nearest neighbor if

Jxy =
®

J if {x, y} ∈ E(Zd ),
0 otherwise.

For future reference, we will always fix J = 1. In such case, if E(G) is the set of all
{x, y} ∈ E(Zd ) with x, y ∈V (G), we find

H free
G (σ) :=−

∑
{x,y}∈E(G)

〈σx |σy〉.

Definition 1.1.

22 Examples of la�ice spin models

Let us now describe a few examples of lattice spin models.

Ising model. If Ω = {−1,1} and dσ0 is the counting measure on Ω, the model is
called the Ising model, introduced by Lenz in 1920 [Len 20] and studied in his PhD
thesis by Ising [Isi 25]. This model is one of the most classical model of statistical
physics.

Figure 1.2. From le� to right, T2, T3 and T4.
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4 La�ice spin models chap. 1 sec. 2

Po�s model. Let q ∈N∗ \ {1}. If Ω=Tq is a polyhedron in Rq−1 (see Fig. 1.2) such
that

〈σx |σy〉=
{

1 if σx = σy ,
− 1

q−1 otherwise.

and dσ0 is the counting measure on Ω, the model is called the q-state Po�s model.
This model was introduced by Potts [Pot 52] following a suggestion of his adviser
Domb. The model has been a laboratory for testing new ideas and developing far-
reaching tools. In two dimensions, it exhibits a rich panel of possible critical behaviors
depending on the number of colors, and despite the fact that the model is exactly
solvable, the mathematical understanding of its phase transition remains restricted
to a few cases (namely q = 2 and q large). We refer to [Wu 82] for a review on this
model, and to the rest of this book for more details.

Clock model. Let q ∈N∗ \ {1}. Let i ∈C such that i2 =−1. If

Ω=Uq =
{

x = (x1, x2) ∈R
2 : (x1+ i x2)

q = 1
}

is the set of q -roots of unity, and dσ0 is the counting measure, the model is called the
q -state clock model. On the one hand, for q ∈ {2,3}, the model corresponds to the
Potts model. On the other hand, for q ¾ 4, the model differs from the Potts model
since the scalar product between different spins may be different and therefore two
pairs of distinct spins do not play symmetric roles anymore.

Spin O(n)-model. Let n ∈N∗. If

Ω= Sn−1 :=
{

x = (x1, . . . , xn) ∈R
n : ‖x‖2 =

»
x2

1 + · · ·+ x2
n = 1

}
and dσ0 is the surface measure on Ω, the model is called the spin O(n)-model. This
model was introduced by Stanley in [Sta 68]. When n = 1, we end up with the Ising
model again. The n = 2 and n = 3 models were introduced slightly before the general
case and are called the X Y and Heisenberg models respectively. In two dimensions,
the O(2)-model is also called the planar rotor model.

Discrete Gaussian Free Field. If Ω=R and

dσ0 =
exp(−σ2

0/2)p
2π

dλ(σ0),

where dλ is the Lebesgue measure onR, the model is called the discrete Gaussian Free
Field (GFF). When the model is nearest neighbor, the measure in (1.1) is rewritten in
terms of

dλ(σ) =
⊗

x∈V (G)

dλ(σx )

as follows:

µτG,β[ f ] :=

∫
ΩV (G)

f (σ)exp
[
−E τG(σ)

]
dλ(σ)∫

ΩV (G)
exp
[
−E τG(σ)

]
dλ(σ)

for every f :ΩV (G) −→R, where

E τG := β
2

∑
{x,y}∈E(G)

(σx −σy )
2+
( 1

2 − dβ
) ∑

x∈V (G)

σ2
x .



HDnormal — 2016/11/30 — page 13 — ©Spartacus 2016

La�
ice

spin
m

odels
B

ernoullipercolation
Po�

s
m

odel
R

andom
-cluster

m
odel

Ising
m

odel

chap. 1 sec. 3 Phase transition in Po�s and O(n)-models 5

This quantity is called the Dirichlet energy of the graph. The regime 2dβ = 1
corresponds to the mass-less model, the regime 2dβ < 1 is called massive, and the
model cannot be defined properly in the regime 2dβ> 1 due to divergences at infinity.

The φ4
d la�ice model on Zd . Let a, b be two constants with b > 0. If Ω=R and

dσ0 = exp(−aσ2
0 − bσ4

0 )dλ(σ0),

the model is called the φ4
d lattice model. This model interpolates between the GFF

corresponding to a = 1/2 and b = 0 (the normalizing constant 1/
p

2π is irrelevant
here since it corresponds to the same multiplicative constant appearing in both the
numerator and the denominator of the ratio defining the Gibbs measure), and the
Ising model corresponding to the limit as a =−2b tends to +∞ (indeed in such case
the spins tend to be more and more concentrated on values near −1 and 1).

33 Phase transition in Po�s and O(n)-models

We wish to illustrate that the theory of lattice spin models is both very challenging
and very rich. We will not try to be comprehensive and will simply focus on the
examples of the Potts and O(n)-models. In order to break the symmetry between all
the spins, we fix the boundary condition to be τx = 1 (here 1 means (1,0, . . . , 0) inRν )
for every x (we write µ1

G,β for this measure) and we consider the nearest-neighbor
ferromagnetic models.

Introduce the order parameter and the inverse correlation length by the following
respective formulæ

m∗(β) := liminf
n→∞

∣∣µ1
G,β[〈σ0|1〉]

∣∣,
τ(β) := liminf

n→∞
− 1

n log
∣∣µ1
Λn ,β[〈σ0|1〉]

∣∣.
Also define

β̃c := inf{β> 0 : τ(β) = 0},
βc := sup{β> 0 : m∗(β) = 0}.

By definition,

• For any β< β̃c , there exists c = c(β)> 0 such that∣∣µ1
Λn ,β[〈σ0|1〉]

∣∣¶ e−cn

for every n ¾ 0 (we say that the model exhibits exponential decay of correlations).

• For any β>βc , m∗(β)> 0 (we call this phase the ordered phase).

Also note that β̃c ¶βc .
In fact, the following behavior is expected.

Conjecture 1.2. For any β¾ 0 and any n ¾ 1, µ1
Λn ,β[〈σ0|1〉]¾ 0 and the absolute

values in the definitions of the order parameter and the inverse correlation length
are therefore useless. In addition to this, the two limits should exist (no need for
liminf). Furthermore, for β ∈ (β̃c ,βc ), the quantity µ1

Λn ,β[〈σ0|1〉] should decay
algebraically fast in n.
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6 La�ice spin models chap. 1 sec. 3

Several scenarii compatible with the previous conjecture can be imagined:

• If β̃c =βc =∞, the model does not undergo any phase transition.

• If β̃c < βc =∞, the model undergoes a Berezinsky-Kosterlitz-Thouless
phase transition. This type of phase transition is named after Berezinsky and
Kosterlitz-Thouless, who introduced it (non rigorously) for the planar X Y -
model in two independent papers [Ber 72, KT 73]. In such case, there is no
ordering of the model at any inverse temperature β.

• If β̃c =βc <∞, the model undergoes a sharp order/disorder phase transition.
In this context, the phase transition is said to be continuous if m∗(βc ) = 0 and
discontinuous otherwise.

• One may also have β̃c <βc <∞, as shown in [FS 81] for the planar Clock
model with q � 1 states but this situation is not expected to occur for Potts
and spin O(n)-models.

Let us record the different known results in the following table.

d = 1 d = 2 d ¾ 3

Ising

Continuous and sharp order/disorder PT

Sharpness: [AB 87, DCT 15]

Continuity: [Ons 44] Continuity: [ADCS 15]

Potts

q ∈ {3,4}
Sharpness: [BDC 12b] Discontinuous and

no PT Continuity: [DCST 15] sharp order/disorder PT

q ¾ 5

Sharpness: [BDC 12b] Sharpness: Conjectural for d¾3

trivial Discontinuity: Conjectural except for

for d = 1 q ¾ 26 [KS 82] q ¾ qc(d) [KS 82],

d ¾ dc(q) [BCC 06]

O(n)

n = 2
Bere.-Kost.-Thou.

PT [FS 81] [FSS 76]

n ¾ 3
Absence of PT for d = 2 (sharpness is conjectural)

is conjectural [Pol 75]

On the one hand, at high temperature, spin-spin correlations of lattice spin models
can often be proved to decay exponentially fast. On the other hand, a spin model with
a discrete spin-space Ω can usually be proved to exhibit order at low temperature, as
can be shown using Peierls’s argument (see below for more details). On the contrary,
this is not the case for continuous spin-space. Indeed, the Mermin-Wagner theorem
states that a planar spin model for which Ω is a compact continuous connected Lie
group does not undergo an order/disorder phase transition (see [MW 66] for the
original paper and [ISV 02] for the stronger version mentioned here).

Concerning the question of absence of phase transition for the planar spin
O(n)-model with n ¾ 3, one of the only known result is due to Kupiainen [Kup 80],
who performed a 1/n expansion as n tends to infinity. One of the difficulties is
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chap. 1 sec. 4 Percolation models and graphical representations 7

the absence (so far) of a tractable graphical representation for the model. The loop
O(n)-model, introduced in [DMNS 81] provides us with an approximate graphical
representation on the hexagonal lattice, for which exponential decay of correlations
can be proved at any β> 0 for n� 1 [DCPSS 14].

44 Percolation models and graphical representa-

tions

For simplicity, we focus on graphical representations of nearest neighbor models
(though this notion will be generalized to models with long range interactions in
Chapter 5).

A percolation configuration ω = (ωe : e ∈ E(G)) is an element of {0,1}E(G). If
ωe = 1, the edge e is said to be open, otherwise e is said to be closed.

Definition 1.3.

The configurationω can be seen as a subgraph of G with the same set of vertices
V (G), and the set of edges given by open edges {e ∈ E(G) :ωe = 1}.

A percolation model is given by a family of probability measures on percolation
configurations on finite subgraphs of Zd .

Definition 1.4.

We are interested in the connectivity properties of the (random) graphω. Let us
introduce some useful notation. The maximal connected components ofω are called
clusters. Two vertices x and y are connected in ω inside S ⊂Zd if there exists a path
of vertices (vk )0¶k¶K in S such that v0 = x, vK = y, and {vk , vk+1} is open in ω for

every 0¶ k <K . We denote this event by x
S←→ y. If S =G, we simply drop it from

the notation. For A,B ⊂Zd , set A
S←→ B if there exists a vertex of A connected in S

to a vertex of B . We also allow ourselves to consider B =∞: in such case, we mean
that there exists an infinite open self-avoiding path starting from a vertex in A.

Let us imagine for a moment that we are in the presence of two models: a nearest-
neighbor lattice spin model and a percolation model (PG : G ⊂Zd ) such that for
every G ⊂Zd and x, y ∈G,

µfree
G,β[〈σx |σy〉] = PG[x←→ y].

In such case, the percolation measure is said to be a graphical representation
of the spin model: spin-spin correlations have been rephrased in terms of connec-
tivity properties of the percolation model. We will see several examples of these
graphical representations in the following chapters.

Rephrasing spin-spin correlations in terms of connectivity properties of the associated
percolation model is interesting only if the percolation model is itself simpler to
study. This will indeed be the case in our examples. For instance, useful correlation
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8 La�ice spin models chap. 1 sec. 4

inequalities can be obtained via these graphical representations. In addition to this,
probabilistic tools may be invoked to analyze the percolation models.

We should mention that a spin lattice model may have more than one graphical
representations for instance (we will see several graphical representations of the Ising
model). Each graphical representation may have different advantages in different
contexts, and choosing the right representation is part of the game.

In order to illustrate that percolation models may be simpler to study, let us focus
in the next chapter on the simplest (from the point of view of percolation theory) of
such percolation models, namely Bernoulli percolation.

E R e
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Chapter 2Chapter 2

An elementary example of

percolation model: Bernoulli

percolation

Consider the Bernoulli edge percolation measure Pp on {0,1}E(G) for which each
edge of E(G) is declared open with probability p and closed otherwise, independently
for different edges. Note that the definition extends trivially to Zd . In such case,
the σ -algebra of measurable events is the smallest σ -algebra containing the events
depending on finitely many edges.

11 Basic properties

Let us first focus on a few basic facts about Bernoulli percolation. Consider the
standard (partial) order on {0,1}E(Zd ) given by

ω ¶ω′ if and only if for every e ∈ E(Zd ), ωe ¶ω
′
e .

This order induces a notion of increasing function from {0,1}E(Zd ) to R. Also, an
event A is said to be increasing if its indicator function 1A defined by

1A(ω) =
®

1 ifω ∈A,
0 otherwise

is increasing. Note that A is increasing if for anyω ∈A andω′ ¾ω, we haveω′ ∈A.

Monotonicity. Let p ¶ p ′, then for any increasing event A, we find Pp[A]¶Pp ′[A].
In order to prove this fact, observe that Bernoulli percolation measures with different
edge-weights p can be defined on the same probability space as follows. Consider
Ω= [0,1]E(Zd ) and let (Ue )e∈E(Zd ) be a family of independent uniform random vari-
ables on [0,1]. Set P for the associated measure. For p ∈ [0,1], introduce

ω(p)e =
®

1 if Ue ¶ p,
0 otherwise.

By construction, the law of ω(p) is Pp and for any p ¶ p ′, ω(p) ¶ ω(p ′). As a
consequence, the law of the family (ω(p) : p ∈ [0,1]) contains as marginals the
different Bernoulli percolation measures with edge parameter in [0,1]. The property
follows trivially from the fact thatω(p) ¶ω(p ′) under the coupling P.
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10 An elementary example of percolation model: Bernoulli percolation chap. 2 sec. 1

FKG inequality. Let p ∈ [0,1], for any two increasing functions f and g ,

Pp[ f g ]¾Pp[ f ]Pp[g ].

As a direct consequence, for two increasing (respectively two decreasing) events A
and B ,

Pp[A∩B]¾Pp[A]Pp[B].

This inequality can easily be proved for increasing functions depending on the states of
finitely many edges by induction on the number of edges. The inequality for general
increasing functions follows by approximating increasing functions by increasing
functions depending on the states of finitely many edges. In the case of Bernoulli
percolation, this inequality is in fact called Harris’ inequality [Har 60]. The FKG
denomination comes from the fact that this inequality was proved by Fortuin, Kaste-
leyn and Ginibre for a more general class of percolation models (see [FKG 71] or the
next chapter for more details).

Russo’s formula. For a configurationω and an edge e , letω(e) be the configuration
coinciding withω for edges different from e , and with the edge e open. Similarly, we
defineω(e) to be the configuration coinciding withω for edges different from e , and
with the edge e closed.

Let A be an increasing event depending on the states of a finite set of edges E . We
say that e is pivotal for A ifω(e) ∈A andω(e) /∈A. Then

d
d p
Pp[A] =

∑
e∈E

Pp[e is pivotal for A].

There are many proofs of this statement (see [Rus 78] for the original paper). Let us
present the following one, which will be useful later in this document. Since

Pp[A] =
∑

ω∈{0,1}E
p
∑

f ∈E ω f (1− p)
∑

f ∈E 1−ω f 1A(ω),

we deduce that
d

d p
Pp[A] =

∑
e∈E

∑
ω∈{0,1}E

(
1
p 1A(ω

(e))− 1
1−p 1A(ω(e))

)
p
∑

f ∈E ω f (1− p)
∑

f ∈E 1−ω f

=
∑
e∈E

Pp[ω
(e) ∈A]−Pp[ω(e) ∈A]

=
∑
e∈E

Pp[e is pivotal for A].

The van den Berg-Kesten inequality. Let A and B be two increasing events. Let
A◦B be the event that A and B occur disjointly, meaning thatω ∈A◦B if there exist
two disjoint subsets of edges E = E(ω) and F = F (ω) such that any configurationω′

coinciding withω on E (resp. F ) belongs to A (resp. B).
Then,

Pp[A◦B]¶Pp[A]Pp[B].

The BK inequality is not very difficult to show, but the proof remains too cumber-
some for these notes (see [vdBK 85] for the original paper or [Gri 99] for a modern
exposition).
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chap. 2 sec. 2 Phase transition 11

Remark 2.1. We will not need this delicate inequality. In all our applications, we
use the BK inequality in a less general context. Assume that there exists a random
variable E taking values in subsets of E(Zd ), such that

Pp[A◦B] =
∑

E⊂E(Zd )

Pp[ω ∈A∩{E = E}]Pp[BE ], (2.1)

whereω ∈ BE if any configuration coinciding withω on E belongs to B . If such a
formula is available, we immediately deduce from BE ⊂ B that

Pp[A◦B]¶
∑

E⊂E(Zd )

Pp[ω ∈AE ∩{E = E}]Pp[B] = Pp[A]Pp[B].

While (2.1) can seem strange at first sight, the reader familiar with the so-called
Domain Markov property will recognize a rather standard expression corresponding
in the case of Bernoulli percolation to conditioning on A, and then using the Markov
property for the set of unexplored edges E . Once again, the inequality applies in
a more restricted context than the BK inequality since one should find a random
variable E , which does not always exist.

22 Phase transition

As a straightforward consequence of the monotonicity property, we deduce the
following theorem.

There exists pc = pc (d ) ∈ [0,1] such that

Pp[0←→∞] =
®

0 if p < pc (d ),
θ(p, d )> 0 if p > pc (d ).

Theorem 2.2.

In other words, there is a phase transition between a regime without infinite clus-
ter and a regime with an infinite cluster. The p < pc regime is called the subcritical
regime, and the p > pc regime the supercritical regime. When p = pc , one speaks
of the critical regime.

We now wish to be slightly more precise and to derive a few properties of perco-
lation in the subcritical and supercritical regimes.

Let τx : {0,1}E(Zd )→{0,1}E(Zd ) be the shift by a vector x ∈Zd defined by

τxω{a,b} :=ω{a+x,b+x} , ∀{a, b} ∈ E(Zd ).

Let τ−1
x A = {ω ∈ {0,1}E(Zd ) : τxω ∈ A}. An event A is invariant under transla-

tions if for any x ∈ Zd , τ−1
x A = A. A measure µ is invariant under translations if

µ(τx A) =µ(A) for any event A.

The Bernoulli percolation measure on Zd with parameter p ∈ [0,1] is ergodic,
i.e. that any event A which is invariant under translations satisfies Pp[A] ∈ {0,1}.

Theorem 2.3 (Ergodicity of Bernoulli percolation).
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12 An elementary example of percolation model: Bernoulli percolation chap. 2 sec. 2

Proof. Let A be an event which is invariant under translations. Let ε > 0 and choose
n ¾ 0 and an event B depending on the edges in Λn such that Pp[A∆B] ¶ ε (the
existence of this event follows from the fact that the σ -algebra of measurable events
is the smallest σ -algebra containing events depending on finitely many edges), where
A∆B = (A\B)∪ (B \A). Let x /∈Λ2n .

Using the invariance under translation in the second equality and the independence in
the third (B and τx B depend on disjoint sets of edges), we deduce that

Pp[A] = Pp[A∩A] = Pp[A∩τx A]

¶Pp[B ∩τx B]+ 2ε

= Pp[B]Pp[τx B]+ 2ε= Pp[B]
2+ 2ε¶Pp[A]

2+ 4ε.

By letting ε tend to 0, we deduce that Pp[A]¶Pp[A]
2 which implies Pp[A] ∈ {0,1}.

A corollary of this theorem is that for p > pc (d ),

Pp[there exists an infinite cluster] = 1.

In other words, when the infinite cluster exists with positive probability, it exists in
fact almost surely.

The following statement yields that the infinite cluster, when it exists, is unique
on Zd . This argument is very robust and can be applied in a very large context (see
for instance Section 4).

Consider the Bernoulli percolation on Zd with parameter p ∈ [0,1]. Either there
is no infinite cluster almost surely, or there exists a unique infinite cluster almost
surely.

Proposition 2.4.

This result was first proved in [AKN 87]. It was later obtained via different types
of arguments. The beautiful argument presented in this book is due to Burton and
Keane [BK 89].

Proof. Let E¶1, E<∞ and E∞ be the events that there is no more than one, finitely many
and infinitely many infinite clusters respectively.

Let us start by showing that Pp[E<∞ \E¶1] = 0. LetFn be the event that all the infinite

clusters intersectΛn (there may be none) and choose n large enough thatPp[Fn]¾
1
2Pp[E<∞].

SinceFn depends on the states of edges outside Λn only, we deduce that

Pp[Fn ∩{ω(e) = 1,∀e ∈ E(Λn)}]¾
1
2 p |E(Λn )|Pp[E<∞].

Any configuration in the event on the left contains zero or one infinite connected com-
ponent since all the vertices in Λn are connected. Therefore,

Pp[E¶1]¾
1
2 p |E(Λn )|Pp[E<∞].

By ergodicity, Pp[E<∞] = 1 implies that Pp[E¶1] = 1.
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chap. 2 sec. 2 Phase transition 13

We now exclude the possibility of an infinite number of infinite clusters. Consider n > 0
large enough that

Pp[C (d ) infinite clusters intersect the box Λn]¾
1
2Pp[E∞],

where C (d ) is large enough that among these C (d ) clusters, three are intersecting the
box Λn at vertices which are at distance three of each others at least. By changing the
configuration in ΛN , we deduce that

Pp[CT0]¾
1
2 min{p, 1− p}|E(ΛN )|Pp[E∞], (2.2)

where CT0 is the following event: Zd \ {0} contains three distinct infinite connected
components which are connected to 0. We chose C (d ) instead of 3 to be certain to be
able to do the rewiring inside the box.

A vertex x ∈Zd is called a trifurcation if τxCT0 =: CTx occurs.

Fix n¾1 and denote the set of trifurcations in Λn by T . By invariance under translation,
Pp[CTx]=Pp[CT0] and therefore

Ep[|T |] = Pp[CT0]× |Λn |.

Let us now bound deterministically |T | by |∂ Λn |. Denote the edges in E(Λn) by e1, . . . , ek .
For each cycle of open edges, turn the edge with smallest index (for some prescribed index)
to closed (this is a standard procedure to obtain the minimal spanning tree for instance).
We are now in possession of a forest. Remove an edge of the forest with one endpoint
not connected in the forest to the boundary, together with the connected component of
the endpoint not connected to the boundary. We have now a new forest. Keep doing the
previous procedure until there is no such edge anymore. The leafs of the forest are now
vertices of the boundary. Since the trifurcations are vertices of degree at least three in
this forest, we deduce that |T | is smaller than the number of leafs in the forest, i.e. that
|T |¶ |∂ Λn |. This gives

Pp[CT0] =
Ep[|T |]
|Λn |

¶
|∂ Λn |
|Λn |

−→ 0 as n→∞.

Combined with (2.2), this implies that Pp[E∞] = 0. The claim follows.

We now show that the phase transition is sharp. On top of that, we also deduce a
so-called mean-field lower bound on the density of the infinite cluster for p > pc .

For any d ¾ 2,

1. For p < pc , there exists c = c(p)> 0 such that for every n ¾ 1,

Pp[0←→ ∂ Λn]¶ e−cn .

2. For p > pc ,

Pp[0←→∞]¾
p − pc

p(1− pc )
.

Theorem 2.5.

This theorem was proved by Aizenman, Barsky [AB 87] and Menshikov [Men 86].
These two proofs are also presented in [Gri 99]. Here, we choose to present a new
argument [DCT 15] based on the following crucial quantity.
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14 An elementary example of percolation model: Bernoulli percolation chap. 2 sec. 2

Let S be a finite set of vertices containing the origin. Given such a set, we denote
its edge-boundary by

∆S =
{
{x, y} ⊂ E(Zd ) : x ∈ S, y /∈ S

}
.

For p ∈ [0,1] and 0 ∈ S ⊂Zd , define

ϕp (S) := p
∑

{x,y}∈∆S

Pp[0
S←→ x]. (2.3)

Set
p̃c = inf

{
p ∈ [0,1] : ∃S with ϕp (S)< 1

}
. (2.4)

Proof. Let p < p̃c . By definition, one can fix a finite set S containing the origin, such
that ϕp (S)< 1. Let L> 0 such that S ⊂ΛL−1.

Let k ¾ 1 and assume that the event 0←→ ∂ ΛkL holds. Introduce the random variable

C := {x ∈ S : x
S←→ 0}

corresponding to the cluster of 0 in S . Since S∩∂ ΛkL =∅, one can find {x, y} ∈∆S such
that the following events occur

• 0
S←→ x,

• {x, y} is open,

• y
C c

←→ ∂ ΛkL.

Using the union bound, and then a decomposition on the possible realizations of C , we
find

Pp[0←→∂ ΛkL]

¶
∑

{x,y}∈∆S

∑
C⊂S

Pp

[
{0 S←→ x} ∩ {C =C } ∩ {{x, y} open} ∩ {y C c

←→ ∂ ΛkL}
]

¶ p
∑

{x,y}∈∆S

∑
C⊂S

Pp

[
{0 S←→ x} ∩ {C =C }

]
Pp

[
y

C c

←→ ∂ ΛkL

]
¶ p
Ä ∑
{x,y}∈∆S

∑
C⊂S

Pp

[
{0 S←→ x} ∩ {C =C }

]ä
Pp

[
0←→ ∂ Λ(k−1)L

]
¶ p
Ä ∑
{x,y}∈∆S

Pp

[
0

S←→ x
]ä
Pp

[
0←→ ∂ Λ(k−1)L

]
= ϕp (S)Pp

[
0←→ ∂ Λ(k−1)L

]
.

In the second line, we used that {y C c

←→ ∂ ΛkL}, {0
S←→ x} ∩ {C =C } and {{x, y} open}

are independent (they depend on disjoint set of edges). In the third line, we used that
since y ∈ΛL, one finds

Pp[y
C c

←→ ∂ ΛkL]¶Pp[0←→ ∂ Λ(k−1)L].

An induction on k gives

Pp[0←→ ∂ ΛkL]¶ ϕp (S)
k−1.

This proves the desired exponential decay.
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chap. 2 sec. 2 Phase transition 15

Remark 2.6. Note that we could have used the BK inequality, but that we only required
a weaker form of this inequality, as suggested in the previous section.

Let us now turn to the proof of the second item. Let us start by the following lemma
providing a differential inequality valid for every p. Set θn(p) := Pp (0↔ ∂ Λn).

Lemma 2.7. Let p ∈ [0,1] and n ¾ 1,

θ′n(p)¾
1

p(1− p)
· inf

S⊂Λn
0∈S

ϕp (S) ·
(
1−θn(p)

)
. (2.5)

Let us first see how the theorem follows from Lemma 2.7. Integrating the differential
inequality (2.5) between p̃c and p > p̃c implies that for every n ¾ 1,

θn(p)¾
p − p̃c

p(1− p̃c )
.

By letting n tend to infinity, we obtain the desired lower bound on Pp[0←→∞].

Proof (of Lemma 2.7). Recall that {x, y}=e is pivotal for the configurationω and the
event {0←→∂ Λn} ifω(e) /∈ {0←→ ∂ Λn} andω(e) ∈ {0←→ ∂ Λn}. By Russo’s formula,
we have

θ′n(p) =
∑

e∈E(Λn )

Pp

[
e is pivotal for {0←→ ∂ Λn}

]
=

1
1− p

∑
e∈E(Λn )

Pp

[
e is pivotal for {0←→ ∂ Λn}, 0= ∂ Λn

]
.

Define the following random subset of Λn :

S := {x ∈Λn such that x= ∂ Λn}.
The boundary ofS corresponds to the outmost blocking surface (which can be obtained
by exploring – from the outside – the set of vertices connected to the boundary). When
0 is not connected to ∂ Λn , the set S is always a subset of Λn containing the origin. By
summing over the possible values for S , we obtain

θ′n(p) =
1

1− p

∑
S⊂Λn
0∈S

∑
e∈E(Λn )

Pp

[
e is pivotal for {0←→ ∂ Λn}, S = S

]
Observe that on the event S = S , the pivotal edges are the edges {x, y} ∈∆S such that 0
is connected to x in S. This implies that

θ′n(p) =
1

1− p

∑
S⊂Λn
0∈S

∑
{x,y}∈∆S

Pp

[
0

S←→ x, S = S
]
. (2.6)

The event {S = S} is measurable with respect to edges with (at least) one endpoint

outside S and it is therefore independent of {0 S←→ x}. We obtain

θ′n(p) =
1

1− p

∑
S⊂Λn
0∈S

∑
{x,y}∈∆S

Pp

[
0

S←→ x
]
Pp

[
S = S

]
=

1
p(1− p)

∑
S⊂Λn
0∈S

ϕβ(S)Pp

[
S = S

]
(2.7)

¾
1

p(1− p)
inf

S⊂Λn
0∈S

ϕp (S) ·
(
1−θn(p)

)
,

as desired.
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16 An elementary example of percolation model: Bernoulli percolation chap. 2 sec. 3

Remark 2.8. The set of parameters p such that there exists a finite set 0 ∈ S ⊂Zd

with ϕp (S) < 1 is an open subset of [0,1]. Since this set is coinciding with [0, pc ),
we deduce that ϕpc

(Λn)¾ 1 for any n ¾ 1). As a consequence, the expected size of
the cluster of the origin satisfies at pc ,∑

x∈Zd

Ppc
[0←→ x]¾

1
d

∑
n¾0

ϕpc
(Λn) = +∞.

Also, since ϕp ({0}) = 2d p, we find pc (d )¾ 1/2d .

33 Computation of the critical value on Z2

Let us focus on planar percolation for a moment. Introduce the dual graph
(Z2)∗ = ( 12 , 1

2 ) +Z
2. Any edge e of Z2 intersects a unique edge of (Z2)∗ that is de-

noted by e∗. Consider the dual measure ω∗ ∈ {0,1}E((Z2)∗) defined by the formula
ω∗e∗ = 1−ωe . Note that if the law of ω is Pp , then the law of ω∗ is a translate by

( 12 , 1
2 ) of P1−p . This duality is a very specific feature of planar percolation. It enables

us to deduce what is the critical point on Z2.

On Z2, pc = 1/2 and Ppc
[0←→∞] = 0.

Theorem 2.9.

Remark 2.10. Together with the bound of Remark 2.8, we deduce that for any
d ¾ 2,

1
2d ¶ pc (d )¶

1
2 .

Proof. Let us assume that pc > 1/2. Since a circuit of length n surrounding 0 must
intersect Λn , the exponential decay provided by Theorem 2.5 for any p < pc immediately
implies that

P1/2[there exists an open circuit surrounding 0 of length n]¶ e−cn .

The Borel-Cantelli lemma implies that there exist finitely many circuits surrounding
the origin. As a consequence, there exists an infinite cluster in the dual configuration
ω∗. Since the dual measure is a percolation measure with parameter 1/2, we deduce that
pc ¶ 1/2 which is contradictory.

Let us now focus on the other bound. Historically, this result was first proved by Harris
[Har 60]. We choose to present a beautiful argument due to Zhang [Gri 99, Lemma
11.12] which we isolate in the following lemma (which directly implies the theorem).

Lemma 2.11 (Zhang’s argument). On Z2, P1/2[0←→∞] = 0.

Proof. Let ε < 2−8. Assume that P1/2[0←→∞]> 0 and choose n large enough that

P1/2[Λn ←→∞]> 1− ε.

The integer n exists since the infinite cluster exists almost surely (therefore the quantity
on the left tends to 1 as n tends to infinity).
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chap. 2 sec. 3 Computation of the critical value on Z2 17

Let Aleft (resp. Aright, Atop and Abottom) be the events that {−n}×[−n, n] (resp. {n}×[−n, n],
[−n, n]×{n} and [−n, n]×{−n}) are connected to infinity in the complement of Λn .
By symmetry,

P1/2[Aleft ∪Aright] = P1/2[Atop ∪Abottom]

and
P1/2[Aleft] = P1/2[Aright].

We also find that

P1/2[Aleft ∪Aright ∪Atop ∪Abottom] = P1/2[Λn←→∞]> 1− ε.

We can thus invoke the FKG inequality applied twice to obtain that

P1/2[Aleft]¾ 1− ε1/4.

As a consequence,
P1/2[Aleft ∩Aright]¾ 1− 2ε1/4.

We now use that the dual measure of P1/2 is a translate of P1/2 itself. In particular, let A∗top

and A∗bottom be the events that [−(n+ 1
2 ), n+ 1

2 ]×{n+
1
2} and [−(n− 1

2 ), n+ 1
2 ]×{−(n+

1
2 )}

are dual-connected to infinity using edges outside E∗(Λn) = {e∗ : e ∈ E(Λn)}. Following
the same argument as for the primal model, we find that

P1/2[A
∗
top ∩A∗bottom]¾ 1− 2ε1/4.

Putting all these facts together, we obtain

P1/2[Aleft ∩Aright ∩A∗top ∩A∗bottom]> 1− 4ε1/4 > 0.

Now, Let B be the event that every dual-edge in E∗(Λn) is open in ω∗. The events B and
Aleft ∩Aright ∩A∗top ∩A∗bottom depend on disjoint sets of edges. Therefore,

P1/2[B ∩Aleft ∩Aright ∩A∗top ∩A∗bottom]> 0. (2.8)

But this last event is contained in the event that there are two disjoint infinite clusters
(see Fig. 2.1), which we excluded in Theorem 2.4, thus leading to a contradiction.

Observe that we just proved that the phase transition is continuous since there is
no infinite cluster at pc = 1/2. The situation in higher dimension is more complex.
The absence of infinite cluster was proved using lace expansion for d ¾ 19 [HS 90]
(it was recently improved to d ¾ 11 [FvdH 15]). The techniques involved in the
proof may be expected to work until d ¾ 6. This dimension, called the upper critical
dimension dc , is the smallest dimension for which the model exhibits a mean-field
behavior (in particular Pp[0←→∞]� (p − pc ) for p↘ pc ). For d ∈ {3,4,5}, the
techniques of [HS 90] will not work and in fact the following conjecture is one of the
major open questions in our field.

Conjecture 2.12. For any d ¾ 2, Ppc
[0←→∞] = 0.

Some partial results were obtained in Z3 in the past decades. For instance, it is
known that the probability, at pc (3), of an infinite cluster inN×Z2 is zero [BGN 91].
Let us also mention that Ppc (Z2×G)[0←→∞] was proved to be equal to 0 on graphs
of the form Z2×G, where G is finite; see [DST 16].
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18 An elementary example of percolation model: Bernoulli percolation chap. 2 sec. 4

Figure 2.1. In this configuration, two infinite clusters (in bold) coexist. The gray

area corresponds to Λ3.

0∞

∞

∞

∞

44 The Russo-Seymour-Welsh theory

The previous section helps us understand what happens away from criticality. Let
us now try to discuss the behavior at criticality in the planar case. The following result
will be our main instrument to study the critical phase. For a < b and c < d integers,
let R := [a, b ]× [c , d] (when a, b , c or d are not integers, an implicit rounding
operation is performed), and introduce the events

Ch (R) :=
{
{a}× [c , d ] R←→{b}× [c , d ]

}
,

Cv (R) :=
{
[a, b ]×{c} R←→ [a, b ]×{d}

}
.

The events C ∗h (R
∗) and C ∗v (R∗) are defined in terms of the dual configuration.

Let ρ> 0, there exists c = c(ρ)> 0 such that for every n ¾ 1,

c ¶P1/2

[
Cv ([0, n]× [0,ρn])

]
¶ 1− c .

Theorem 2.13 (Box crossing property).

The uniform upper bound follows easily from the uniform lower bound and
duality since the complement of the event that a rectangle is crossed vertically is the
event that the dual rectangle is crossed horizontally in the dual configuration.

This observation also leads to the following

P1/2

[
Cv ([0, n]2)

]
+P1/2

[
C ∗h ([−

1
2 , n+ 1

2 ]× [
1
2 , n− 1

2 ])
]
= 1.



HDnormal — 2016/11/30 — page 27 — ©Spartacus 2016

La�
ice

spin
m

odels
B

ernoullipercolation
Po�

s
m

odel
R

andom
-cluster

m
odel

Ising
m

odel

chap. 2 sec. 4 The Russo-Seymour-Welsh theory 19

Since [− 1
2 , n+ 1

2 ]× [
1
2 , n− 1

2 ] is a translate of [0, n+ 1]× [0, n− 1], which is harder
to cross horizontally than [0, n]2, the self-duality implies that

P1/2

[
Cv ([0, n]2)

]
¾ 1

2 , (2.9)

which leads to the uniform lower bound for any ρ¶ 1.
Also, as soon as we have to our disposal a uniform lower bound (in n) for some

ρ> 1 on crossing horizontally rectangles of the form [0, n]× [0,ρn], then one can
easily combine crossings in different rectangles to obtain a uniform lower bound for
any ρ′ > 1; see Fig. 2.2. Note that combining crossings in squares is much harder.
This will in fact be the major obstacle: the main difficulty of this theorem lies in
passing from crossing squares with probabilities bounded uniformly from below to
crossing rectangles in the hard direction with probabilities bounded uniformly from
below. A statement claiming that crossing a rectangle in the hard direction can be
expressed in terms of the probability of crossing squares is called a Russo-Seymour-
Welsh type theorem. For Bernoulli percolation on the square lattice, such a result
was first proved in [Rus 78, SW 78]. Since then, many proofs have been produced,
among which [BR 06b, BR 06a, BR 10, Tas 16, Tas 14].

We present a recent proof [BR 06b], which is the shortest one (for the square
lattice) we are aware of. We focus on the following proposition, which is sufficient to
show the result thanks to the previous observations.

Figure 2.2. The combination of two horizontal crossings of ρn by n rectangles and

one vertical crossing of a n by n square creates an horizontal crossing of a (2ρ− 1)n
by n rectangle. The FKG inequality implies that this happens with probability larger

than or equal to
1
2 c(ρ)2.

For every n ¾ 1,
P1/2

[
Cv ([−n, n]× [−n, 2n])

]
¾ 1

128 .

Proposition 2.14.

Proof. Let An =Ch ([0, n]2) and Bn be the event that there exists an horizontal crossing
of [0, n]2 which is connected to [−n, n]×{−n} in [−n, n]2. For a path γ from left to
right in [0, n]2, and σ(γ ) the reflection of this path with respect to {0}×Z, define the
set S(γ ) of vertices x ∈ [−n, n]2 “below” γ ∪σ(γ ) (see Fig. 2.3 on the left). Now, on An ,
condition on the highest crossing Γ of [0, n]2. We find that

P1/2

[
Bn

]
¾
∑
γ

P1/2

[
Bn

∣∣An ∩{Γ = γ}
]
P1/2

[
{Γ = γ} ∩An

]
¾
∑
γ

P1/2

[
γ

S(γ )
←→ [−n, n]×{−n}

]
P1/2

[
{Γ = γ} ∩An

]
¾

1
4

∑
γ

P1/2

[
{Γ = γ} ∩An

]
=

1
4
P1/2

[
An

]
¾

1
8

.
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20 An elementary example of percolation model: Bernoulli percolation chap. 2 sec. 4

In the third line, to deduce the lower bound 1/4 we used the facts that conditioned on
An ∩{Γ = γ}, the configuration in S(γ ) is a Bernoulli percolation of parameter 1/2 (since
An ∩{Γ = γ} is measurable with respect to edges on γ or above γ ), the symmetry and the
fact that the probability of an open path from bottom to top in S(γ ) is larger than 1/2
(by (2.9) applied to [−n, n]2). In the last inequality, we used (2.9) applied to [0, n]2.

Fig. 2.3 on the right illustrates that Cv ([−n, n]× [−n, 2n]) occurs if the three events
Cv ([0, n]2), Bn and B̃n occur, where B̃n is the event that there exists an horizontal crossing
of [0, n]2 which is connected to [−n, n]×{2n} in [−n, n]× [0,2n]. By symmetry,

P1/2[B̃n] = P1/2[Bn]¾
1
8 .

The FKG inequality (used in the second inequality) implies that

P1/2[Cv ([−n, n]× [−n, 2n])]¾P1/2[Cv ([0, n]2)∩Bn ∩ B̃n]

¾P1/2[Cv ([0, n]2)]P1/2[Bn]P1/2[B̃n]

¾
1

128
.

Figure 2.3. Le�. The set S(γ ) defined by the boundary of the box, the path γ
and its reflection σ(γ ). Right. A realization of the event Bn in blue, B̃n in red, and

Cv ([0, n]2) in green.

(n, 0)(−n, 0) (0, 0)

(0, n)

(0,−n)

(0, 2n)

The box crossing property has many applications, including polynomial bounds
for arm events, so-called universal arm-exponents, tightness of interfaces, scaling
relations and also absence of infinite connected component at criticality (a fact that we
already know from Zhang’s argument). We will discuss several of these applications
in the more general context of Fortuin-Kasteleyn percolation in the next chapters
and we therefore do not spend more time discussing them here.
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chap. 2 sec. 4 The Russo-Seymour-Welsh theory 21

Remark 2.15 (Conformal invariance).
In fact, crossing probabilities in [0, n]× [0,ρn] converge to explicit limits as

n tends to infinity. More generally, crossing probabilities in topological rectangles
were proved to be conformally invariant by Smirnov in [Smi 01]. We refer to the
reviews [BDC 13, Wer 09] for more references.

We now focus on a dependent percolation model, called the Fortuin-Kasteleyn per-
colation, which is directly related to the Potts model. We will see that the theory
is more complicated. In particular, the results corresponding to the statements
described in this chapter were derived rigorously only very recently.

E w e
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Chapter 3Chapter 3

The random-cluster

representation of the Potts

model

The random-cluster model, also called Fortuin-Kasteleyn percolation, is a de-
pendent percolation model onZd which is intimately related to the Potts model. This
chapter presents the theory of this dependent percolation model, and its applications
to the understanding of the Potts model. The organization follows the same lines as
the previous section: we first define the model, then explain how to derive a few basic
properties of the model. Finally, we study the phase transition of the model.

11 Definition of the random-cluster model

Let G be a finite subgraph of Zd . Boundary conditions ξ are given by a parti-
tion P1 t · · · t Pk of ∂ G, where recall that

∂ G := {x ∈G : ∃y /∈G,{x, y} ∈ E(Zd )}.

Two vertices are wired in ξ if they belong to the same Pi . The graph obtained from
the configuration ω by identifying the wired vertices together is denoted by ωξ (1).
Boundary conditions should be understood informally as encoding how sites are con-
nected outside of G. Let o(ω) and c(ω) denote the number of open and closed edges
ofω and k(ωξ ) the number of (maximal) connected components of the graphωξ .

The probability measureφξp,q,G of the random-cluster model on G with edge-weight
p ∈ [0,1], cluster-weight q > 0 and boundary conditions ξ is defined by

φξp,q,G[{ω}] :=
po(ω)(1− p)c(ω)qk(ωξ )

Zξ
p,q,G

for every configuration ω ∈ {0,1}E(G). The constant Zξ
p,q,G is a normalizing

constant, referred to as the partition function, defined in such a way that the sum
over all configurations equals 1. From now on, φξp,q,G denotes both the measure
and the expectation with respect to this measure.

Definition 3.1.

(1)Formally,ωξ can be seen as the graph (‹V , Ẽ), where‹V is the vertex set V (G) quotiented by
the equivalence relation xRy if x and y are in the same Pi , and Ẽ is the image of the open edges
ofω by the canonical projection from V (G) to‹V . We will not really use this formal definition.
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24 The random-cluster representation of the Po�s model chap. 3 sec. 2

Remark 3.2. For q = 1, the random-cluster model is simply Bernoulli percolation.

Let us list a few boundary conditions that will come back later in the book.

Wired boundary conditions. They are specified by the fact that all the vertices on
the boundary are pairwise wired (the partition is equal to {∂ G}). The random-
cluster measure with wired boundary conditions on G is denoted by φ1

p,q,G .

Free boundary conditions. They are specified by no wiring between vertices on
the boundary (the partition is composed of singletons only). The random-
cluster measure with free boundary conditions on G is denoted by φ0

p,q,G .

Dobrushin boundary conditions. The interest of these boundary conditions will
become apparent in the next chapter. Let (Ω,a, b ) be a discrete simply connected
domain Ω (i.e. that the graph Ω and its complement are connected) with two
vertices a and b on its boundary ∂ Ω. We call such a triplet a Dobrushin domain.
Since Ω is simply connected, ∂ Ω is separated into two boundary arcs denoted by
∂ab and ∂ba (the first one goes from a to b when going counterclockwise around
the boundary, while the second goes from b to a). The Dobrushin boundary
conditions are defined to be free on ∂ab and wired on ∂ba. In other words, the
partition is composed of ∂ba together with singletons. We refer to Fig. 4.8 for an
illustration. These arcs are referred to as the free arc and the wired arc, respectively.
The measure associated to these boundary conditions will be denoted by φa,b

p,q,Ω.

Boundary conditions induced by a configuration outside G. For a configuration
ξ on E(Z2)\E(G), the boundary conditions induced by ξ are defined by the
partition P1 t ·· · t Pk , where x and y are in the same Pi if and only if there
exists an open path in ξ connecting x and y. From now on, we identify the
boundary conditions induced by ξ with the configuration itself, and we denote
the random-cluster measure with these boundary conditions by φξp,q,G .

22 Coupling between the Po�s model and the

random-cluster model

Let us now describe the connection between the random-cluster model and the
Potts model. Consider an integer q ¾ 2 and let G be a finite graph. Assume that a
configurationω ∈ {0,1}E(G) is given. One can deduce a spin configuration σ ∈TE(G)

q
by assigning independently to each clusterC ofω a spinσC ofTq among the q possible
spins, each with probability 1/q , except for the clusters intersecting the boundary ∂ G
which are automatically associated to the spin 1. We then define σx to be equal to σC
for every x ∈C . Note that all the sites in the same cluster receive the same spin.

Fix an integer q ¾ 2. Consider p ∈ (0,1) and G ⊂Zd a finite graph. If the config-
urationω is distributed according to a random-cluster measure with parameters
(p, q) and wired boundary conditions, then the spin configuration σ is distributed
according to a q -state Potts measure with inverse temperature β=− q−1

q ln(1− p)
and boundary conditions 1.

Proposition 3.3 (Coupling Po�s – Random-Cluster model).
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chap. 3 sec. 2 Coupling between the Po�s model and the random-cluster model 25

Proof. Consider a finite graph G, and let p ∈ (0,1). Let Ω be the space of pairs (ω,σ)
withω ∈ {0,1}E(G) and σ ∈TV (G)

q , with the property that for any edge e = {x, y},ωe = 1
implies σx = σy .

Consider a measure P onΩ, whereω is a random-cluster configuration with free boundary
conditions and σ is the corresponding spin configuration constructed as explained above.
Then, for (ω,σ), we have:

P[(ω,σ)] =
1

Z1
p,q ,G

po(ω)(1− p)c(ω)qk(ω1) · q−k(ω1)+1

=
q

Z1
p,q ,G

po(ω)(1− p)c(ω).

(The additive constant 1 is due to the fact that the spin of the cluster ofω1 touching the
boundary is necessarily 1.)

Now, we construct another measure P̃ on Ω as follows. Let σ̃ be a spin-configuration
distributed according to a q -state Potts model with boundary conditions 1 and inverse
temperature β satisfying exp[− q

q−1β] = 1− p. We deduce ω̃ from σ̃ by independently
opening edges between neighboring vertices with same spins with probability p. By
definition, edges between vertices with different spins are automatically closed. Then, for
any (ω̃, σ̃),

P̃[(ω̃, σ̃)] =
exp[− q

q−1βr (σ̃)] po(ω̃)(1− p)c(ω̃)−r (σ̃)

Z
=

po(ω̃)(1− p)c(ω̃)

Z
,

where r (σ̃) is the number of edges between vertices with different spins, and Z is a
normalizing constant.

This implies that P = P̃ and the marginals of P are the random-cluster model with
parameters (p, q) and the q -state Potts model at inverse-temperature β, which is the
claim.

Remark 3.4. One can also check that the coupling works for the random-cluster
model and the q -state Potts model both with free boundary conditions. In this case,
one assigns random spins to every cluster, even those touching the boundary (for
future reference, let us define the corresponding coupling measure by P̂).

Remark 3.5. The previous correspondence can be rephrased in terms of free energies
of the models. Let us consider the Potts and random-cluster models on G with free
boundary conditions. Still set 1− p = e−βq/(q−1). Below, δa,b is the Kronecker
symbol equal to 1 if a = b and 0 otherwise. We have

ZPotts(G,β, q) :=
∑

σ∈TV (G)
q

exp
[
−βHG(σ)

]
,

= eβ|E(G)|
∑

σ∈TV (G)
q

∏
{x,y}∈E(G)

(
e−βq/(q−1)+(1− e−βq/(q−1))δσx ,σy

)
= eβ|E(G)|

∑
ω∈{0,1}E(G)

po(ω)(1− p)c(ω)
( ∑
σ∈TV (G)

q

∏
{x,y}∈E(ω)

δσx ,σy

)
= eβ|E(G)|

∑
ω∈{0,1}E(G)

po(ω)(1− p)c(ω)qk(ω)

=: eβ|E(G)| ·Z0
RCM(G, p, q).
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26 The random-cluster representation of the Po�s model chap. 3 sec. 3

In the third line we used the fact that
∏
{x,y}∈E(ω)δσx ,σy

equals 1 if σ is constant on
every cluster ofω, and 0 otherwise. The previous relation leads to

fPotts(β, q)+ 2β := lim
n→∞

− 1
|Λn |

log e−β|E(Λn )|ZPotts(Λn ,β, q) (3.1)

= 2 lim
n→∞

− 1
|E(Λn)|

logZ0
RCM(Λn , p, q) =: 2 fRCM(p, q).

In particular, the singular behaviors of the free energies fPotts(β, q) and fRCM(p, q)
of both models are related and one can study the phase transition of one model by
studying the phase transition of the other one. Most of the time though, we will use
the coupling rather than just the relation between free energies since it provides us
with more information on the typical geometry of configurations.

We are in presence of a graphical representation for the Potts model. The coupling
provides us with a dictionary between the properties of the Potts and random-
cluster models. For instance, one may easily check that

µ1
G,β[〈σx |1〉] = E

[
〈σx |1〉1{x ω

←→∂ G}

]
+E
[
〈σx |1〉1{x ω

←→∂ G}c

]
= φ1

p,q ,G[x←→ ∂ G].

We used that in the first term in the middle, σx must be equal to 1 and that in the
second, σx is uniformly chosen among spins in Tq . Similarly for x, y ∈V (G),

µfree
G,β[〈σx |σy〉] = Ê

[
〈σx |σy〉1{x ω

←→y}

]
+ Ê
[
〈σx |σy〉1{x ω

←→y}c

]
= φ0

p,q ,G[x←→ y].

As a side remark, note that µ1
G,β[〈σx |1〉] and µfree

G,β[〈σx |σy〉] are non-negative.

33 Basic properties of the random-cluster model

We wish to deduce properties corresponding to those described in Section 1.
Note that some of these properties are only available for q ¾ 1. In order not to slow
down the pace of the lecture notes, we do not include the proofs of these statements.
We refer to [Gri 06] or [DC 13] for a presentation of the different proofs (in [DC 13],
the same notation is used).

FKG inequality. Fix p ∈ [0,1], q ¾ 1, a finite graph G and some boundary condi-
tions ξ . For any two increasing events A and B ,

φξp,q ,G[A∩B] ¾ φξp,q ,G[A]φ
ξ
p,q ,G[B].

The proof of this inequality is more complicated than for Bernoulli percolation. The
argument relies on the so-called Holley criterion. We refer to [DC 13, Sections 4.4.1
and 4.4.2] for more details.
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chap. 3 sec. 3 Basic properties of the random-cluster model 27

Monotonicity. Fix p ¶ p ′, q ¾ 1, a finite graph G and some boundary conditions
ξ . For any increasing event A,

φξp,q ,G[A] ¶ φ
ξ
p ′,q ,G[A].

This inequality follows directly from the FKG inequality (see [DC 13, Section 4.4.3]
for more details) since

φξp ′,q ,G[A] =
φp,q ,G[Y 1A]

φp,q ,G[Y ]

(FKG)
¾ φp,q ,G[A],

where

Y :=
Ç

p ′(1− p)
p(1− p ′)

åo(ω)

is an increasing function ofω.

Comparison between boundary conditions. Fix p ∈ [0,1], q ¾ 1 and a finite
graph G. For any boundary conditions ξ ¶ψ (meaning that two vertices wired in ξ
are wired in ψ) and any increasing event A,

φξp,q ,G[A] ¶ φ
ψ
p,q ,G[A].

This comparison between boundary conditions also follows from the FKG inequality
(we leave it as an exercise, and refer to [DC 13, Section 4.4.4] for a complete proof).
Note that the free and wired boundary conditions are extremal in the following sense:
for any increasing event A and any boundary conditions ξ ,

φ0
p,q ,G[A] ¶ φ

ξ
p,q ,G[A] ¶ φ

1
p,q ,G[A].

Di�erential formula. Let A be an increasing event depending on edges in G only.
Let IA(e) be the influence of the edge e defined by the formula

IA(e) :=φ
ξ
p,q ,G[A|ωe = 1]−φξp,q ,G[A|ωe = 0].

Then
d

d p
φξp,q ,G[A] =

∑
e∈E(G)

IA(e). (3.2)

This proof is easily obtained by differentiating (with respect to p) the ratio

φξp,q ,G[A] =

∑
ω∈{0,1}E(G)

po(ω)(1− p)c(ω)qk(ωξ )1ω∈A∑
ω∈{0,1}E(G)

po(ω)(1− p)c(ω)qk(ωξ )
.

Domain Markov property and absence of the BK inequality. The BK inequality
is not satisfied for the random-cluster model. The absence of such a tool renders
the whole theory more intricate than Bernoulli percolation’s one. The reason for
the absence of the BK inequality can be nicely explained through a very important
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28 The random-cluster representation of the Po�s model chap. 3 sec. 4

property of the random-cluster model, called the domain Markov property (this
property is the analog of the Dobrushin-Lanford-Ruelle property for spin models;
see [Geo 11]). Let FE be the σ -algebra of events depending on the states of edges
in E only. Fix F ⊂G two finite subgraphs of Z2. Let p ∈ [0,1], q > 0 and ξ some
boundary conditions on G. For anyFE(F )-measurable random variable X ,

φξp,q ,G

[
X
∣∣ω(e) =ψ(e),∀e ∈ E(G) \ E(F )

]
(ψ) =φψ

ξ

p,q ,F [X ],

where ψ ∈ {0,1}E(G)\E(F ). The proof is a straightforward computation.
A consequence of this property is that even though two events depend on disjoint

sets of edges, the boundary condition induced by conditioning on one of the events
impacts the measure on the set of edges on which the second event depends. Therefore,
there are long-range dependencies. In particular, for q > 1, the probability that two
edges are open will be strictly larger than the product of the probabilities so that the
BK inequality is not satisfied.

Another consequence of this property is the following finite-energy property:
for any q ¾ 1, any finite graph G, any ψ ∈ {0,1}E(G) and any boundary conditions ξ
on G,

p
p +(1− p)q

¶φξp,q ,G

[
ω( f ) = 1

∣∣ω(e) =ψ(e),∀e ∈ E(G) \ { f }
]
¶ p. (3.3)

44 Phase transition and critical point

The definition of an infinite-volume random-cluster measure is not direct.
Indeed, one cannot count the number of open or closed edges on Z2 since they could
be (and would be) infinite. We thus define infinite-volume measures by taking a
sequence of measures on larger and larger boxes Λn (n ¾ 1).

Let q ¾ 1. There exist two (possibly equal) infinite-volume random-cluster mea-
sures φ0

p,q and φ1
p,q , called the infinite-volume random-cluster measures with free

and wired boundary conditions respectively, such that for any event A depending
on a finite number of edges,

lim
n→∞

φ1
p,q ,Λn

[A] =φ1
p,q[A] and lim

n→∞
φ0

p,q ,Λn
[A] =φ0

p,q[A].

Proposition 3.6.

Proof. We deal with the case of free boundary conditions. Wired boundary conditions
are treated similarly. Fix an increasing event A depending on edges in ΛN only. Applying
the Markov property to F =Λn and G =Λn+1, and the comparison between boundary
conditions, we find that for any n ¾N ,

φ0
p,q ,Λn+1

[A]¾φ0
p,q ,Λn

[A].

We deduce that (φ0
p,q ,Λn

[A])n¾0 is increasing, and therefore converges to a certain value
P [A] as n tends to infinity.

Since the φ0
p,q ,Λn

-probability of an event B depending on finitely many edges can be
written by inclusion-exclusion as a combination of the φ0

p,q ,Λn
-probability of increasing
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chap. 3 sec. 4 Phase transition and critical point 29

events, taking the same combination defines a natural value P [B] for which

φ0
p,q ,Λn

[B]−→ P [B].

The fact that (φ0
p,q ,Λn

)n¾0 are probability measures implies that the function P (which is
a priori defined on the set of events depending on finitely many edges) can be extended
into a probability measure onFE(Zd ). We denote this measure by φ0

p,q .

The measures φ0
p,q and φ1

p,q play very specific roles in the theory. First, they
are invariant under translations and ergodic (we leave this as an exercise). They are
extremal infinite-volume measures, in the sense that any infinite-volume measure φ
(see [DC 13, Definition 4.24]) for the random-cluster model with parameters p and
q ¾ 1 satisfies

φ0
p,q[A]¶φ[A]¶φ

1
p,q[A] (3.4)

for increasing events A. Furthermore, an abstract theorem (see [DC 13, Theorem
4.30]) shows that for a fixed q ¾ 1, φ0

p,q =φ
1
p,q for all but possibly countably many

values of p. This immediately implies that for such values of p, there is a unique
infinite-volume measure. We are now in a position to discuss the phase transition of
the random-cluster model.

For q ¾ 1 and d ¾ 1, there exists a critical point pc = pc (q , d ) ∈ [0,1] such that:
• For p < pc , any infinite-volume measure has no infinite cluster a.s.
• For p > pc , any infinite-volume measure has an infinite cluster a.s.

Theorem 3.7.

Proof. Let A be the event that there is an infinite cluster. Let us define

pc = inf{p ∈ [0,1] :φ0
p,q[A]> 0}.

Since the event A is increasing, we deduce that φ0
p,q[A]> 0 for any p > pc . Ergodicity

implies that
φ0

p,q[A] = 1.

Furthermore, (3.4) implies the result for any infinite-volume measure with parameters p
and q .

On the other hand, let p < pc . There exists p ′ ∈ (p, pc ) such that there is a unique
infinite-volume measure at p ′ (since the set of values of p for which there are more than
one infinite-volume measure is at most countable, see [DC 13, Theorem 4.30] again). We
deduce that for any infinite-volume measure φp,q ,

φp,q[A]¶φ
1
p,q[A]¶φ

1
p ′ ,q[A] =φ

0
p ′ ,q[A] = 0

by uniqueness of the measure at p ′ < pc .

The previous theorem can be rephrased in terms of the q -state Potts model. In
such case, the quantity

βc =βc (q , d ) :=− q − 1
q

log
[
1− pc (q , d )

]
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30 The random-cluster representation of the Po�s model chap. 3 sec. 5

satisfies

lim
n→∞

µ1
Λn ,β[〈σ0|1〉] =

®
0 if β<βc

m∗(β, q , d )> 0 if β>βc .

In other words, the critical inverse-temperature of the Potts model can be defined
rigorously (it does not alternate between ordered and disordered phases as it a
priori could), and this critical inverse-temperature can be expressed in terms of
the critical value of the corresponding random-cluster model.

55 Computation of the critical point in two di-

mensions

The derivation of the critical point is the next natural step in the study. Un-
fortunately, we do not expect the value to be special for general values of d ¾ 3. In
dimension two, a duality relation enables us to compute the value explicitly. Let us
describe non-rigorously this derivation.

Consider the random-cluster model on Z2 with cluster-weight q¾1. The critical
value pc= pc (q , 2) satisfies

pc =
pq

1+pq
.

Furthermore, for p < pc , there exists c = c(q)> 0 such that

φ1
p,q ,Λn

[0←→ ∂ Λn]¶ exp[−cn].

Theorem 3.8 (Be�ara, Duminil-Copin [BDC 12b]).

This result was previously known for q = 1 [Kes 80], q = 2 [Ons 44] and
q ¾ 4 [HKW 78]. Note that in general (with the exception of q = 2 on planar graphs,
see [Li 12,CDC 13]), the critical point is not expected to satisfy a special equation,
even for planar models.

Let us discuss whypq/(1+pq) is a very special edge-parameter for the model.
Recall that for any e ∈ E(Z2), there exists a unique edge e∗ of E((Z2)∗) intersecting
it in its middle. Let G∗ be the graph with edge-set E(G∗) = {e∗ : e ∈ E(G)} and
vertex-set given by the end-points of E(G∗).

For a configurationω∈{0,1}E(G), we define thedual configurationω∗∈{0,1}E(G∗)
by the formula

ω∗(e∗) = 1−ω(e), ∀e ∈ E(G).

Definition 3.9.

A dual-edge e∗ is said to be dual-open ifω∗(e∗) = 1 and dual-closed otherwise.
Two sites u and v in G∗ are said to be dual-connected if there is a dual-open path,
i.e. a path of open dual-edges between u and v.
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chap. 3 sec. 5 Computation of the critical point in two dimensions 31

Figure 3.1. A configuration and its dual configuration. The graphs G and G∗ are

in black and the boundary conditions ξ and ξ ∗ are in gray.

Set p∗ = p∗(p, q) satisfying
p p∗

(1− p)(1− p∗)
= q.

Let ξ ∈ {0,1}E(Z2)\E(G). The dual model of the random-cluster on G with param-
eters (p, q) and boundary conditions ξ is the random-cluster with parameters
(p∗, q) on G∗ with boundary conditions induced by ξ ∗, where ξ ∗ is defined by
ξ ∗(e∗) = 1− ξ (e) for any e /∈ E(G).

Proposition 3.10 (Duality for planar boundary conditions).

Proof. The probability ofω∗ isφξp,q,G[{ω}], which is written in terms of o(ω),c(ω) and k(ωξ).
Simply write these quantities in terms of o(ω∗)(=c(ω)), c(ω∗)(=o(ω)) and the number of
faces in (ω∗)ξ ∗ . The proof then follows directly from Euler’s formula for planar graphs which
enables us to rewrite the number of faces in (ω∗)ξ ∗ in terms of o(ω∗) and k((ω∗)ξ ∗ ).

We are now in a position to discuss Theorem 3.8. First, fix q ¾ 1. Introduce

psd(q) :=
pq

1+pq
.

This is the unique value of p satisfying p∗(p, q) = p.
Second, assume that pc < psd(q), in such case there exists an infinite connected

component of open edges at psd(q). But the dual model of φ0
psd(q),q

is a translate

by ( 12 , 1
2 ) of φ1

psd(q),q
, and therefore there exists an infinite connected component of

dual-open edges on (Z2)∗ as well. These two facts enable us to rerun Zhang’s argument
(Lemma 2.11) to show that with positive probability, there are more than two infinite
connected components forφ0

psd(q),q
(the only difference is that one used independence

in (2.8), which get replaced by the finite energy property (3.3) in this proof). We reach a
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32 The random-cluster representation of the Po�s model chap. 3 sec. 6

contradiction by observing that uniqueness of the infinite cluster (i.e. Proposition 2.4)
can also be proved for the random-cluster model, since independence was used only
when proving that Pp[CT0]> 0, and can be replaced by the finite energy property
again. Overall, we just proved that pc ¾ psd(q).

Third, assume that pc > psd(q). If one could prove exponential decay for
p < pc , one would reach a contradiction by following the same argument (at psd(q)
this time) as in Theorem 2.9. It is indeed possible to prove such a result on Z2

[BDC 12b, BDC 12a] or on planar lattices with sufficient symmetries [DCM 14] but
this represents the major difficulty in the proof (which we omit here).

We immediately deduce that the critical inverse-temperature βc (q , 2) of the Potts
model on Z2 satisfies

βc (q , 2) =
q − 1

q
log(1+

p
q).

In the literature, one often sees that the critical temperature is equal to log(1+pq).
This is due to the fact that the Hamiltonian is usually defined by the formula

HG,β(σ) =
∑

{x,y}∈E(G)

δσx ,σy
,

where δa,b is the Kronecker symbol equal to 1 if a = b and 0 otherwise. This
model is exactly similar to the other one, except that β is multiplied by q

q−1 .

66 Russo-Seymour-Welsh theory for the critical

random-cluster model on Z2

We now focus on the critical phase. As for Bernoulli percolation, we need a tool
to study the geometry of the critical phase. This tool is provided by the following
result, whose proof is omitted here (see [DCST 15] for details). Recall that Ch (R) is
the event that there exists an horizontal crossing of the rectangle R from left to right.

Let q ¾ 1, the following assertions are equivalent :

P1 (Absence of infinite cluster at criticality) φ1
pc ,q[0←→∞] = 0.

P2 (Uniqueness of infinite-volume measure) φ0
pc ,q =φ

1
pc ,q .

P3 (Infinite susceptibility) χ 0(pc , q) :=
∑
x∈Z2

φ0
pc ,q[0←→ x] =∞.

P4 (Sub-exponential decay of correlations for free boundary conditions)

lim
n→∞

1
n logφ0

pc ,q[0←→ ∂ Λn] = 0.

P5 (RSW) Let α > 0. There exists c = c(α)> 0 such that for any n ¾ 1 and any
boundary conditions ξ ,

c ¶φξpc ,q ,[−n,(α+1)n]×[−n,2n]

[
Ch ([0,αn]× [0, n])

]
¶ 1− c .

Theorem 3.11 (Duminil-Copin, Sidoravicius, Tassion [DCST 15]).
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chap. 3 sec. 6 Russo-Seymour-Welsh theory for the critical random-cluster model onZ2 33

The previous theorem does not show that these conditions are all satisfied, only
that they are equivalent. In fact, whether the conditions are satisfied or not depend
on the value of q , see Sections 2 and 3 for a more detailed discussion.

The previous result was previously known in a few cases. For q = 1 (Bernoulli
percolation), P1–5 follow from Lemma 2.11, Remark 2.8 and Theorem 2.13 (P2 is
trivial). For q� 1, none of the above properties are satisfied (see [KS 82,LMMS+ 91]
and Theorem 4.5 below). For q = 2 (which is coupled to the Ising model), all of these
properties can be proved to be true using the following results on the Ising model:
Onsager proved that the critical Ising measure is unique and that the phase transition
is continuous in [Ons 44], thus implying P1–2; Properties P3–4 follow from [Sim 80]
(see also Remark 5.15), and P5 was proved in [DCHN 11].

Property P5 is the strongest one. Note that we did not only require that crossing
probabilities remain bounded away from 0 uniformly in the size n of the rectangle,
but also uniformly in boundary conditions. This property is crucial for the potential
applications of this theorem. The restriction on boundary conditions being at distance
n from the rectangle can be relaxed in the following way: if P5 holds, then for any
α > 0 and ε > 0, there exists c = c(α,ε)> 0 such that for every n ¾ 1,

c ¶φξpc ,q ,[−εn,(α+ε)n]×[−εn,(1+ε)n]

[
Ch ([0,αn]× [0, n])

]
¶ 1− c .

(We leave it as an exercise for the reader.) It is natural to ask why boundary conditions
are fixed at distance εn of the rectangle [0,αn]×[0, n] and not simply on its boundary.
It may in fact be the case that P5 holds but that the crossing probability of the rectangle
[0,αn]× [0, n] with free boundary conditions on its boundary converge to zero as
n tends to infinity. Such a phenomenon does not occur for 1 ¶ q < 4 as shown
in [DCST 15] (for such values of q , the crossing probabilities on rectangles with free
boundary conditions directly on the boundary are bounded away from 0 uniformly
in n) but is expected to occur for q = 4. To avoid this difficulty, we will always work
with boundary conditions at “macroscopic distance” from the boundary.

Let us now mention a few applications of this theorem.

Lemma 3.12. Property P5 implies the existence of c ′ > 0 such that for all n ¾ 2,

φ0
pc ,q ,Λ2n\Λn

[there exists an open circuit in Λ2n \Λn surrounding Λn]¾ c ′.

Proof. Consider the four rectangles

R1 := [4n/3,5n/3]× [−5n/3,5n/3],
R2 := [−5n/3,−4n/3]× [−5n/3,5n/3],
R3 := [−5n/3,5n/3]× [4n/3,5n/3],
R4 := [−5n/3,5n/3]× [−5n/3,−4n/3].

If the intersection ofCv (R1),Cv (R2),Ch(R3) andCh(R4) occurs, then there exists an open
circuit in Λ2n \Λn surrounding Λn . In particular, the FKG inequality and the comparison
between boundary conditions imply that c ′ can be chosen to be equal to c(10)4.

Corollary 3.13. If P5 is satisfied, there exists ε > 0 such that for any n ¾ 1,

ε

n
¶φ1

pc ,q ,Λn
[0←→ ∂ Λn]¶

1
nε

.
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34 The random-cluster representation of the Po�s model chap. 3 sec. 6

Proof. The lower bound is straightforward: if [0, n]2 is crossed horizontally, there exists
a vertex in {n} × [0, n] connected to distance n. The union bound implies the lower
bound directly with ε¶ c(1).

For the upper bound, let k be such that 2k¶n<2k+1. Also define the annuli Aj=Λ2 j\Λ2 j−1−1

for j ¾ 1. We have

φ1
pc ,q,Λn

[0←→ ∂ Λn]¶
k∏

j=1

φ1
pc ,q,Λn

∂ Λ2 j−1

Aj
←→ ∂ Λ2 j

∣∣∣∣∣∣⋂i> j

{
∂ Λ2i−1

Ai←→ ∂ Λ2i

}
¶

k∏
j=1

φ1
pc ,q,Λn

[
∂ Λ2 j−1

Aj
←→ ∂ Λ2 j

]
.

In the second line, we used the fact that the event upon which we condition depends only
on edges outside of Λ2 j together with the domain Markov property and the comparison
between boundary conditions.

Now, the complement of {∂ Λ2 j−1

Aj
←→ ∂ Λ2 j } is the event that there exists a dual-open

circuit in A∗j surrounding the origin. Lemma 3.12 implies that this dual-open circuit exists
with probability larger than or equal to c > 0 independently of n ¾ 1. This leads to

φ1
pc ,q,Λn

[0←→ ∂ Λn]¶
k∏

j=1

(1− c) = (1− c)k ¶ (1− c)log n/ log2.

The proof follows by setting ε¶− log(1−c)
log2 .

Remark 3.14. The proof illustrates the need for bounds which are uniform with
respect to boundary conditions. Indeed, it could be the case that the φ1

pc ,q -probability
of an open path from the inner to the outer sides of Aj is bounded away from 1, but
conditioning on the existence of paths in each annulus Ai (for i < j ) could favor open
edges drastically, and imply that the probability of the event under consideration is
close to 1.

Let us now show how to prove Theorem 3.8 from Theorem 3.11. Historically,
the proof of Theorem 3.8 was independent of Theorem 3.11. Nevertheless, there is
a neat way of getting Theorem 3.8 from Theorem 3.11 and we therefore present it
now. We also refer to Section 3 for a simple proof when q ∈ [1,3].

Proof (of Theorem 3.8 (sketch)). We already know that pc ¾ psd by Zhang’s argument
(we omit the proof since it is a trivial adaptation of the proof presented for Bernoulli
percolation). We focus on pc ¶ psd and leave the proof of exponential decay aside. Assume
that pc > psd.

LetAn be the event that Λ2n \Λn contains an open circuit surrounding Λn . Our goal is
to show that for pc > p > psd and ε > 0, there exists n = n(p,ε)> 0 such that

φ0
p,q ,Λ2n\Λn

[An]¾ 1− ε. (3.5)

Indeed, if such an n exists, one may cover the plane with boxes of the form τnxΛn with
x = (x1, x2) ∈ Z2, and declare a box good if τnx (An) occurs, and bad otherwise. The
previous assumption on the probability ofAn implies that the process of good boxes
dominates a Bernoulli site percolation on nZ2 with parameter p = p(ε) (indeed one may
prove that it dominates a 3-dependent percolation, and then use a classical result about
domination by product measures [LSS 97]). One can now choose ε small enough that
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chap. 3 sec. 6 Russo-Seymour-Welsh theory for the critical random-cluster model onZ2 35

p is larger than the critical value of site percolation on Z2. We deduce that there is an
infinite path of good boxes, which immediately implies the existence of an infinite path
of open edges. Hence, p ¾ pc , which is in contradiction with the original assumption
pc > psd.

We therefore need to prove (3.5). We need two results on the random-cluster model. First,
let us recall a general theorem which is a direct adaptation of the more general statement
of Graham and Grimmett [GG 11, Thm. 5.3].

For any q ¾ 1 there exists a constant c > 0 such that, for any p ∈ (0,1), any finite
graph G, any boundary conditions ξ and any increasing event A,

d
d p
φξp,q ,G[A]¾ cφξp,q ,G[A]

(
1−φξp,q ,G[A]

)
log
Å

1
max{IA(e) : e ∈ E(G)}

ã
. (3.6)

Theorem 3.15 ( [GG 11]).

Second, an easy coupling argument which can be found in [GG 11] or [DCM 14] yields
that

IAn
(e)¶φ1

p,q[0←→ ∂ Λn].

If psd < p < pc , one can choose n so that φ1
p,q[0←→ ∂ Λn]¶ δ. Since for any p ′ ¶ p,

φ1
p ′ ,q[0←→ ∂ Λn]¶φ

1
p,q[0←→ ∂ Λn]¶ δ,

we may integrate (3.6) between psd and p to obtain

φ0
p,q ,Λ2n\Λn

[An]
(
1−φ0

psd ,q ,Λ2n\Λn
[An]

)
φ0

psd ,q ,Λ2n\Λn
[An]

(
1−φ0

p,q ,Λ2n\Λn
[An]

) ¾ δ−c(p−psd)

which implies that

φ0
p,q ,Λ2n\Λn

[An]¾ 1− δ c(p−psd)

φ0
psd ,q ,Λ2n\Λn

[An]
.

The proof follows by using Lemma 3.12 and by choosing δ = δ(p,ε) small enough.

As mentioned before, we deduce that βc (q) =
q−1

q log(1+pq). We also deduce
that for every n ¾ 1, ε

n
¶µ1

Λn ,βc
[〈σ0|1〉]¶

1
nε

.

E ˆ e
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Chapter 4Chapter 4

Loop representation of the

random-cluster model

We now introduce another representation of the Potts model. It is derived directly
from the planar random-cluster model. It is not quite a percolation model, but rather
a loop model. In this chapter, we restrict our attention to d = 2.

11 Loop representation for free boundary condi-

tions

We start by defining the loop configuration ω associated to a percolation con-
figurationω. Let (Z2)� be the lattice with midpoints of edges of Z2 as vertices, and
edges between nearest neighbors. It is a rotated and rescaled version of the square
lattice, see Fig. 1.1.

Let Ω be a finite subgraph of Z2. Let Ω∗ be the subgraph of (Z2)∗ induced by dual
edges bordering faces corresponding to vertices of Ω (it is not quite the same as the
notion of dual graph introduced in Section 5). LetΩ� be the subgraph of (Z2)� defined
by the vertices corresponding to midpoints of edges in E(Ω), and edges between two
vertices of V (Ω�) on the same face of Ω.

Consider a configuration ω together with its dual configuration ω∗. We draw
ω∗ in such a way that dual edges between vertices of ∂ Ω∗ are open inω∗ (we make
such an arbitrary choice since these dual edges have no corresponding edges in E(Ω)).

By definition, through every vertex of the medial graphΩ� ofΩ passes either an
open edge of Ω or a dual-open edge of Ω∗. Draw self-avoiding loops on Ω� as follows:
a loop arriving at a vertex of the medial lattice always makes a ±π/2 turn so as not to
cross the open or dual open edge through this vertex, see Fig. 4.1. In the future, the
loop configuration associated toω is denoted byω.

We allow ourselves a slight abuse of notation: below, φ0
p,q ,Ω denotes the measure

on percolation configurations as well as the measure on loop configurations. Fix

x = x(p, q) :=
p

pq(1− p)
.
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38 Loop representation of the random-cluster model chap. 4 sec. 1

Figure 4.1. The configurations ω (in bold lines), ω∗ (in dashed lines) and ω (in

plain lines).

Let Ω be a connected finite subgraph of Z2 which complement is connected. Let
p ∈ (0,1) and q > 0. For any configurationω,

φ0
p,q ,Ω[ω] =

xo(ω)pq`(ω)

Z(Ω, p, q)
,

where `(ω) is the number of loops inω and Z(Ω, p, q) is a normalizing constant.

Proposition 4.1.

Proof. Note that

po(ω)(1− p)c(ω)qk(ω) = (1− p)|E(Ω)|
p

q |V (Ω)|
Å

p
(1− p)pq

ão(ω)p
q2k(ω)+o(ω)−|V (Ω)|

= (1− p)|E(Ω)|
p

q |V (Ω)|xo(ω)pq`(ω).

We used an induction on the number of open edges in order to show that

`(ω) = 2k(ω)+ o(ω)− |V (Ω)|

in the second line. The proof follows readily.

Remark 4.2. In particular, when p = pc (q), we obtain that x = 1 and the probability
of a loop configuration is expressed in terms of the number of loops only.

The loop representation of the random-cluster model is a well-known represen-
tation. It allows to map the free energies of the Potts and the random-cluster models
to the free energy of a solid-on-solid ice-type model. For completeness, we succinctly
present the mapping here and we refer to [Bax 89, Chapter 10] for more details on
the subject. We focus on the case of a domain Ω with free boundary conditions.
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chap. 4 sec. 1 Loop representation for free boundary conditions 39

Consider a configuration ~ω of arrows on edges of Ω� with the constraint that for
every vertex ofΩ�, the number of incoming arrows is equal to the number of outgoing
arrows. The set of possible configurations is denoted by A(Ω). The probability of ~ω
is given by

P[ ~ω] =
xN1( ~ω)

1 xN2( ~ω)
2 xN3( ~ω)

3 xN4( ~ω)
4 xN5( ~ω)

5 xN6( ~ω)
6 yÑ1( ~ω)

1 yÑ2( ~ω)
2

Z6V (x1, x2, x3, x4, x5, x6, y1, y2)
,

where x1, . . . , x6, y1, y2 > 0, and N1, . . . ,N6, Ñ1, Ñ2 correspond to the number of pat-
terns of types 1–6 and boundary patterns of types 1–2; see Fig. 4.2. This model is
called the Six Vertex model. Let

f6V(x1, . . . , x6) := lim
n→∞

1
|E(Λn)|

logZ6V(Λn , x1, . . . , x6, y1, y2).

We do not recall the dependency in y1 and y2 since it can easily be seen to disappear
in the limit n→∞.

Figure 4.2. Di�erent possible pa�erns for the six vertex model on the medial la�ice.

The two pa�erns on the right are boundary pa�erns.

1 2 3 4 5 6

1

2

Let G be a finite graph, we have

fPotts(βc , q) =
2βc

q − 1
− log q + 2 f6V(1,1,1,1,2cos(πσ̃), 2 cos(πσ̃))

where cos(2πσ̃) =pq/2.

Proposition 4.3 (Baxter [Bax 89]).

Proof. Introduce

ZRCM(Λn , p, q) :=
∑

ω∈{0,1}E(Λn )

po(ω)(1− p)c(ω)qk(ω),

Zloop(Λn , q) :=
∑

ω∈L(Λn )

p
q`(ω),

Z6V(Λn , x1, . . . , x6, y1, y2) :=
∑

~ω∈A(Λn )

xN1( ~ω)
1 · · · xN6( ~ω)

6 y Ñ1( ~ω)
1 y Ñ2( ~ω)

2 .

The correspondence given by Proposition 4.1 leads to

ZRCM(Ω, pc (q), q) = (1− pc )
|E(Ω)|pq |V (Ω)|Zloop(Ω, q). (4.1)

Each loop of the loop configuration ω can be oriented in two possible orientations.
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40 Loop representation of the random-cluster model chap. 4 sec. 2

Since the number of right turns minus the number of left turns of a loop is equal to ±4
depending on its orientation, one can use thatpq = eiσ̃2π+ e−iσ̃2π to show that

p
q`(ω) =

∑
~ω corresponding toω

exp
[
iσ̃ π

2 (# left turns in ~ω− # right turns in ~ω)
]
.

Above, ~ω corresponding to ω means that the former can be obtained from the latter by
putting and orientation and forgetting the way loops turn. We deduce that

Zloop(Λn , q) = Z6V(Λn , 1, 1,1,1,2cos(πσ̃), 2 cos(πσ̃), eiσ̃π/2, e−iσ̃π/2). (4.2)

Indeed, there is only one way to recover the way loops intersect for patterns of type 1–4
and for boundary patterns. For patterns of type 5–6, there are two ways to draw non-
intersecting loops, hence the weights corresponding to the two possibilities contributing
e−iσ̃π and eiσ̃π respectively. Equations (4.2), (4.1) and (3.1) lead to the result.

The main advantage of the six vertex model over the Potts model is that it is
exactly solvable. In other words, one may compute the free energy of the model via
transfer matrices and the so-called Bethe Ansatz (see [Bax 89] and references therein).
As a result, the free energy of the critical Potts model can be computed explicitly.
Note that this provides little information on the critical behavior of the Potts model
since thermodynamical quantities of the model are expressed in terms of derivatives
of the free energy and computing the free energy at one point only is not sufficient to
access these derivatives. However, Baxter [Bax 71,Bax 73,Bax 78,Bax 89] used this
correspondence together with additional unproved assumptions to state the following
conjecture.

Conjecture 4.4. Consider the Potts model on the square lattice. For q ¶ 4, the
phase transition is continuous, while for q > 4 it is discontinuous.

22 Discontinuous phase transition for q� 1

Let us present a proof of the following result.

For q > 38, the phase transition of the random-cluster model is discontinuous, in
the sense that properties P1–5 are not satisfied.

Theorem 4.5.

In [LMR 86, LMMS+ 91, KS 82], the Potts and random-cluster models were
proved to undergo a discontinuous phase transition at criticality when q ¾ 25.72
via a Pirogov-Sinai type argument. The proof that we present is inspired by these
arguments.

Proof. We show that P1 is not satisfied and then invoke Theorem 4.6 to show P2− 5
(one may in fact easily prove the properties directly). Let L be a loop of length n (on
the medial lattice) surrounding the origin. Fix a graph Ω containing L and its interior.
Choose a vector u (seen as a complex number) among 1+i

2 , 1−i
2 , −1−i

2 and −1+i
2 for which

L contains more than n/4 medial edges which are translates of −i u.



HDnormal — 2016/11/30 — page 49 — ©Spartacus 2016

La�
ice

spin
m

odels
B

ernoullipercolation
Po�

s
m

odel
R

andom
-cluster

m
odel

Ising
m

odel

chap. 4 sec. 2 Discontinuous phase transition for q� 1 41

We construct a map sL from the set AL of loop configurationsω on Ω containing L as a
loop to the set of loop configurations in three steps (see Figures 4.3–4.7):

Step 1 Remove the loop L.

Step 2 Translate the loops ofω which were surrounded by L by u.

Step 3 Fill the “holes” corresponding to faces of Ω� intersecting no loop with trivial
loops (they are exactly n/4 such holes).

The details of why sL(ω) is indeed a loop configuration are left to the reader. We have
that

φ0
pc ,q ,Ω[sL(ω)] =

p
q`(sL(ω))−`(ω)φ0

pc ,q ,Ω[ω]

=
p

qn/4−1φ0
pc ,q ,Ω[ω].

Since sL is one-to-one, we deduce that

φ0
pc ,q ,Ω[AL] =

∑
ω∈AL

φ0
pc ,q ,Ω[ω]

¶ q1/2−n/8
∑
ω∈AL

φ0
pc ,q ,Ω[sL(ω)]

¶ q1/2−n/8.

The proof follows by letting Ω tend to the full lattice and by noticing that there are less
than n · 4 · 3n−1 loops of length n surrounding the origin, and therefore as soon as q > 38,
Borel-Cantelli’s lemma implies that there are finitely many loops surrounding the origin
almost surely. This implies that there exists an infinite-cluster in the dual model almost
surely, which leads to φ1

pc ,q[0←→∞]> 0.

Figure 4.3. Consider a loop configuration ω containing the loop L (in bold). In

this case u = 1−i
2 .
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42 Loop representation of the random-cluster model chap. 4 sec. 2

Figure 4.4. (Step 1) Remove the loop L from ω.

Figure 4.5. (Step 2a) The loops of ω surrounded by L are depicted in bold.
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chap. 4 sec. 3 Continuous phase transition for q ¶ 4 43

Figure 4.6. (Step 2b) Translate the loops of ω surrounded by L in the south-east

direction
1−i

2 .

Figure 4.7. (Step 3) Fill the “holes” (depicted in darker blue) with trivial loops.

33 Continuous phase transition for q ¶ 4
The goal of this section is to show the following theorem.

Let 1¶ q ¶ 4, then
lim

n→∞

1
n

logφ0
pc ,q[0←→ ∂ Λn] = 0.

Theorem 4.6 (Duminil-Copin [DC 12]).
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44 Loop representation of the random-cluster model chap. 4 sec. 3

This theorem, combined with Theorem 3.11, shows that the phase transition is
continuous for random-cluster models with 1¶ q ¶ 4, and therefore for the Potts
models with 2, 3 or 4 colors.

In order to prove this result, we introduce a new tool, called the parafermionic
observable.

3.13.1 Definition of parafermionic observables

The edges of the medial lattice can be oriented in a counter-clockwise way around
faces centered on a vertex of Z2, see Fig. 1.1. Fix a Dobrushin domain (Ω,a, b )
(recall the definition from Section 1). As suggested by planar duality, we define the
Dobrushin boundary conditions by taking the edges (between endpoints) of ∂ba to
be open, and the dual-edges of ∂ ∗ab to be open inω∗ (see Fig. 4.8 for a definition of
∂ ∗ab ).

Define the medial graph Ω� of Ω as follows: the vertices are the vertices of (Z2)�
at the center of edges of Ω or Ω∗. Let ea and eb be the two medial edges separating
∂ab from ∂ ∗ba . Also set a� and b � to be the ending and starting points of ea and
eb respectively. One may define a loop configuration ω exactly as before, which
this times contains loops together with a self-avoiding path going from ea to eb , see
Figures 4.8–4.10. This curve is called the exploration path and is denoted by γ = γ (ω).
One may easily check that the probability of a loop configurationω is proportional
to xo(ω)pq`(ω).

Figure 4.8. The primal and dual Dobrushin domains associated to a medial

Dobrushin domain. Note the position of a and b and the definition of ∂ba and ∂ ∗ab .
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chap. 4 sec. 3 Continuous phase transition for q ¶ 4 45

Figure 4.9. The configuration ω with its dual configuration ω∗.

Figure 4.10. The loop configuration ω associated to the primal and dual config-

urations ω and ω∗ in the previous picture. The exploration path is drawn in bold,

starts at ea and finishes at eb . We also depicted a� and b �.

eb
b

ea

a

Remark 4.7. The loops correspond to the interfaces separating clusters from dual
clusters, and the exploration path corresponds to the interface between the vertices
connected inω to ∂ba and the dual vertices connected inω∗ to ∂ ∗ab .
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46 Loop representation of the random-cluster model chap. 4 sec. 3

We now wish to introduce a new object, called the parafermionic observable,
which will be instrumental in our proof. Before defining it properly, let us recall the
notion of winding of a curve on the medial lattice.

The winding WΓ (e , e ′) of a curve Γ (on the medial lattice) between two medial-
edges e and e ′ of the medial graph is the total signed rotation in radians that the
(now oriented) curve makes from the mid-point of the edge e to that of the edge e ′

(see Fig. 4.11). By convention, if Γ does not go through e ′, we set WΓ (e , e ′) = 0.

Definition 4.8.

The winding can be computed in a very simple way: it corresponds to
π

2
times

the number of
π

2
-turns on the left minus the number of

π

2
-turns on the right.

Consider a Dobrushin domain (Ω, a, b ). The (edge) parafermionic observable
F = F (p , q ,Ω, a, b ) is defined for any medial edge e ∈ E (Ω�) by

F (e) := φa,b
p ,q ,Ω[e

iσWγ (e ,eb )1e∈γ ],

where γ is the exploration path and σ is given by the relation

sin(σπ/2) =
p

q/2.

Definition 4.9 (Smirnov [Smi 10]).

Remark 4.10. Note that σ is real for q ¶ 4, and belongs to 1+ iR for q > 4. For
q ∈ [0,4], σ has the physical interpretation of a spin, which is fractional in general,
hence the name parafermionic (fermions have half-integer spins while bosons have
integer spins, there are no particles with fractional spin, but the use of such fractional
spins at a theoretical level has been very fruitful in physics).

For q > 4, σ is not real anymore and does not have any physical interpretation.
Also note that for q = 2, σ = 1/2 corresponds to the spin of a fermion. For this
reason, we speak of the fermionic observable in this special case.

Remark 4.11. Similar observables have been used to study other models such as Ising
(see below for references) and O(n)-models [Smi 06,DCS 12b,BBMDG+ 14,Gla 13].

3.23.2 Contour integrals of the parafermionic observable

The parafermionic observable satisfies a very specific property at criticality re-
garding contour integrals. Let (Ω, a, b ) be a Dobrushin domain. One may define a
dual (Ω�)∗ of Ω� in the following way: the vertex set of (Ω�)∗ is V (Ω)∪V (Ω∗) and
the edges of the dual connect nearest vertices together. We extend the definitions
available for other graphs to this context.
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A discrete contour C is a finite sequence z0 ∼ z1 ∼ · · · ∼ zn = z0 in (Ω�)∗ such
that the path (z0, . . . , zn) is edge-avoiding. The discrete contour integral of the
parafermionic observable F along C is defined by∮

C
F (z)dz :=

n−1∑
i=0

(zi+1− zi )F
(
{zi , zi+1}

∗) ,

where the zi are considered as complex numbers and {zi , zi+1}∗ denotes the edge
of Ω� intersecting {zi , zi+1} in its center.

Definition 4.12.

Let (Ω, a, b ) be a Dobrushin domain, q > 0 and p = pc . For any discrete contour
C of (Ω, a, b ), ∮

C
F (z)dz = 0.

Theorem 4.13 (Vanishing contour integrals).

Remark 4.14. The fact that discrete contour integrals vanish seems to correspond
to a well-known property of holomorphic functions. Nevertheless, one should be
slightly careful when drawing such a parallel: the observable is defined on edges, and
should rather be understood as the discretization of a form rather than a function.
As a form, the fact that these discrete contour integrals vanish should be interpreted
as the discretization of the property of being closed.

The following lemma will be important for the proof of Theorem 4.13.

Lemma 4.15. Let (Ω, a, b ) be a Dobrushin domain, p ∈ [0, 1] and q > 0. Consider
v ∈ V (G�) with four incident medial edges A, B , C and D indexed in counter-
clockwise order in such a way that A and C are pointing towards v (the two others
are pointing away). Then,

F (A)− F (C ) = ieiα[F (B)− F (D)], (4.3)

where α= α(p , q) ∈ [0,2π) is given by the relation eiα(p) :=
eiσπ/2+ ix(p)
eiσπ/2x(p) + i

.

Proof (of Theorem 4.13 using Lemma 4.15). When p = pc , α = 0 and the relation
(4.3) can be understood as the fact that the discrete contour integral along the small
lozenge surrounding v is zero. The theorem thus follows by summing the relation (4.3)
over vertices of Ω� enclosed by C (in other words faces of (Ω�)∗ surrounded by C ). We
use that C does not surround any boundary point of Ω�, which follows from the fact
that Ω� can be seen as a simply connected domain of R2. In particular, its complement is
a connected graph.

Proof (of Lemma 4.15). Assume that v ∈ V (Ω�) corresponds to a vertical edge of Ω.
The case of an horizontal edge can be treated in a similar fashion.

Let s be the involution (on the space of configurations) switching the state open or closed
of the edge inω passing through v. Let e be an edge of Ω� and let

eω := φa,b
p,q ,Ω[ω]e

iσWγ (ω)(e ,eb )1e∈γ (ω)
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48 Loop representation of the random-cluster model chap. 4 sec. 3

be the contribution of the configurationω to F (e). With this notation, F (e) =
∑

ω eω.
Since s is an involution, the following relation holds:

F (e) = 1
2

∑
ω

[
eω + es(ω)

]
.

To prove (4.3), it is thus sufficient to show that

Aω +As(ω)−Cω −Cs(ω) = ieiα(p)[Bω +Bs(ω)−Dω −Ds(ω)] (4.4)

for any configurationω.

Figure 4.11. Left. The neighborhood of v for two associated configurations ω
and s(ω). Right. Three examples for the winding: it is respectively equal to 2π, 0

and 0.

to eb

from ea

to eb

from ea

There are three possible cases:

Case 1. No edge incident to v belongs to γ (ω). Then, none of these edges is incident
to γ (s(ω)) either. For any e incident to v, eω and es(ω) equal 0 and (4.4) trivially
holds.

Case 2. Two edges incident to v belong to γ (ω), see Fig. 4.11. Since γ (ω) and the medial
lattice possess a natural orientation, γ (ω) enters through either A or C and leaves
through B or D . Assume that γ (ω) enters through the edge A and leaves through
the edge D (i.e. that the primal edge corresponding to v is open). It is then possible
to compute the contributions forω and s (ω) of all the edges adjacent to v in terms
of Aω. Indeed,

• Since s(ω) has one less open edge and one less loop, we find

φa,b
p,q ,Ω[s(ω)] =

1
Z

xo(s(ω))pq`(s(ω)) =
1
Z

xo(ω)−1pq`(ω)−1

=
1

xpq
φa,b

p,q ,Ω[ω].

• Windings of the curve at B , C and D can be expressed using the winding at A.
For instance, Wγ (ω)(B , eb ) =Wγ (ω)(A, eb )−π/2.

The other cases are treated similarly. The contributions are given in the following
table.

configuration A C B D
ω Aω 0 0 eiσπ/2Aω

s(ω) Aω
xpq eiσπ Aω

xpq e−iσπ/2 Aω
xpq eiσπ/2 Aω

xpq

Using the identity eiσπ/2− e−iσπ/2 = ipq , we deduce (4.4) by summing (with the
right weight) the contributions of all the edges incident to v.

Case 3. The four edges incident to v belong to γ (ω). Then only two of these edges
belong to γ (s (ω)) and the computation is similar to Case 2 with s (ω) instead ofω.

In conclusion, (4.4) is always satisfied and the claim is proved.
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3.33.3 Proof of Theorem 4.6

In this section, the lattices Z2, (Z2)∗ and (Z2)� are rotated by an angle of π/4 and
rescaled by a factor of 1/

p
2.

Figure 4.12. The domain Ω for n = 4. We also depicted eout(x) and ein(x) for a

vertex x on ∂2.

0
eout(x)ein(x)

x

Cluster-weight q between 1 and 2. We refer to Fig. 4.12. Consider the graph
Ω induced by vertices in [−n, n]× [−n, 0] and divide the boundary ∂ Ω into four
pieces:

∂0 := {0= (0,0)},
∂1 := [0, n− 1]×{0},
∂2 := [−(n− 1), 0]×{0},
∂3 := ∂ Ω \ ({0} ∪ ∂1 ∪ ∂2).

Note that every vertex x ∈ ∂ Ω is naturally associated to two medial edges bordering
the face associated to it, one pointing towards Ω� \ ∂ Ω�, and one pointing away from
it. We call them ein(x) and eout(x) respectively.

We look at the free boundary conditions and consider them as being Dobrushin
boundary conditions with a = b = 0. In such case, the exploration path γ (ω) is the
loop passing through ea = ein(0) and ending at eb = eout(0).

Consider C := ∂ Ω∪ ∂ Ω∗, Theorem 4.13 gives us

0=
∮
C

F (z)dz

= F (eout(0))+ F (ein(0))+
∑
x∈∂1

F (eout(x))+ F (ein(x))+
∑
x∈∂2

F (eout(x))+ F (ein(x))

+ i
∑
x∈∂3

eout(x)F (eout(x))+ ein(x)F (ein(x)).
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50 Loop representation of the random-cluster model chap. 4 sec. 3

Now, observe that 1= F (eout(0)) = e−iπσF (ein(0)) so that

F (eout(0))+ F (ein(0)) = 1+ e iπσ = 2cos(π2 σ)e
i
π
2 σ .

Furthermore, by gathering the contributions of x = (x1, 0) ∈ ∂1 with its symmetric
(−x1, 0) ∈ ∂2, and by noticing that the loop coming from 0 goes around x if and only
if 0 and x are connected, we find that∑

x∈∂1

F (eout(x))+ F (ein(x))+
∑
x∈∂2

F (eout(x))+ F (ein(x))

=
∑
x∈∂1

F (eout(x))+ F (ein(x))+ F (eout(−x))+ F (ein(−x))

=
∑
x∈∂1

(e2iπσ + e iπσ + 1+ e−iπσ )φ0
pc ,q ,Ω[0←→ x]

=
sin(2πσ)
sin(π2 σ)

e i
π
2 σ
∑
x∈∂1

φ0
pc ,q ,Ω[0←→ x].

Finally, ∣∣∣∑
x∈∂3

eout(x)F (eout(x))+ ein(x)F (ein(x))
∣∣∣¶ 2

∑
x∈∂3

φ0
pc ,q ,Ω[0←→ x]

¶ 2
∑

x∈∂ Λn

φ0
pc ,q[0←→ x].

In the second line, we used the comparison between boundary conditions and the
fact that ∂3 ⊂ ∂ Λn . For q ∈ [1,2], sin(2πσ)

sin(
π
2 σ)
¾ 0 and therefore we obtain∑

x∈∂ Λn

φ0
pc ,q[0←→ x]¾ cos(π2 σ)> 0.

Summing over n gives us ∑
x∈Z2

φ0
pc ,q[0←→ x] =∞,

which implies Theorem 4.6.

Cluster-weight q between 1 and 3. In the previous proof, it is very important
that the coefficients in front of φ0

pc ,q ,Ω[0←→ x] are negative for boundary vertices
x /∈ ∂ Λn . This property is no longer true for q ∈ (2,3]. Nevertheless, one may “open
the domain slightly more” by considering the slit domain Cn obtained by removing
from Λn the vertices of {(0, k) : 1¶ k ¶ n}. By considering C to be the boundary
of the medial graph, the coefficients in front of φ0

pc ,q ,Ω[0 ←→ x] are negative for
x /∈ ∂ Λn and q ¶ 3 and we may proceed as before.

Cluster-weight q between 1 and 4. The problem is that the previous geometry
works only for q ¶ 3. As soon as q > 3, problems arise from the fact that it is no
longer true that ∑

x∈∂ Λn

φ0
pc ,q ,Cn

[0←→ x]¾ cst.
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chap. 4 sec. 3 Continuous phase transition for q ¶ 4 51

(One can for instance use the conformal invariance prediction to guess that the term
on the left is tending to 0; see [DCST 15].) For this reason, one needs to “open the
domain” even more and consider the following non-planar domain U (see Fig. 4.13):
the vertices are given by Z3 and the edges by

• [(x1, x2, x3), (x1, x2+ 1, x3)] for every x1, x2, x3 ∈Z,
• [(x1, x2, x3), (x1+1, x2, x3)] for every x1, x2, x3 ∈Z such that x1 6= 0 or such that

x1 = 0 and x2 ¾ 0,
• [(0, x2, x3), (1, x2, x3+ 1)] for every x2 < 0 and x3 ∈Z.

This graph is the universal cover of Z2 \ F , where F is the face centered at (− 1
2 ,− 1

2 ).
It can also be seen as Z2 with a branching point at (− 1

2 ,− 1
2 ). All definitions of dual

and medial graphs extend to this context.
For n ¾ 1, define

Un :=
{
(x1, x2, x3) ∈U : |x1|, |x2|¶ n and |x3|¶ n5}.

The same reasoning as before can be performed in this geometry. The comparison
between boundary conditions does not work directly here and some work needs to be
done to derive an estimate on the plane. This proof is substantially more complicated
and we omit the details here.

Figure 4.13. The graph U.

A proof of pc (q) =
pq/(1+pq) based on the observable. Let us present

quickly a proof of pc (q) =
pq/(1+pq) for 1¶ q ¶ 2, which is solely based on the

observable F . Let us mention that a similar proof works for any q ¶ 3. For q > 4, a
proof based on the observable only can be found in [BDCS 12].

We already know by Zhang’s argument that pc (q)¾
pq/(1+pq) and we there-

fore focus on the other inequality.
First, observe that for an increasing event A and an edge e , the FKG inequality

implies that

IA(e) =φ
ξ
p,q ,G(A|ωe = 1)−φξp,q ,G(A|ωe = 0)

=
φξp,q ,G(ω

(e) ∈A,ωe = 1)

φξp,q ,G(ωe = 1)
−
φξp,q ,G(ω(e) ∈A,ωe = 0)

φξp,q ,G(ωe = 0)

¾φξp,q ,G(ω
(e) ∈A)−φξp,q ,G(ω(e) ∈A) =φξp,q ,G(e pivotal for A).

Therefore, (3.2) becomes

d
d p
φξp,q ,G(A)¾

∑
e∈E(G)

φξp,q ,G(e pivotal for A).
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52 Loop representation of the random-cluster model chap. 4 sec. 4

We will show the same differential inequality as in Lemma 2.7. We adopt the notation
of its proof. In particular, S = {z ∈Λn not connected to ∂ Λn}. Following the same
lines as in the proof of Lemma 2.7 (specifically until (2.6)), we find

d
d p
φξp,q ,Λn

(A)¾
∑
S30

∑
{x,y}∈∆S

φξp,q ,Λn
[0 S←→ x,S = S].

At this point, we cannot use independence of the percolation configuration inside
and outside of S. Nevertheless, the domain Markov property implies

d
d p
φξp,q ,Λn

(A)¾
∑
S30

( ∑
{x,y}∈∆S

φ0
p,q ,S[0

S←→ x]
)
φξp,q ,Λn

[S = S].

Define
ϕp,q (S) :=

∑
{x,y}∈∆S

φ0
p,q ,S[0

S←→ x].

Note that the definition is very similar to the definition for Bernoulli percolation,
except that we specify free boundary conditions on S (boundary conditions were
irrelevant for Bernoulli percolation).

If there exists c = c(q)> 0 such thatϕpq/(1+pq),q (S)¾ c for any finite set S 3 0, we
will be able to integrate the differential inequality to obtain that for p ¾pq/(1+pq),
φp,q[0←→∞] > 0, thus proving the result. Also note that we may restrict our
attention to S with connected complement, since otherwise the probability ofS = S
would be zero. We therefore focus on the following lemma.
Lemma 4.16. Let 1¶ q ¶ 2. There exists c = c(q)> 0 such that for any S 3 0 finite
and with connected complement,

ϕpq/(1+pq),q (S)¾ c .

Proof. We cannot use the same argument as for percolation because of the dependence
on free boundary conditions. We therefore invoke the parafermionic observable. Let
S be a finite set with connected complement. Let S ′ be the connected component of S
containing 0. Apply the same reasoning as in the proof of Theorem 4.6 with the domain
Ω= S ′ ∩ [−n, n]× [0, n] instead of [−n, n]× [−n, 0]. We deduce that

ϕpq/(1+pq),q (S)¾
∑

x∈∂ Ω∩∂ Λn

φpq/(1+pq),q ,Ω[0↔ x]¾ cos(π2 σ).

44 Conformal invariance for the random-cluster

model with q = 2

In this section, we wish to prove that the critical random-cluster model with q = 2
is conformally invariant. The section is organized as follows. In the next section, we
introduce a few notations. Then, we state Smirnov’s theorem yielding conformal
invariance of the parafermionic observable (which in this case is called fermionic
observable). The next three sections are devoted to the proof of this theorem. The first
of these sections introduces the notion of s -holomorphicity, the next one rephrases
Smirnov’s theorem into another theorem, which is proved in the last of these three
sections. Finally, the last section presents a few applications of this theorem, in
particular the conformal invariance of interfaces in the model.
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4.14.1 Notation

Consider a simply connected domain Ω with two marked points a and b on its
boundary. We will be interested in finer and finer graphs approximating continuous
domains. For δ > 0, we consider the rescaled square lattice δZ2. The definitions of
dual and medial Dobrushin domains (see previous sections) extend to this context.
Note that the medial lattice (δZ2)� has mesh-size δ/

p
2. Generically, Dobrushin

domains on δZ2, (δZ2)? and (δZ2)� will be denoted by (Ωδ ,aδ , bδ), (Ω
?
δ ,a?δ , b ?δ)

and (Ω�δ ,a�δ , b �δ ).

Since we wish to speak of Dobrushin domains approximating a continuous
domain with marked points on its boundary, we need to quantify how close a discrete
graph is to its continuum counterpart. To this end, we introduce the notion of
Carathéodory convergence. Consider a Dobrushin domain (Ω�δ ,a�δ , b �δ) as a simply
connected domain by taking the union of its faces. Let H= {z ∈C : Im(z)> 0} be
the upper half-plane.

Let (Ω,a, b ) be a simply connected domain with two marked points on its boundary.
Consider a sequence of Dobrushin domains (Ω�δ ,a�δ , b �δ). We say that (Ω�δ ,a�δ , b �δ)
converges to (Ω,a, b ) in the Carathéodory sense if

fδ −→ f on any compact subset K ⊂H,

where fδ (resp. f ) is the unique conformal map from H to Ω�δ (resp. Ω) satis-
fying fδ(0) = a�δ , fδ(∞) = b �δ and f ′δ(∞) = 1 (resp. f (0) = a, f (∞) = b and
f ′(∞) = 1).

Definition 4.17.

Remark 4.18. Let us mention that this notion of convergence coincides with the
Haussdorff convergence in the case of smooth domains. Therefore, one may simply
think of the Carathéodory convergence as being a very natural notion of convergence
and not bother with details, for sufficiently smooth domains, take as a possible
example of a converging sequence the family (Ωδ ,aδ , bδ )where Ωδ =Ω∩ (δZ2) and
aδ and bδ are the closest vertices of Ωδ to a and b .

We will also be considering sequences of functions on V (Ωδ) for δ going to 0
and we wish to speak of uniform convergence on every compact subset of Ω. In
order to do this, we implicitly perform the following operation: for a function f on
Ωδ , choose a diagonal for every (square) face and extend the function to the faces
of Ωδ in a piecewise linear way on the two triangles made of the diagonal and two
edges. Since no confusion will be possible, the extension will be denoted by f as well.
Constructed like that, the function is not necessarily defined on all of Ω (since the
union of faces of Ωδ may be different from Ω). Nevertheless, we will restrict our
attention to sequences of domains Ωδ tending to Ω in the Carathéodory sense: in
such case fδ is defined on any compact subset of Ω provided that δ is small enough
(how small δ must be depends on the compact subset). The same procedure will also
be applied to functions defined on V (Ω?δ ) and V (Ω�δ ).
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54 Loop representation of the random-cluster model chap. 4 sec. 4

4.24.2 Smirnov’s theorem

We are now in a position to state Smirnov’s theorem. For (Ω�δ ,a�δ , b �δ ), define the
normalized vertex fermionic observable (at criticality) by

fδ (v)= fδ (Ω
�
δ ,a�δ , b �δ , pc , 2, v) :=

1√
2eb


1
2

∑
u∼v

Fδ ({u, v}) if v ∈Ω�δ \ ∂ Ω
�
δ ,

2
2+
p

2

∑
u∼v

Fδ ({u, v}) if v ∈ ∂ Ω�δ ,

where Fδ is the edge fermionic observable defined in Definition 4.9, and eb is seen as
a complex number.

Fix q = 2 and p = pc (2) =
p

2/(1+
p

2). Let (Ω,a, b ) be a simply connected
domain with two marked points on its boundary. Let (Ω�δ ,a�δ , b �δ ) be a family of
Dobrushin domains converging to (Ω,a, b ) in the Carathéodory sense. Let fδ be
the normalized vertex fermionic observable at criticality in (Ω�δ ,a�δ , b �δ ). We have

fδ (·) →
»
φ′(·) when δ→ 0

uniformly on any compact subset of Ω, where φ is any conformal map from Ω to
the strip R× (0,1)mapping a to −∞ and b to∞.

Theorem 4.19 (Smirnov [Smi 10]).

Remark 4.20. Observe that Im(φ) is the harmonic solution of the Dirichlet bound-
ary value problem on Ω with boundary conditions 0 on the boundary arc from a
to b , and 1 from b to a. As a consequence,

√
φ′ is the holomorphic solution of a

Riemann-Hilbert boundary value problem on Ω.

4.34.3 Notion of s -holomorphicity

We introduce the notion of s-holomorphic functions, which was developed
in [Smi 10, CS 11, CS 12]. The interest of this definition lies in the fact that s -
holomorphic solutions of discretizations of certain Riemann-Hilbert boundary value
problems converge to their continuous counterparts. This observation is at the heart
of the proof of Theorem 4.19, which we provide in the next section.

Consider each edge e of the medial lattice as being oriented via the natural orien-
tation of the medial lattice mentioned earlier. Like this, each edge can be thought of
as a complex number. The real line passing through the origin and

p
ē is denoted by

`(e) (the choice of the square root is irrelevant since we will be looking at projections
on lines only). The different lines associated with medial edges on (δZ2)� are eiπ/8R,
e−iπ/8R, e−i3π/8R and e−i5π/8R, see Fig. 4.14. For a line `, define

P`(x) = αRe(αx) = 1
2

(
x +α2x

)
,

where α is any unit vector collinear to `.
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A function f :Ω�δ →C is s -holomorphic if for any edge e = {u, v} of Ω�δ , we have

P`(e)[ f (u)] = P`(e)[ f (v)].

Definition 4.21 (Smirnov).

The notion of s -holomorphicity is stronger than the more classical notion of
discrete holomorphic function. Let us briefly discuss this fact before manipulating
s -holomorphic functions in more details.

Discrete holomorphic functions distinctively appeared for the first time in the
papers [Isa 41, Isa 52] of Isaacs, where he proposed two definitions(1). Both definitions
ask for a discrete version of the Cauchy-Riemann equations ∂iαF = i∂αF or equiva-
lently that the z̄ -derivative is 0. The definition involves the following discretization of
the ∂̄ = 1

2 (∂x+i∂y ) operator. For convenience, we will consider discrete holomorphic
functions on the medial lattice.

For a complex valued function f on V (Ω�δ ), and for x ∈Ωδ ∪Ω?δ , define

∂̄δ f (x) = 1
2 [ f (E)− f (W )] + i

2 [ f (N )− f (S)]

where S , E , N and W denote the four vertices of Ω�δ adjacent to the medial vertex x
indexed in the obvious way (N , E , S and W stand for cardinal directions). A function
f : Ω�δ → C is called discrete holomorphic if ∂̄δ f (x) = 0 for every x ∈ Ωδ ∪Ω?δ .
The equation ∂̄δ f (x) = 0 is called the discrete Cauchy-Riemann equation at x.

Any s -holomorphic function f :Ω�δ →C is discrete holomorphic on Ω�δ .

Proposition 4.22.

Proof. Let f :Ω�δ →C be a s -holomorphic function. Let v be a vertex of δZ2 ∪ (δZ2)?
corresponding to a face of Ω�δ . Assume that v ∈ δZ2, the case v ∈ (δZ2)? works similarly.
We wish to show that ∂̄δ f (v) = 0. Let N , W , S and E be the four medial-vertices around
v as illustrated in Fig. 4.14, and let us write one relation provided by the s -holomorphicity,
for instance

P e−iπ/8R[ f (E)] = P e−iπ/8R[ f (S)].
Expressed in terms of f and its complex conjugate f̄ only, the previous equality becomes

f (E)+ e−iπ/4 f (E) = f (S)+ e−iπ/4 f (S).

Doing the same with the three other relations, we find

f (S)+ ie−iπ/4 f (S) = f (W )+ ie−iπ/4 f (W ),
f (W )− e−iπ/4 f (W ) = f (N )− e−iπ/4 f (N ),
f (N )− ie−iπ/4 f (N ) = f (E)− ie−iπ/4 f (E).

Multiplying the second identity by−i, the third by−1, the fourth by i, and then
summing the four identities, we obtain

0= (1− i) [ f (E)− f (W )+ i f (N )− i f (S)] = 2(1− i)∂̄δ f (v)

which is exactly the discrete Cauchy-Riemann equation around v.
Let us now check that the normalized vertex fermionic observable fδ is s -

holomorphic.

(1)Isaacs called such functions “mono-diffric” functions.
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56 Loop representation of the random-cluster model chap. 4 sec. 4

Fix (Ω�δ ,a�δ , b �δ ). The function fδ is s -holomorphic.

Proposition 4.23.

We start by two lemmata.
Lemma 4.24. For an edge e ∈Ω�δ , Fδ (e) belongs topeb`(e).

Proof. The winding Wγ (ω)(e , eb ) at an edge e can only take its value in the set W + 2πZ
where W is the winding at e of an arbitrary oriented path going from e to eb . Therefore,
the winding weight eiWγ (ω)(e ,eb )/2 involved in the definition of Fδ (e) is always equal to eiW /2

or −eiW /2, ergo Fδ (e) is proportional to eiW /2. Since eiW /2 belongs topeb`(e) for any e ,
so does Fδ (e).

Lemma 4.25. Let (Ωδ ,aδ , bδ ) be a Dobrushin domain, p ∈ [0,1] and q > 0.

• For x ∈ ∂ab and e ∈ ∂ �ab bordering x,

Fδ (e) = exp[i 1
2W∂ �

ab
(e , eb )] ·φ

aδ ,bδ
p,q ,Ωδ

[x←→ ∂ba].

• For u ∈ ∂ ?ba and e ∈ ∂ �ba bordering u,

Fδ (e) = exp[i 1
2W∂ �

ba
(e , eb )] ·φ

aδ ,bδ
p,q ,Ωδ

[u ?←→ ∂ ?ab ].

Proof. We prove the result for x ∈ ∂ab . The proof for u ∈ ∂ ?ba follows the same lines.
Since γ (ω) is the interface between the open cluster connected to ∂ba and the dual open
cluster connected to ∂ ?ab , x is connected to ∂ba if and only if e is on the exploration path.
Therefore,

φaδ ,bδ
p,q ,Ωδ

[x←→ ∂ba] =φ
aδ ,bδ
p,q ,Ωδ

[e ∈ γ ].
The edge e being on the boundary, the winding of the curve is deterministic and equal to
W∂ �

ab
(e , eb ), thus we find

F (e) =φaδ ,bδ
p,q ,Ωδ

[e
i
1
2 W∂ �

ab
(e ,eb )1e∈γ ]

= e
i
1
2 W∂ �

ab
(e ,eb )φaδ ,bδ

p,q ,Ωδ
[e ∈ γ ]

= e
i
1
2 W∂ �

ab
(e ,eb )φaδ ,bδ

p,q ,Ωδ
[x←→ ∂ba].

Proof (of Proposition 4.23). Consider a medial vertex v ∈Ω�δ \∂ Ω
�
δ first. Four medial

vertices are adjacent to v . We index them by NW , N E , SE and SW (the notation refers
to cardinal directions). Write σ = 1/2= 1−σ . When rewriting (4.3) of Lemma 4.15 by
setting 1/2= 1−σ , we find

Fδ (NW )+ Fδ (SE) = Fδ (N E)+ Fδ (SW )

and therefore

Fδ (NW )+ Fδ (SE) = Fδ (N E)+ Fδ (SW ).

The previous equation and the definition of the normalized vertex fermionic observable
imply√

2eb fδ (v) :=
1
2

∑
u∼v

Fδ ({u, v}) = Fδ (NW )+ Fδ (SE) = Fδ (N E)+ Fδ (SW ).
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Using Lemma 4.24, Fδ (NW )/
√

2eb and Fδ (SE)/
√

2eb belong to `(NW ) and `(SE)
(they are in particular orthogonal to each other), so that Fδ (NW )/

√
2eb is the projec-

tion of fδ (v) on `(NW ) (and similarly for other edges). Therefore, for a medial edge
e = {u, v}, Fδ (e)/

√
2eb is the projection of fδ (u) and fδ (v) with respect to `(e). A

direct consequence is that the two projections are equal, i.e. that the normalized vertex
fermionic observable is s -holomorphic at v.

Let us now treat the case of v ∈ ∂ Ω�δ . We assume without loss of generality that v ∈ ∂ �ab
and we set x to be the primal-vertex bordered by v . Let e and e ′ be the two medial edges
of Ω�δ incident to v. Lemma 4.25 implies that

1p
2eb

Fδ (e) =
1p
2eb

exp
[ i

2 W∂ �
ab
(e , eb )

]
·φaδ ,bδ

pc ,2,Ωδ
[e ∈ γ ],

1p
2eb

Fδ (e
′) = 1p

2eb
exp
[ i

2 W∂ �
ab
(e ′, eb )

]
·φaδ ,bδ

pc ,2,Ωδ
[e ∈ γ ].

We deduce that

P`(e)( fδ (v)) =
2

2+
p

2

î
P`(e)(Fδ (e)/

√
2eb )+ P`(e)(Fδ (e

′)/
√

2eb )
ó

=
2

2+
p

2

î
Fδ (e)/

√
2eb + cos(π4 )Fδ (e)/

√
2eb

ó
= Fδ (e)/

√
2eb .

(The normalization 2
2+
p

2
was introduced in order to have this property.) If e = {u, v},

we deduce that
P`(e)( fδ (u)) = Fδ (e)/

√
2eb = P`(e)( fδ (v)),

where in the second equality we have used the fact that u belongs to Ω�δ \ ∂ Ω
�
δ (and we

can therefore apply what we proved previously). A similar statement can be proved for
e ′, and we deduce that fδ is s -holomorphic at v, thus concluding the proof.

4.44.4 Discrete primitive of the square of fδ
Since fδ is predicted to converge to

√
φ′, and since Im(φ) is the harmonic solution

of the Dirichlet boundary value problem with boundary conditions 1 on ∂ba and 0
on ∂ab , it is natural to consider the discrete analog Hδ of Im(

∫ z f 2
δ ) defined below.

There exists a unique function Hδ :Ωδ ∪Ω∗δ →C such that Hδ (bδ ) = 1 and

Hδ (b )−Hδ (w) =
p

2δ
∣∣P`(e)[ fδ (x)]∣∣2 Ä= p2δ

∣∣P`(e)[ fδ (y)]∣∣2 ä
for every edge e = {x, y} of Ω�δ bordered by b ∈ Ωδ and w ∈ Ω∗δ . Furthermore,
for two neighboring vertices b1, b2 ∈ Ωδ , with v being the medial vertex at the
center of {b1, b2},

Hδ (b1)−Hδ (b2) = Im
[

fδ (v)
2 · (b1− b2)

]
, (4.6)

the same relation holding for vertices of Ω∗δ .

Theorem 4.26.

Remark 4.27. The last relation legitimizes the fact that Hδ can be thought of as a
discrete analogue of Im

(∫ z f 2
δ

)
.
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Proof. The uniqueness of Hδ is straightforward since Ω�δ is connected: the value of Hδ

at x ∈Ωδ ∪Ω∗δ is simply the sum of increments along an arbitrary path from b0 to x.

To obtain the existence, construct the value at some point by summing increments
along an arbitrary path from b0 to this point. The only thing to check is that the first
displayed equation in the previous theorem is satisfied for the other edges. Equivalently,
it is sufficient to check that the sum of increments does not depend on the path chosen
between two points. Since the domain is the union of all the faces of (δZ2)� within it, it
is sufficient to check it for elementary “square” contours around each medial vertex v
(these are the simplest closed contours). Therefore, we need to prove that∣∣P`(ne)[ fδ (v)]

∣∣2− ∣∣P`(s e)[ fδ (v)]
∣∣2+ ∣∣P`(s w)[ fδ (v)]

∣∣2− ∣∣P`(nw)[ fδ (v)]
∣∣2 = 0, (4.7)

where nw, ne , s e and s w are the four medial edges with end-point v , indexed once again
according to cardinal directions. Note that `(ne) and `(s w) (resp. `(s e) and `(nw)) are
orthogonal. Hence, (4.7) follows from∣∣P`(ne)[ fδ (v)]

∣∣2+ ∣∣P`(s w)[ fδ (v)]
∣∣2 = | fδ (v)|2 = ∣∣P`(s e)[ fδ (v)]

∣∣2+ ∣∣P`(nw)[ fδ (v)]
∣∣2.

Let us now turn to (4.6). Let b1 ∼ b2 be two neighboring vertices of Ωδ and v the medial-
vertex associated to {b1, b2}. Let w be one of the dual-vertices in Ω∗δ adjacent to both b1
and b2 (there may be only one of them in Ω∗δ if b1 and b2 are on the boundary). Let e1
and e2 be the two medial edges bordered by b1 and w, and b2 and w respectively. We find

Hδ (b1)−Hδ (b2) =
p

2δ
î∣∣P`(e1)

[ fδ (v)]
∣∣2− ∣∣P`(e2)

[ fδ (v)]
∣∣2ó

=
1
2

î(p
e1 fδ (v)+

p
e1 fδ (v)

)2−
(p

e2 fδ (v)+
p

e2 fδ (v)
)2
ó

=
1
2

î
e1 fδ (v)

2+ e1 fδ (v)2+ | fδ (v)|
2− e2 fδ (v)

2− e2 fδ (v)2− | fδ (v)|
2
ó

=
1
2

î
(e1− e2) fδ (v)

2+(e1− e2) fδ (v)2
ó

=
1
2i

î
(b1− b2) fδ (v)

2− (b1− b2) fδ (v)2
ó
= Im[ fδ (v)

2 · (b1− b2)].

In the second equality, we used the fact that δp
2
= |e1| and δp

2
= |e2|.

Figure 4.14. The di�erent directions of the lines `(e) for medial edges around a

black face.

e−3iπ
8

e−iπ
8ei

π
8

e−5iπ
8

N

E

S

W B

We wish to prove the following convergence result.
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Fix q = 2 and p = pc (2) =
p

2/(1+
p

2). Let (Ω,a, b ) be a simply connected
domain with two marked points on its boundary. Let (Ω�δ ,a�δ , b �δ ) be a family of
Dobrushin domains converging to (Ω,a, b ) in the Carathéodory sense. Let Hδ be
defined as before on (Ω�δ ,a�δ , b �δ ). We have

Hδ (·) → Im(φ) when δ→ 0

uniformly on any compact subset of Ω, where φ is any conformal map from Ω to
the strip R× (0,1)mapping a to −∞ and b to∞.

Theorem 4.28 (Smirnov [Smi 10]).

As mentioned before, Im(φ) is the solution of the Dirichlet Boundary Value
Problem with 0 boundary conditions on ∂ab and 1 on ∂ba . Indeed, fix a solu-
tion H of this BVP. The function H ◦ φ−1 is solution of the Dirichlet problem
on R× (0,1) with boundary condition 1 on the top and 0 on the bottom. Therefore,
(H ◦φ−1)(z) = Im(z) which leads to H (z ′) = Im(φ(z ′)) for any z ′ ∈Ω.

The natural strategy to prove Theorem 4.28 would be to prove that Hδ is the
discrete solution of a discrete version of this Dirichlet Boundary Value Problem. The
problem is that even if the primitive of an holomorphic map is holomorphic and
thus harmonic, this is not the case of the primitive of the square of a s -holomorphic
map. Nonetheless, Hδ satisfies subharmonic and superharmonic properties, which
would ultimately be sufficient for our purpose. More precisely, denote by H •δ and
H ◦δ the restrictions of Hδ : Ωδ ∪Ω∗δ → C to Ωδ (black faces) and Ω∗δ (white faces)
respectively. Let∆• and∆◦ be the nearest-neighbor discrete Laplacian for functions
on Ωδ and Ω∗δ respectively.

If fδ :Ω�δ →C is s -holomorphic, then H •δ and H ◦δ are respectively subharmonic
for∆• on Ωδ \ ∂ Ωδ and superharmonic for∆◦ on Ω∗δ \ ∂ Ω

∗
δ .

Proposition 4.29.

Proof. Let us focus on H •
δ (the proof for H ◦

δ follows the same lines). Let B be a vertex
of Ωδ \ ∂ Ωδ . Let N , E , S and W be the four medial-vertices adjacent to B (once again
the letters refer to cardinal directions). Also set

a = ei
π
8 P`([ES])[ fδ (E)] = ei

π
8 P`([ES])[ fδ (S)],

b = e−i
π
8 P`([SW ])[ fδ (S)] = e−i

π
8 P`([SW ])[ fδ (W )],

c = e5i
π
8 P`([W N ])[ fδ (W )] = e5i

π
8 P`([W N ])[ fδ (N )],

d = e3i
π
8 P`([N E])[ fδ (N )] = e3i

π
8 P`([N E])[ fδ (E)].

Note that a, b , c and d are real. With these definitions, we may rewrite fδ (N ), fδ (E),
fδ (S) and fδ (W ) as follows:

fδ (E) =
p

2i(e−3iπ/8d + e−iπ/8a),

fδ (S) =
p

2i(e3iπ/8a− e5iπ/8 b ),

fδ (W ) =
p

2i(eiπ/8 b − e3iπ/8c),

fδ (N ) =
p

2i(e−iπ/8c − eiπ/8d ).



HDnormal — 2016/11/30 — page 68 — ©Spartacus 2016

La
�

ic
e

sp
in

m
od

el
s

B
er

no
ul

li
pe

rc
ol

at
io

n
Po

�
s

m
od

el
R

an
do

m
-c

lu
st

er
m

od
el

Is
in

g
m

od
el
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By definition of∆• and (4.6), we find

∆•H •
δ (B) =

δ

4
Im
[

fδ (E)
2− i fδ (S)

2− fδ (W )
2+ i fδ (N )

2
]

=−δ
2

Im
[
(e−3iπ/8d + e−iπ/8a)2+ i(e3iπ/8a− e5iπ/8 b )2

− (eiπ/8 b − e3iπ/8c)2− i(e−iπ/8c − eiπ/8d )2
]

= δ
[
a2+ b 2+ c2+ d 2−

p
2(ab + b c + cd − ad )

]
On the other hand, let us compute

| fδ (E)− fδ (S)|
2+ | fδ (W )− fδ (N )|

2 = 2|e−3iπ/8d + e−iπ/8a− e3iπ/8a+ e5iπ/8 b |2

+ 2|eiπ/8 b − e3iπ/8c − e−iπ/8c + eiπ/8d |2

= 2(d +
p

2a− b )2+ 2(b −
p

2c + d )2

= 4(a2+ b 2+ c2+ d 2)− 4
p

2(ab + b c + cd − ad ).

In conclusion,

4∆•H •
δ (B) = δ| fδ (E)− fδ (S)|

2+δ| fδ (W )− fδ (N )|
2 ¾ 0

and the claim follows.

Let us now study the boundary values of H .
Lemma 4.30. The function Hδ equals 0 on ∂ ∗ab and 1 on ∂ba .

Proof. We first prove that H •
δ is constant on ∂ba . Let B and B ′ be two adjacent consecutive

sites of ∂ba , and x the medial-edge in the middle of the edge {B ,B ′}. Note that x is on the
boundary of ∂ Ω�δ . The argument of fδ (x) can be obtained easily from Lemma 4.25. In
particular, (4.6) implies that H •

δ (B) =H •
δ (B

′). Hence, H •
δ is constant along the arc. Since

H •
δ (bδ ) = 1, the result follows readily.

Similarly, H ◦
δ is constant on the arc ∂ ∗ab . Moreover, the dual white face b ∗δ ∈ ∂

∗
ab bordering

bδ (see Fig. 4.8) satisfies

H ◦
δ (b

∗
δ ) = H •

δ (bδ )−
p

2δ|P`(eb )
[ f (bδ )]|

2 = 1− 1 = 0.

In the second equality, we used the normalization hypothesis (recall that |eb |= δ/
p

2)
and the fact that

P`(eb )
[ f (bδ )] =

1√
2eb

Fδ (eb ) =
1√
2eb

.

Therefore H ◦
δ = 0 on ∂ ∗ab .

Lemma 4.31. For any r > 0 and ε > 0, there exists δ0 = δ0(r,ε)> 0 such that for
any δ ¶ δ0, |Hδ(x)− 1|¶ ε (resp. |H (x)−δ|¶ ε) for any x ∈ ∂ab (resp. x ∈ ∂ ∗ba)
at distance larger than r from a and b .

Proof. Observe that for any v ∈Ωδ and e ∈ E(Ωδ ) incident to v,

|
√

2eb P`(e)[ fδ (v)]|= |Fδ (e)|¶φ
aδ ,bδ
pc ,2,Ωδ

[e ∈ γ ].

Let us assume for a moment that e is on the free arc ∂ab . For e to be in γ , there must
be an open path going from the vertex x ∈ Ωδ bordered by e , going to distance r . Let
Bδ (x, r ) := δZ2 ∩ (x +[−r, r ]2). Therefore,

φaδ ,bδ
pc ,2,Ωδ

[e ∈ γ ]¶φaδ ,bδ
pc ,2,Ωδ

[x←→ ∂ Bδ (x, r )]

¶φ1
pc ,2,Bδ (x,r )[x←→ ∂ Bδ (x, r )]

=φ1
pc ,2,Λr/δ

[0←→ ∂ Λr/δ].
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chap. 4 sec. 4 Conformal invariance for the random-cluster model with q = 2 61

In the last line, we consider the measure on Z2 again. We used the comparison between
boundary conditions in the second line. The result follows from φ1

pc ,2,Λr/δ
[0←→ ∂ Λr/δ]

tends to 0 (by Theorem 4.6 and Corollary 3.13), as well as from the fact that |eb |=δ/
p

2.

Proof (of Theorem 4.28). Recall that here convergence means uniform convergence
on every compact subset of Ω. Since H •

δ is sub-harmonic for ∆•, it is smaller than the
∆•-harmonic function “H •

δ with the same boundary conditions. Since H •
δ converges to

the solution Im(φ) of the continuum Dirichlet BVP with boundary condition 0 on ∂ab
and 1 on ∂ba , we therefore deduce that

limsup
δ→0

H •
δ ¶ Im(φ).

Now, H ◦
δ is super-harmonic for∆◦, it is thus larger than the∆◦-harmonic function “H ◦

δ

with the same boundary conditions. In particular, “H ◦
δ converges to Im(φ), and therefore

liminf
δ→0

H ◦
δ ¾ Im(φ).

But by construction, H ◦
δ(W ) is smaller than H •

δ(B) for any neighbor B of W . Therefore,

Im(φ)¶ liminf
δ→0

H ◦
δ ¶ liminf

δ→0
H •
δ ¶ Im(φ)

and the same holds true for the limsup. Therefore, both H •
δ and H ◦

δ converge to Im(φ).

4.54.5 From Theorem 4.28 to Theorem 4.19

Proof (of Theorem 4.19). Below, Q denotes a square, and 9Q denotes the square of
same center, but 9 times bigger. Let Q ⊂Ω such that 9Q ⊂Ω (recall the definition of 9Q
from Theorem 4.32). Since Hδ converges uniformly to the continuous function Im(φ),
the family Hδ is bounded uniformly in δ > 0. Theorem 4.32 below thus implies that
( fδ)δ>0 is a precompact family of functions on Q.

Let ( fδn
)n∈N be a convergent subsequence and denote its limit by f . For two points x and

y in Ω, we have:

Hδn
(yδn
)−Hδn

(xδn
) = Im

Ç∫ yδn

xδn

f 2
δn
(z)dz

å
where xδn

and yδn
denote the closest points to x and y in Ωδn

. On the one hand, the
convergence of ( fδn

)n∈N being uniform on any compact subset of Ω, the right hand
side converges to Im

(∫ y
x

f (z)2 dz
)
. On the other hand, the left hand side converges to

Im(φ(y)−φ(x)).
Recall that s -holomorphic functions are discrete holomorphic by Proposition 4.22.
Hence, f is holomorphic as limit of the discrete holomorphic functions ( fδn

)n∈N (we
leave this easy property of discrete holomorphic functions as an exercise for the reader).
Since both Im(φ(y)−φ(x)) and Im

(∫ y
x

f (z)2 dz
)

are harmonic functions of y, there
exists C ∈R such that φ(y)−φ(x) =C +

∫ y
x

f (z)2 dz for every x, y ∈Ω. We deduce that

f equals
√
φ′. Since this is true for any convergent subsequence, we find that fδ tends to√

φ′.

The proof of Theorem 4.19 is now complete subject to the proof of the following
theorem, that we sketch here (we refer to [DC 13] for details).
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62 Loop representation of the random-cluster model chap. 4 sec. 4

Let Q ⊂Ω such that 9Q ⊂Ω. Let ( fδ )δ>0 be a family of s -holomorphic maps on
Ω�δ and (Hδ)δ>0 be the corresponding functions defined in the previous section.
If (Hδ )δ>0 is uniformly bounded on 9Q, then ( fδ )δ>0 is a precompact family of
functions on Q.

Theorem 4.32 (Precompactness for s-holomorphic functions).

Proof (sketch). Color the vertices of (δZ2)� in black and white in a chessboard way
(medial vertices corresponding to vertical primal edges are all colored the same, and the
same for horizontal edges). The sets of black and white vertices are denoted by (δZ2)�•
and (δZ2)�◦ respectively.

Since fδ is s -holomorphic, it is also holomorphic and therefore discrete harmonic for the
standard Laplacian on (δZ2)�•, i.e. that

∆δ fδ (x) :=
1
4

∑
y∼x

[
fδ (y)− fδ (x)

]
= 0

for any x ∈ (Ωδ )�•, where ∼ means that y and x are nearest neighbors in (Ωδ )
�
•. Let us

denote the restriction of fδ to (Ωδ )
�
• by f •δ .

In such case, there exists C =C (Q)> 0 such that for any two neighboring vertices x and
y in Q ∩δZ2,

| f •δ (x)− f •δ (y)|¶Cδ sup{| f •δ (z)| : z ∈Ωδ}. (4.10)

(We leave this classical inequality as an exercise(2).) Imagine for a moment that the family
of functions ( f •δ ) satisfies the following property: there exists C > 0 such that for any
δ > 0,

δ2
∑

v∈Q�
δ

∣∣ f •δ (v)∣∣2 ¶C . (4.11)

Then, the equation

f •δ (x) =
∑

y∈∂ 9Q�
δ

f •δ (y)H9Q�
δ
(x, y),

where H9Q�
δ
(·, ·) is the harmonic measure on 9Q�δ , implies that fδ is bounded on Q�δ . If

fδ is bounded on Q�δ , Equation (4.10) combined with Ascoli’s theorem imply that the
family ( f •δ )δ>0 is precompact for the uniform topology on compact subsets of Ω.

Let us now use the s -holomorphicity to deduce that ( fδ )δ>0 itself is precompact. Let
x ∈ Ω�δ ∩ (δZ

2)�◦. Denote the north-east and south-west neighboring vertices of x in
(δZ2)�• by y and z. The s -holomorphicity shows that

fδ (x) = P`(xy)( fδ (x))+ P`(x z)( fδ (x))

= P`(xy)( fδ (y))+ P`(x z)( fδ (z))

= fδ (y)+O
(
| fδ (z)− fδ (y)|

)
, (4.13)

where we used the fact that `(xy) and `(x z) are orthogonal to each others. The previous
paragraph implies that we may extract a sub-sequence ( f •δn

)n converging uniformly on
every compact subset of Ω when seen as a function of Ω�δ ∩ (δZ

2)�•. The relation (4.13)
implies that ( fδn

) itself converges uniformly on every compact subset of Ω.

(2)Simply use the fact that ( f •δ (Xn))n¾0 is a martingale whenever (Xn) is a simple random
walk on (δZ2)�• stopped on first exiting (Ωδ )

�
•.
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Therefore, we would be done if we could prove (4.11). Fix δ > 0. When jumping over a
medial-vertex v, the function Hδ changes by δRe( f 2

δ (v)) or δIm( f 2
δ (v)) depending on

the direction (vertical or horizontal), so that

δ2
∑

v∈Q�
δ

∣∣ fδ (v)∣∣2 = δ
∑
x∈Qδ

|∇H •
δ (x)| + δ

∑
x∈Q∗

δ

|∇H ◦
δ (x)|

where∇H •
δ (x) = (H

•
δ (x+δ)−H •

δ (x), H •
δ (x+iδ)−H •

δ (x)), and∇H ◦
δ is defined similarly

for H ◦
δ . It follows that it is enough to prove uniform boundedness of the right-hand side

in (4.14). We only treat the sum involving H •
δ , the other sum can be handled similarly.

Write H •
δ = Sδ +Rδ where Sδ is a harmonic function with same boundary conditions

on ∂ 9Qδ as H •
δ . In order to prove that the sum of |∇H •

δ | on Qδ is bounded by C/δ, we
deal separately with |∇Sδ | and |∇Rδ |. First,∑

x∈Qδ

∣∣∇Sδ (x)
∣∣¶ C1

δ2
·C2δ

Ç
sup

x∈9Qδ

|Sδ (x)|
å
=

C1

δ2
·C2δ

Ç
sup

x∈∂ 9Qδ

|Sδ (x)|
å

=
C3

δ

Ç
sup

x∈∂ 9Qδ

|H •
δ (x)|

å
¶

C4

δ
,

where in the first inequality we used derivative estimates like (4.10) for Sδ , in the first
equality the maximum principle(3) for Sδ (to show that the supremum is reached on the
boundary), and in the second the fact that Sδ and H •

δ share the same boundary conditions
on 9Qδ . The last inequality comes from the fact that H •

δ remains bounded uniformly in
δ.

Second, let us treat |∇Rδ |. This function is subharmonic since Sδ is harmonic and H •
δ is

subharmonic (Proposition 4.29). Introduce the Green function G9Qδ
(·, y) in 9Qδ with

singularity at y defined by the fact that the function has Laplacian equal to −1 at y, and 0
everywhere else in Ω�δ , and that G9Qδ

(·, y) equals 0 outside Ω�δ . Since Rδ equals 0 on the
boundary, one may easily check Riesz’s formula:

Rδ (x) =
∑

y∈9Qδ

∆Rδ (y)G9Qδ
(x, y).

We deduce that

∇Rδ (x) =
∑

y∈9Qδ

∆Rδ (y)∇x G9Qδ
(x, y)

Therefore, ∑
x∈Qδ

∣∣∇Rδ (x)
∣∣ =

∑
x∈Qδ

∣∣∣ ∑
y∈9Qδ

∆Rδ (y)∇x G9Qδ
(x, y)

∣∣∣
¶

∑
y∈9Qδ

∆Rδ (y)
∑
x∈Qδ

|∇x G9Qδ
(x, y)|

¶
∑

y∈9Qδ

∆Rδ (y) C5δ
∑
x∈Qδ

G9Qδ
(x, y)

= C5δ
∑
x∈Qδ

∑
y∈9Qδ

∆Rδ (y)G9Qδ
(x, y)

= C5δ
∑
x∈Qδ

Rδ (x) = C6/δ

(3)We also leave this fact as an easy exercise to the reader: show that for a discrete harmonic
function, the maximum and minimum of the function are reached on the boundary of the
function.
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64 Loop representation of the random-cluster model chap. 4 sec. 4

The second line uses the fact that∆Rδ ¾ 0, the third Theorem 4.33 below, the fifth
the Riesz’s formula again, and the last equality the fact that Qδ contains of order
1/δ2 sites and the fact that Rδ is bounded uniformly in δ (since Hδ and Sδ are).

Thus, δ
∑

x∈Qδ
|∇H •δ | is uniformly bounded. Since the same result holds for

H ◦δ , we obtain (4.11) and we are done.

There exists C > 0 such that for any δ > 0 and y ∈ 9Qδ ,∑
x∈Qδ

|∇x G9Qδ
(x, y)| ¶ Cδ

∑
x∈Qδ

G9Qδ
(x, y).

Theorem 4.33.

We omit the proof of this statement, which can be found in the original article
[Smi 10].

4.64.6 Conformal invariance: further results

Conformal invariance of the fermionic observable can be used to derive conformal
invariance of many other quantities of the model. Let us mention a few of them.

Let us start by conformal invariance of interfaces. Conformal field theory leads
to the prediction that the exploration path mentioned before converges as δ→ 0 to a
random, continuous, non-self-crossing curve from a to b staying in Ω, and which is
expected to be conformally invariant in the following sense.

A family of random non-self-crossing continuous curves γ(Ω,a,b ), going from a to
b and contained in Ω, indexed by simply connected domains with two marked
points on the boundary (Ω,a, b ) is conformally invariant if for any (Ω,a, b ) and
any conformal map ψ :Ω→C,

ψ(γ(Ω,a,b )) has the same law as γ(ψ(Ω),ψ(a),ψ(b )).

Definition 4.34.

In words, the random curve obtained by taking the scaling limit of the random-
cluster model in (ψ(Ω),ψ(a),ψ(b )) has the same law as the image by ψ of the random
curve obtained by taking the scaling limit of the random-cluster model in (Ω,a, b ).

In 1999, Schramm proposed a natural candidate for the possible conformally
invariant families of continuous non-self-crossing curves. He noticed that interfaces of
models further satisfy the domain Markov property which, together with the assump-
tion of conformal invariance, determine a one-parameter family of possible random
curves. In [Sch 00], he introduced the Stochastic Loewner evolution (SLE for short)
which is now known as the Schramm–Loewner evolution. For κ> 0, a domain Ω
and two points a and b on its boundary, SLE(κ) is the random Loewner evolution in
Ω from a to b with driving process

p
κBt , where (Bt ) is a standard Brownian motion

(we refer to the literature for a precise definition). By construction, the process is
conformally invariant, random and fractal. In addition, it is possible to study quite
precisely the behavior of SLEs using stochastic calculus and to derive path properties
such as the Hausdorff dimension, intersection exponents, etc...
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Recently, the interfaces in the critical random-cluster model with q = 2 were
proved to convergence to a SLE curve. In order to state the result, we need the
following notion. Let X be the set of continuous parametrized curves and d be the
distance on X defined for γ1 : I →C and γ2 : J →C by

d (γ1,γ2) = min
ϕ1:[0,1]→I
ϕ2:[0,1]→J

sup
t∈[0,1]

|γ1(ϕ1(t ))− γ2(ϕ2(t ))|,

where the minimization is over increasing bijective functions ϕ1 and ϕ2. Note that I
and J can be equal to R+ ∪ {∞}. The topology on (X , d ) gives rise to a notion of
weak convergence for random curves on X .

(See [CDCH+ 14].) Let Ω be a simply connected domain with two marked points
a and b on its boundary. Let (Ωδ ,aδ , bδ) be a family of Dobrushin domains
converging to (Ω,a, b ) in the Carathéodory sense. The exploration path γδ of the
critical random-cluster model with q = 2 with Dobrushin boundary conditions in
(Ωδ ,aδ , bδ ) converges weakly to SLE(16/3) as δ→ 0.

Theorem 4.35 (Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov).

The strategy of the proof is the following. First, prove that the family (γδ) is
tight for the weak convergence (in fact one needs to prove a slightly stronger result).
The proof of this fact can be found in [KS 12, CDCH 16, DCS 12a]. Second, identify
the possible sub-sequential limits using the fermionic observable. More precisely,
imagine for a moment that a sub-sequential limit γ can be parametrized by a Loewner
chain, and that its driving process is given by (Wt ). The fermionic observable may be
seen as a martingale for the exploration process, a fact which implies that its limit is a
martingale for γ . This martingale property, together with Itô’s formula, allows to
prove that Wt and W 2

t −κt are martingales (where κ equals 16/3 for the FK-Ising
model). Lévy’s theorem thus implies that Wt =

p
κBt . This identifies SLE(κ) as being

the only possible sub-sequential limit, which proves that (γδ ) converges to SLE(κ).
The Ising model itself was proved to be conformally invariant in [CS 12]. Since

then, conformal invariance of many quantities have been derived, including crossing
probabilities [BDCH 14, Izy 15], other interfaces [CDCH+ 14, HK 13]. The energy
and spin fields were also proved to be conformally invariant in a series of paper
(respectively [HS 13, Hon 10] and [CI 13, CHI 15]). The observable has also been
used off criticality, see [BDC 12, DCGP 14].

To conclude, let us mention that convergence to a SLE curve should occur for
any q ¶ 4.

Conjecture 4.36 (Schramm). Let Ω be a simply connected domain with two
marked points a and b on its boundary. Let (Ωδ ,aδ , bδ ) be a family of Dobrushin
domains converging to (Ω,a, b ) in the Carathéodory sense. The exploration path γδ
of the critical random-cluster model with parameters q and p = pc (q) =

pq/(1+pq)
with Dobrushin boundary conditions in (Ωδ ,aδ , bδ ) converges weakly to SLE(κ) as
δ→ 0, where

κ=
8

σ + 1
=

4π
π− arccos(pq/2)

.

E ˜ e
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Chapter 5Chapter 5

The random current

representation of the Ising

model

We now focus on a graphical representation of the ferromagnetic Ising model. This
alternative perspective on the Ising model’s phase transition is driven by the observa-
tion that the onset of long range order coincides with a percolation transition in a
dual system of currents. This point of view, as an intuitive guide to diagrammatic
bounds which under certain conditions provide information on the critical model’s
scaling limits, was developed in [Aiz 82] and a number of subsequent works.

We start by introducing this representation, called the random current represen-
tation. We then present three applications of this representation. In this section
A∆B := (A\B)∪ (B \A) denotes the symmetric difference between A and B .

We do not restrict our attention to the nearest neighbor model and treat general
models with interactions (Jxy : x, y ∈ Zd ) with Jxy ¾ 0 for any x, y. In this section,
edges are simply pairs {x, y} ⊂ Zd . The definition of percolation configurations is
modified accordingly.

To adopt standard notation, we will write µ+G,β instead of µ1
G,β. Also note

that the Ising model may be defined in infinite-volume thanks to the coupling with
the random-cluster model(1): consider the infinite-volume random-cluster measure
with free boundary conditions and assign to each cluster a spin + or − to obtain a
measure that we denote by µfree

β . Similarly, consider the infinite-volume random-
cluster measure with wired boundary conditions and assign to each finite cluster a
spin + or −, and to the infinite cluster (if it exists) a spin +, to obtain µ+β. We have

that µfree
G,β and µ+G,β converge as G↗Zd to µfree

β and µ+β respectively.

Finally, let us introduce for A⊂V (G), the notation

σA :=
∏
x∈A

σx .

(1)Here a long range random-cluster model, which can be seen as a random-cluster on a
complete graph with edge-weight depending on edges.
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68 The random current representation of the Ising model chap. 5 sec. 1

11 The random current representation

A current n on G ⊂ Zd (also called a current configuration) is a function from
pairs of points in V (G) to N := {0,1,2, ...}. A source of n= (nxy : {x, y} ⊂G) is
a vertex x for which

∑
y∈G nxy is odd. The set of sources of n is denoted by ∂ n.

The collection of current configurations on G is denoted by ΩG . Also set

wβ(n) =
∏

{x,y}⊂G

(βJxy )
nxy

nxy !
.

Definition 5.1.

Let us describe the connection between currents and the Ising model. We start
with the random current representation for free boundary conditions. For β> 0, G
a finite graph and A⊂V (G), introduce the quantity

Z free(G,β,A) =
∑

σ∈{−1,1}G
σA

∏
{x,y}⊂G

exp[βJxyσxσy]. (5.1)

Let β> 0, G be a finite graph and A⊂V (G), then

Z free(G,β,A) = 2|V (G)|
∑

n∈ΩG :∂ n=A

wβ(n). (5.2)

Proposition 5.2 (Randomcurrentrepresentationforfreeboundaryconditions).

Proof. Expanding eβJxyσxσy for each {x, y} into

eβJxyσxσy =
∞∑

nxy=0

(βJxyσxσy )
nxy

nxy !

and substituting this relation in (5.1), one gets

Z free(G,β,A) =
∑
n∈ΩG

wβ(n)
∑

σ∈{−1,1}G

∏
x∈G

σ
1x∈A+

∑
y∈G nxy

x .

Now, the symmetry −σ↔ σ implies that

∑
σ∈{−1,1}G

∏
x∈G

σ

1x∈A+
∑
y∈G

nxy

x =


0 if

∑
y∈G nxy is odd for some x /∈A

or even for some x ∈A,
2|V (G)| otherwise.

Thus, the definition of a current’s source enables one to write

Z free(G,β,A) = 2|V (G)|
∑

n∈ΩG :∂ n=A

wβ(n) .

We deduce that for every A⊂V (G),

µfree
G,β[σA] =

Z free(G,β,A)
Z free(G,β,∅)

=

∑
n∈ΩG :∂ n=A

wβ(n)∑
n∈ΩG :∂ n=∅

wβ(n)
. (5.3)
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chap. 5 sec. 2 Application to correlation inequalities 69

Remark 5.3. Note that this does not completely correspond to a graphical represen-
tation as defined in the previous sections, since the spin-spin correlation get rephrased
in terms of sum of different types of currents, and cannot be interpreted as the prob-
ability of connection for some percolation model. We will see later in this section
how to make this representation fit in the framework of graphical representations.

Remark 5.4. Equation (5.3) implies the first Griffiths’ inequality yielding that for
any A⊂V (G),

µfree
G,β[σA]> 0.

Let us now turn to the random current representation for+ boundary conditions.
Introduce an additional vertex g /∈Zd , to which we refer as the ghost vertex, and
set the coupling Jx g = Jx g (G) between it and vertices x ∈G to be

∑
y /∈G Jxy . We also

set Jg g = 0.

Introduce, for β> 0, G a finite graph and A⊂V (G) the quantity

Z+(G,β,A) :=
∑

σ∈{−1,1}G
σA

∏
{x,y}⊂G

exp[βJxyσxσy]
∏

x∈G,y /∈G

exp[βJxyσx]

=
∑

σ∈{−1,1}G
σA

∏
{x,y}⊂G

exp[βJxyσxσy]
∏
x∈G

exp[βJx gσx].

A development similar to the above yields the following proposition.

Let β> 0, G be a finite graph and A⊂V (G), then

Z+(G,β,A) = 2|V (G)|
∑

n∈ΩG∪{g}:∂ n=A

wβ(n). (5.4)

Proposition 5.5 (Random current with + boundary conditions).

Observe that (5.4) differs from (5.2) only through the fact that the summation is
over all currents on G ∪{g} instead of G. Also note that Jx g depends on G.

22 Application to correlation inequalities

We obtain a percolation configuration from a current configuration as follows.
For an integer valued edge function, i.e. an element n ∈ {0,1,2, ...}E(G) =:ΩG , we
associate the associated percolation n̂ ∈ {0,1}E(G) defined by

n̂xy =
®

1 if nxy > 0,
0 otherwise.

As a consequence, we may speak of x
n̂←→ y for two vertices x and y.

The following graph-theoretic switching lemma is one of the main tools facilitat-
ing the study of this representation. It was originally introduced in [GHS 70]; see
also [Aiz 82].
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70 The random current representation of the Ising model chap. 5 sec. 2

Lemma 5.6 (Switching lemma). For any nested pair of finite sets G ⊂ H , any
pair of vertices x, y ∈G and any A⊂V (H ), and any function F :ΩH →R:∑

n1∈ΩG :∂ n1={x,y}
n2∈ΩH :∂ n2=A

F (n1+n2)wβ(n1)wβ(n2)

=
∑

n1∈ΩG :∂ n1=∅
n2∈ΩH :∂ n2=A∆{x,y}

F (n1+n2)wβ(n1)wβ(n2)I[x
‘n1+n2←→ y in G].

Proof. In the argument, a current on the subgraph corresponding to G is also viewed
as a current on H which vanishes on pairs {x, y} not contained in G. The switching is
performed within collections of pairs of currents {n1, n2} of a specified value for the sum
m := n1+n2. It is therefore convenient to take as the summation variables the current
pairs m and n= n1 ¶m (with n¶m defined as the natural partial order relation). One
obtains∑
n1∈ΩG :∂ n1={x,y}

n2∈ΩH :∂ n2=A

F (n1+n2)wβ(n1)wβ(n2) =
∑

m∈ΩH :∂ m=A∆{x,y}

F (m)wβ(m)
∑

n∈ΩG :∂ n={x,y}
n¶m

Å
m
n

ã
,

and ∑
n1∈ΩG :∂ n1=∅

n2∈ΩH :∂ n2=A∆{x,y}

F (n1+n2)wβ(n1)wβ(n2) I[x
‘n1+n2←→ y in G]

=
∑

m∈ΩH :∂ m=A∆{x,y}

F (m)wβ(m) I[x
m̂←→ y in G]

∑
n∈ΩG :∂ n=∅

n¶m

Å
m
n

ã
,

where
(m

n

)
=
∏
{x,y}⊂G

(mxy
nxy

)
and where we used the fact that

wβ(n1)wβ(n2) =
∏

{x,y}⊂G∪{g}

ñ
(βJxy )

nxy

nxy !

ô ñ
(βJxy )

mxy

mxy !

ô
= wβ(m)

Å
m
n

ã
.

The claim follows if the relation below is proved for every current m ∈ΩH :∑
n∈ΩG :∂ n={x,y}

n¶m

Å
m
n

ã
= I[x

m̂←→ y in G]
∑

n∈ΩG :∂ n=∅
n¶m

Å
m
n

ã
. (5.5)

First, assume that x and y are not connected in G by“m. The right-hand side is trivially
zero. Moreover, there is no current n on G which is smaller than m and which connects
x to y. The left-hand side is thus 0 and (5.5) is proved in this case.

Let us now assume that x and y are connected in G by“m. Associate to m the graphM
with vertex set G, and ma,b edges between a and b . For a subgraphN ofM , let ∂N be
the set of vertices belonging to an odd number of edges. Since x and y are connected in
G by m, there exists a subgraphK ofM with ∂K = {x, y}.
The involutionN 7→N ∆K provides a bijection between the set of subgraphs ofM
with ∂N =∅, and the set of subgraphs ofM with ∂N = {x, y}. Therefore, these two
sets have the same cardinality. Since the summations in∑

n∈ΩG :∂ n=∅
n¶m

Å
m
n

ã
and

∑
n∈ΩG :∂ n={x,y}

n¶m

Å
m
n

ã
are over currents n in G, these sums correspond to the cardinality of the two sets men-
tioned above. In particular, they are equal and the statement follows.
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chap. 5 sec. 2 Application to correlation inequalities 71

Corollary 5.7. Let G be a finite graph, β> 0 and x 6= y ∈G, then

µfree
G,β[σxσy]

2 =

∑
∂ n1=∂ n2=∅

wβ(n1)wβ(n2)I[x
‘n1+n2←→ y]

∑
∂ n1=∂ n2=∅

wβ(n1)wβ(n2)
.

Proof. The switching lemma gives

∑
∂ n1=∂ n2=∅

wβ(n1)wβ(n2)I[x
‘n1+n2←→ y]

∑
∂ n1=∂ n2=∅

wβ(n1)wβ(n2)
=

∑
∂ n1=∂ n2={x,y}

wβ(n1)wβ(n2)∑
∂ n1=∂ n2=∅

wβ(n1)wβ(n2)

=

Ü ∑
∂ n1={x,y}

wβ(n1)∑
∂ n1=∅

wβ(n1)

ê2

=µfree
G,β[σxσy]

2.

Corollary 5.8 (Simon’s and a special case of the second Griffiths’ inequalities).
Let G be a finite graph, β> 0, A⊂G and x 6= y ∈G,

µfree
G,β[σxσy]µ

free
G,β[σA]

µfree
G,β[σA∆{x,y}]

=

∑
∂ n1=A∆{x,y},∂ n2=∅

wβ(n1)wβ(n2)I[x
‘n1+n2←→ y]

∑
∂ n1=A∆{x,y},∂ n2=∅

wβ(n1)wβ(n2)
. (5.6)

As a consequence, for any A we find

µfree
G,β[σA]µ

free
G,β[σxσy]¶µ

free
G,β[σAσxσy]. (5.7)

Furthermore for the nearest-neighbor model, we obtain that for any set S discon-
necting x from z (meaning that any path from x to z uses a vertex in S),

µfree
G,β[σxσz]¶

∑
y∈S

µfree
G,β[σxσy]µ

free
G,β[σyσz]. (5.8)

The second inequality (5.8) is called Simon’s inequality. The inequality (5.7) is a
special case of Griffiths’ second inequality [Gri 67]:

µfree
G,β[σA]µ

free
G,β[σB]¶µ

free
G,β[σAσB].
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72 The random current representation of the Ising model chap. 5 sec. 3

Proof. Let G be a finite graph, β> 0, A⊂V (G) and x 6= y ∈G, the switching lemma
in the second line,

µfree
G,β[σxσy]µ

free
G,β[σA]

µfree
G,β[σA∆{x,y}]

=

∑
∂ n1=A,∂ n2={x,y}

wβ(n1)wβ(n2)∑
∂ n1=A∆{x,y},∂ n2=∅

wβ(n1)wβ(n2)

=

∑
∂ n1=A∆{x,y},∂ n2=∅

wβ(n1)wβ(n2)I[x
‘n1+n2←→ y]

∑
∂ n1=A∆{x,y},∂ n2=∅

wβ(n1)wβ(n2)
.

On the one hand, (5.7) follows by noticing that the right-hand side of (5.6) is always
smaller or equal to 1. On the other hand, by setting A= {y}∆{z} (we assume x 6= y,
otherwise the inequality is trivial), we find

µfree
G,β[σxσy]µ

free
G,β[σyσz]

µfree
G,β[σxσz]

=

∑
∂ n1={x,z},∂ n2=∅

wβ(n1)wβ(n2)I[x
‘n1+n2←→ y]

∑
∂ n1={x,z},∂ n2=∅

wβ(n1)wβ(n2)
.

We deduce the result by summing on S and noticing that ÷n1+n2 must contain a path
from x to z, which necessarily passes through a vertex in S.

Corollary 5.9. Let G be a finite graph and J := (Jxy )x,y∈G and J ′ := (J ′xy )x,y∈G two
families of coupling constants on G. If 0 ¶ Jxy ¶ J ′xy for every x, y, then for any
A⊂G,

µfree
G,β,J [σA]¶µ

free
G,β,J ′[σA],

where µfree
G,β,J and µfree

G,β,J ′ denote the Ising measures on G with coupling constants J
and J ′.

Proof. It is sufficient to treat the case where all coupling constants are the same except
for one {x, y} ⊂G. When differentiating with respect to Jxy , we find

1
β
·

dµfree
G,β,J [σA]

dJxy

=µfree
G,β,J [σAσxσy]−µ

free
G,β,J [σA]µ

free
G,β,J [σxσy]¾ 0

by the second Griffiths’ inequality, thus proving the claim.

33 A proof of sharpness of the phase transition

for Ising models

The following theorem is an equivalent of Theorem 2.5 for the Ising model. It
was first proved in [ABF 87] for the Ising model on the d -dimensional hypercubic
lattice, but the proof extends to general transitive graphs. Here, we present a recent
proof from [DCT 15]. Let ‖ · ‖ be the infinite norm on Rd .
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chap. 5 sec. 3 A proof of sharpness of the phase transition for Ising models 73

Consider a translational invariant ferromagnetic Ising model with coupling constants
J=(Jxy)x,y∈Zd .

1. For β>βc , µ+β[σ0]¾
√

β2−β2
c

β2 .

2. For β<βc , the susceptibility is finite, i.e.∑
x∈Zd

µ+β[σ0σx]<∞.

3. If (Jxy)x,y∈Zd is finite range, then for any β<βc , there exists c = c(β) > 0
such that

µ+β[σ0σx]¶ e−c‖x‖ for all x ∈Zd .

Theorem 5.10.

The proof follows closely the proof of exponential decay for Bernoulli percola-
tion. For β> 0 and a finite subset S of Zd , define

ϕS(β) :=
∑
x∈S

∑
y /∈S

tanh(βJxy)µ
free
S,β[σ0σx],

which bears a resemblance to (2.3). Similarly to (2.4), set

β̃c := sup{β¾ 0 : ϕβ(S)< 1 for some finite S ⊂Zd containing 0}.

The proof of Theorem 2.5 proceeds in two steps. As before, the quantity ϕβ(S)
appears naturally in the derivative of a “finite-volume approximation” of µ+β[σ0].
Roughly speaking (see below for a precise statement), one obtains a finite-volume
version of the following inequality:

d
dβ
µ+β[σ0]

2 ¾ 2
β inf

S30
ϕβ(S) ·

(
1−µ+β[σ0]

2).
This inequality implies the first item of Theorem 5.10 and the inequality β̃c ¾βc .
The remaining items follow from an improved Simon’s inequality, proved below.
Remark 5.11. Finite susceptibility does not imply exponential decay of correlations
for infinite-range models. Hence, the second condition of Theorem 2.5 is not weaker
than the third one.

Proof. For S ⊂Λ two finite subsets of Zd , introduce µΛS,β obtained from µ+Λ,β by setting
all the coupling constants Jxy with x or y in Λ \ S to be equal to 0. Note that if S = Λ,
then µΛΛ,β = µ

+
Λ,β and for each fixed S, µΛS,β tends to µfree

S,β as Λ↗ Zd . We adopt some
special notation for this proof. For S ⊂Λ, define

wS (n) = wS (Λ,β,n) :=
∏

{x,y}⊂S∪{g}

(βJxy )
nxy

nxy !
.

Introduce
ZΛS,β =

∑
∂ n=∅

wS (n).

The same formulas as (5.3) hold trivially in this context. When S = Λ, we write w(n)
instead of wΛ(n), ZΛ,β instead of ZΛΛ,β, and µ+Λ,β instead of µΛΛ,β.
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74 The random current representation of the Ising model chap. 5 sec. 3

Lemma 5.12. Let β> 0 and Λ⊂Zd finite. Then,

d
dβ
µ+β[σ0]

2 ¾ 2
β inf

S30
ϕβ(S)

Ä
1−µ+β[σ0]

2
ä

.

We may integrate between β̃c and β, then let Λ↗ Zd to obtain βc ¶ β̃c and the first
item of Theorem 5.10. In order to obtain Inequality (5.10), we used a computation similar
to one provided in [ABF 87].

Proof (of Lemma 5.12). Let β> 0 and a finite subset Λ of Zd . The derivative of
µ+Λ,β[σ0] is given by the following formula

d
dβ
µ+Λ,β[σ0] =

∑
{x,y}⊂Λ∪{g}

Jxy

(
µ+Λ,β[σ0σxσy]−µ

+
Λ,β[σ0]µ

+
Λ,β[σxσy]

)
,

where σg is considered as +1. Using (5.5) and the switching Lemma, we obtain

d
dβ
µ+Λ,β[σ0] =

1
Z2
Λ,β

∑
{x,y}⊂Λ∪{g}

∑
∂ n1={0,g}∆{x,y}

∂ n2=∅

w(n1)w(n2)I[0
‘n1+n2

6←→ g ].

If n1 and n2 are two currents such that ∂ n1 = {0, g}∆{x, y}, ∂ n2 =∅ and 0 and g

are not connected in ÷n1+n2, then exactly one of these two cases holds: 0
‘n1+n2←→ x

and y
‘n1+n2←→ g , or 0

‘n1+n2←→ y and x
‘n1+n2←→ g . Since the second case is the same as the first

one with x and y permuted, we obtain the following expression,

d
dβ
µ+Λ,β[σ0] =

1
Z2
Λ,β

∑
x∈Λ∪{g}

∑
y∈Λ∪{g}

δxy , (5.9)

where

δxy =
∑

∂ n1={0,g}∆{x,y}
∂ n2=∅

w(n1)w(n2)I[0
‘n1+n2←→ x, y

‘n1+n2←→ g , 0
‘n1+n2

6←→ g ]

(see Fig. 5.1 and notice the analogy with the event involved in Russo’s formula,
namely that the edge {x, y} is pivotal, in Bernoulli percolation).

Figure 5.1. A diagrammatic representation of δxy : the solid lines represent the

currents, and the do�ed line the boundary of the cluster of 0 in ◊�n1+n2.

0

x
y

g
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chap. 5 sec. 3 A proof of sharpness of the phase transition for Ising models 75

We will now manipulate the previous definition of δxy to try to end up with a
sum on two sourceless currents (we need to remove the sources of n1). Given two
currents n1 and n2, and z ∈ {0, g}, define Sz to be the set of vertices in Λ∪{g} that
are NOT connected to z in ÷n1+n2.

We first remove the sources y and g in the sum. Let us compute δxy by summing
over the different possible values for S0:

δxy =
∑

S⊂Λ∪{g}

∑
∂ n1={0,g}∆{x,y}

∂ n2=∅

w(n1)w(n2)I[S0 = S, 0
‘n1+n2←→ x, y

‘n1+n2←→ g , 0
‘n1+n2

6←→ g ]

=
∑

S⊂Λ∪{g}
y,g∈S
0,x /∈S

∑
∂ n1={0,g}∆{x,y}

∂ n2=∅

w(n1)w(n2)I[S0 = S, y
‘n1+n2←→ g ].

When S0 = S, the two currents n1 and n2 vanish on every {u, v} with u ∈ S and
v /∈ S. Thus, for i = 1,2, we can decompose ni as

ni = nS
i +nΛ\Si ,

where nA
i denotes the current in A⊂ Zd with source ∂ nA

i = A∩ ∂ ni . Using this
observation together with the second identity in (5.5), we obtain

δxy =
∑

S⊂Λ∪{g}
y,g∈S
0,x /∈S

∑
∂ n1={0}∆{x}
∂ n2=∅

w(n1)w(n2)µ
Λ
S,β[σy]I[S0 = S].

Multiplying the expression above by µ+Λ,β[σ0], and using Corollary 5.9 (which yields
µΛS,β[σ0]¶µ

+
Λ,β[σ0]), we find

µ+Λ,β[σ0]δxy ¾
∑

S⊂Λ∪{g}
y,g∈S
0,x /∈S

∑
∂ n1={0}∆{x}
∂ n2=∅

w(n1)w(n2)µ
Λ
S,β[σy]

2 I[S0 = S]

=
∑

S⊂Λ∪{g}
y,g∈S
0,x /∈S

∑
∂ n1={0}∆{x}∆{y,g}

∂ n2={y,g}

w(n1)w(n2)I[S0 = S]

=
∑

S⊂Λ∪{g}
y,g∈S
0,x /∈S

∑
∂ n1={0}∆{x}
∂ n2=∅

w(n1)w(n2)I[S0 = S, y
‘n1+n2←→ g]

=
∑

∂ n1={0}∆{x}
∂ n2=∅

w(n1)w(n2)I[y
‘n1+n2←→ g ,0

n1+n2

6←→ g],

where in the third line we used the switching lemma. We now sum over the possible
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values of Sg :

µ+Λ,β[σ0]δxy ¾
∑
S⊂Λ

∑
∂ n1={0}∆{x}
∂ n2=∅

w(n1)w(n2)I[Sg = S, y
‘n1+n2←→ g ,0

n1+n2

6←→ g]

=
∑
S⊂Λ

0,x∈S
y /∈S

∑
∂ n1={0}∆{x}
∂ n2=∅

w(n1)w(n2)I[Sg = S]

=
∑
S⊂Λ

0,x∈S
y /∈S

∑
∂ n1=∅
∂ n2=∅

w(n1)w(n2)µ
free
S,β[σ0σx]I[Sg = S].

The third line follows from the fact that since Sg = S, the currents n1 and n2 can be

decomposed as ni = nS
i +nΛ\Si as we did before for S0 = S.

By plugging the inequality above in (5.9), we find

d
dβ
µ+Λ,β[σ0]

2 = 2µ+Λ,β[σ0]
d

dβ
µ+Λ,β[σ0]

=
2

Z2
Λ,β

∑
S⊂Λ
0∈S

∑
x∈S
y /∈S

∑
∂ n1=∅
∂ n2=∅

w(n1)w(n2)Jxyµ
free
S,β[σ0σx]I[Sg = S]

¾
2
β
· 1

Z2
Λ,β

·
∑
S⊂Λ
0∈S

ϕβ(S)
∑
∂ n1=∅
∂ n2=∅

w(n1)w(n2)I[Sg = S] (5.10)

¾
2
β

inf
S30
ϕβ(S) ·

∑
∂ n1=∂ n2=∅

w(n1)w(n2)
(
1− I[0

‘n1+n2←→ g]
)

∑
∂ n1=∂ n2=∅

w(n1)w(n2)

=
2
β
· inf

S30
ϕβ(S) · (1−µ

+
Λ,β[σ0]

2).

In the first inequality, we used that Jxy ¾
1
β tanh(βJxy). In the last line, we used

the switching lemma and (5.5) one more time. Recall that we are working in Λ
and therefore y /∈ S really means y ∈Λ∪{g} \ S. Nevertheless in this context the
definition of Jx g gives us

∑
y /∈S

Jxy :=
∑

y∈Λ\S

Jxy + Jx g =
∑

y∈Zd \S

Jxy ,

which enables us to claim that∑
x∈S

∑
y /∈S

Jxyµ
free
S,β[σ0σx] =ϕβ(S).
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Remark 5.13. Inequality (5.10) is reminiscent of (2.7). Indeed, one can consider a
measure Pβ on sourceless currents attributing a probability proportional to wβ(n)
to the current n. Then, (5.10) can be rewritten as

d
dβ
µ+Λ,β[σ0]

2 ¾ 2
β

∑
S30

ϕβ(S) Pβ⊗Pβ(Sg = S).

Interpreted like that, the trace of the sum of two independent sourceless currents
plays the role of the percolation configuration. We will see a similar interpretation
in the next section.

We turn to the second and third items of the theorem. We need a replacement for the BK
inequality used in the case of Bernoulli percolation. The relevant tool for the Ising model
will be an improved version of Simon’s inequality.

Lemma 5.14 (Improved Simon’s inequality). Let S be a subset of Zd containing 0.
For every z /∈ S,

µ+β[σ0σz]¶
∑
x∈S

∑
y /∈S

tanh(βJxy)µ
free
S,β[σ0σx]µ

+
β[σyσz].

To understand intuitively (5.8), consider for a moment the simple random-walk model.
Let G(x, y) be the expected number of visits to y starting from x, and GS(x, y) the same
quantity when counting visits before exiting S. Then, the union bound and the Markov
property at the first visit of ∂ S leads to G(0, x) ¶

∑
y∈∂ S GS(0, y)G(y, x), which is the

direct analogue of (5.8). Therefore, it does not come as a surprise that the backbone
representation can be used to prove the lemma.

We will need the notion of backbone of a current. Fix two finite subsets S ⊂ Λ of Zd .
Choose an arbitrary order of the oriented edges of the lattice. Consider a current n on
S with ∂ n = {x, y}. Let ω(n) be the edge self-avoiding path from x to y passing only
through edges e with ne > 0 which is minimal for the lexicographical order on paths
induced by the previous ordering on oriented edges. Such an object is called the backbone
of the current configuration. For a backboneω with endpoints ∂ ω= {x, y}, set

ρΛS (ω) = ρ
Λ
S (β,ω) :=

1
ZΛS,β

∑
∂ n={x,y}

wS(n)I[ω(n) =ω].

The backbone representation has the following properties (the proofs are straightforward,
except for the last item which follows from Corollary 5.9):

1. µΛS,β[σxσy] =
∑

∂ ω={x,y}ρ
Λ
S (ω).

2. If the backboneω is the concatenation of two backbonesω1 andω2 (this is denoted
byω=ω1 ◦ω2), then

ρΛS (ω) = ρ
Λ
S (ω1)ρ

Λ
S\ω1
(ω2),

whereω1 is the set of bonds whose states are determined by the fact thatω1 is an
admissible backbone (this includes bonds ofω1 together with some neighboring
bonds).

3. For a backboneω not using any edge outside T ⊂ S, then

ρΛS (ω)¶ ρ
Λ
T (ω).

Proof. Fix Λ a finite subset of Zd containing S. We consider the backbone repre-
sentation of the Ising model onΛ defined in the previous section. Letω= (vk)0¶k¶K
be a backbone from 0 to z. Since z /∈ S, one can define the first k such that vk+1 /∈ S.
We obtain that the following occur:
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78 The random current representation of the Ising model chap. 5 sec. 3

• ω goes from 0 to vk staying in S,
• thenω goes through {vk , vk+1},
• finallyω goes from vk+1 to z in Λn .

We find

µ+Λ,β[σ0σz] =
∑

∂ ω={0,z}

ρΛΛ(ω)

¶
∑
x∈S

∑
y /∈S

∑
∂ ω1={0,x}

∑
∂ ω2={x,y}

∑
∂ ω3={y,z}

ρΛS (ω1)ρ
Λ
{x,y}(ω2)ρ

Λ
Λ\ω1◦ω2

(ω3)

¶
∑
x∈S

∑
y /∈S

µΛS,β[σ0σx]ρ
Λ
{x,y}({x, y})µ+Λ,β[σyσz].

The first and third lines are based on the first property of backbones. The second line
follows from the second and third properties of the backbone as well as Corollary 5.9.
The proof follows by taking Λ to infinity and by observing that

lim
Λ↗Zd

ρΛ{x,y}({x, y}) =
sinh(βJxy)

cosh(βJxy)
= tanh(βJxy).

We are now in a position to conclude the proof. Let β< β̃c (recall that βc ¶ β̃c thanks
to the first part of the proof). Fix a finite set S such that ϕβ(S)< 1. Define

χn(β) :=max
{∑

v∈Λn

µ+β[σuσv] : u ∈Λn

}
.

For u ∈Λn , recall that τu denotes the translation by u. We find∑
v∈Λn

µ+β[σuσv] =
∑

v∈τu S

µ+β[σuσv]+
∑

v∈Λn\τu S

µ+β[σuσv]

¶ |S|+
∑

v∈Λn\τu S

∑
x∈τu S

∑
y /∈τu S

tanh(βJxy)µ
free
S,β[σuσx]µ

+
β[σyσv]

= |S|+
∑
x∈S

∑
y /∈S

tanh(βJxy)µ
free
S,β[σ0σx]

Ä ∑
v∈Λn\τu S

µ+β[σyσv]
ä

¶ |S|+
∑
x∈S

∑
y /∈S

tanh(βJxy)µ
free
S,β[σ0σx]χn(β) = |S|+ϕβ(S)χn(β).

Optimizing on u, we find

χn(β)¶ |S|+ϕβ(S)χn(β),

thus leading to

χn(β)¶
|S|

1−ϕβ(S)
.

Letting n↗∞, we obtain the second item.

We finish by the proof of the third item. Let R be the range of the (Jxy)x,y∈Zd , and let L be
such that S ⊂ΛL−R. Lemma 5.14 implies that for any z with ‖z‖¾ n > L,

µ+β[σ0σz]¶
∑
x∈S

∑
y /∈S

tanh(βJxy)µ
free
S,β[σ0σx]µ

+
β[σyσz]¶ϕβ(S)max

y∈ΛL

µ+β[σyσz].

The proof follows by iterating bn/Lc times.
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chap. 5 sec. 4 Continuity of the phase transition for Ising models 79

Remark 5.15. Like for Bernoulli percolation, one deduces that ϕβc
(Λn) ¾ 1 for

every n ¾ 1 and therefore ∑
x∈Zd

µ+βc
[σ0σx] =∞.

44 Continuityof thephase transition for Isingmodels

The goal of this section is to prove the following result.

Let d ¾ 1 and consider a ferromagnetic Ising model on Zd with coupling constants
(Jxy )x,y∈Zd . If

lim
‖x−y‖→∞

µfree
βc
[σxσy] = 0,

then µ+βc
[σ0] = 0.

Theorem 5.16 (Aizenman, Duminil-Copin, Sidoravicius [ADCS 15]).

This theorem yields that as soon as the critical Ising Gibbs measure with free
boundary conditions has no long-range order, then so does the + Gibbs measure (in
fact in such case µfree

βc
=µ+βc

). This fact is utterly wrong for general Potts models, as
illustrated by the planar Potts model with q� 1 colors since in such case the phase
transition is discontinuous, meaning µ1

βc
[〈σ0|1〉]> 0 and there is exponential decay

of the spin-spin correlations for µfree
βc

.
Note that for the Ising model, the phase transition may be discontinuous, as

shown by the 1D model with Jxy = 1/|x − y|2, see [ACCN 88]. Nevertheless, the
previous theorem provides us with a sufficient condition to decide that the phase
transition is continuous. Let us apply this tool to the case of the nearest-neighbor
model using the following known fact. Let G(x, y) be the Green function for the
simple random-walk on Zd , i.e. the expected number of visits of y for a simple
random-walk starting from x.

Consider the nearest-neighbor Ising model on Zd , d ¾ 3. For any β¶βc and any
x, y ∈Zd ,

µfree
β [σxσy]¶

1
2β G(x, y).

Theorem 5.17 (Infrared bound).

This statement is called the infrared bound. Note that G(x, y) is the spin-spin
correlation for the discrete GFF. Since the φ4

d lattice model interpolates between
the Ising and the discrete GFF, it is not so surprising that spin-spin correlations of
both models can be compared. One may also use the backbone to interpret the
spin-spin correlations as the Green function of a self-repulsive random walk, so that
it may be natural to expect that this Green function is smaller that the one of the
simple-random walk. The proof of this theorem is based on the so-called reflection-
positivity (RP) technique, see Fröhlich, Simon and Spencer [FSS 76]. This technique
has many applications in different fields of mathematical physics, we refer to [Bis 09]
and references therein for a more comprehensive study of this subject and we now
focus on an application of Theorem 5.17. Since the simple random walk is transient on
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80 The random current representation of the Ising model chap. 5 sec. 4

Zd for d ¾ 3, the infrared bound, together with Theorem 5.16, implies the following
result.
Corollary 5.18 (Aizenman, Duminil-Copin, Sidoravicius [ADCS 15]).
For d ¾ 3, the phase transition of the nearest neighbor ferromagnetic Ising model
on Zd is continuous.

Recall that the phase transition is also continuous for d = 2 by the result of
Section 3. The proof of Theorem 5.16 is based on the study of the percolative
properties of the infinite volume limit of the random current representation.

Let Pfree
G,β be the law on currents on G defined by

Pfree
G,β[n] :=

wβ(n)I[∂ n=∅]∑
m∈ΩG :∂ m=∅

wβ(m)
, ∀n ∈ΩG .

The push forward of Pfree
G,β by n 7→ n̂ is denoted by P̂free

G,β. It is a percolation measure
on G. One may also define a law on currents on G ∪{g} which induces a measure
denoted by P̂+G,β.

Let β> 0. There exist two percolation laws P̂+β and P̂free
β on Zd such that

R1 (Convergence) For any eventA depending on finitely many edges,

lim
L→∞

P̂+ΛL,β[A ] = P̂+β[A ] and lim
L→∞

P̂free
ΛL,β[A ] = P̂free

β [A ].

R2 (Invariance under translations) P̂+β and P̂free
β are invariant under the shifts τx ,

x ∈Zd .

R3 (Ergodicity) P̂+β and P̂free
β are ergodic with respect to the group of shifts

(τx )x∈Zd .

Proposition 5.19.

Proof. Except for a minor difference in the very last step, the proof is identical for the
+ and the free boundary conditions. Let us therefore use the symbol # as a marker for
either of the two. In this proof, we denote the set of edges byP2(G) (i.e. the set of pairs
{x, y} ⊂G). Let ΩG be the set of percolation configurations on G, i.e. {0,1}P2(G).

Proof of R1 (Convergence) To prove convergence of the finite volume probability mea-
sures, let us first note that the distribution of the random currents simplifies into a product
measure when conditioned on the parity variables r(ω) = (rxy )x,y , with:

rxy (ω) := (−1)nxy (ω) .

The conditional distribution of n, given r(ω), is simply the product measure of indepen-
dent Poisson processes of mean values βJxy conditioned on the corresponding parity.
Thus, for a proof of convergence it suffices to establish convergence of the law of the
parity variables r(ω).
For a set of edges E , define the events

CE =
{
ω : rxy (ω) = 1 ∀{x, y} ∈ E

}
,

C (0)E =
{
ω : nxy (ω) = 0 ∀{x, y} ∈ E

}
.
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chap. 5 sec. 4 Continuity of the phase transition for Ising models 81

Let us prove that for any finite subset E of edges of Zd , P̂#
ΛL ,β[CE ] converges as L tends

to infinity.

To facilitate a unified treatment of the two boundary conditions we denote

Ω#
L =

ΩΛL
for #= free ,

ΩΛL∪{g} for #=+ .

For L large enough (so that ΛL ⊃ E ) we have:

P̂#
ΛL ,β[CE ] =

∑
n∈Ω#

L :∂ n=∅

wβ(n) I[CE ]

∑
n∈Ω#

L :∂ n=∅

wβ(n)

=

∑
n∈Ω#

L :∂ n=∅

wβ(n) I[C
(0)
E ]

∑
n∈Ω#

L :∂ n=∅

wβ(n)

∏
x,y∈E

cosh(βJxy )

=
Z#(ΛL \ E ,β)

Z#(ΛL,β)

∏
x,y∈E

cosh(βJxy ).

Above, ΛL \ E designates the graph obtained by removing the edges of E but keeping all
the vertices of ΛL. The above ratio can be expressed in terms of an expectation value of a
finite term:

P̂#
ΛL ,β[CE ] = µ#

ΛL ,β

[
e−βKE

] ∏
x,y∈E

cosh(βJxy ) (5.13)

with the finite volume collection of energy terms

KE (ω) :=
∑
x,y∈E

Jxyσxσy .

The convergence of the above expression follows now directly from the convergence of
measures of the Ising model as L tends to infinity.

The events CE with E ranging over finite sets of edges span (by inclusion-exclusion) the
algebra of events expressible in terms of finite collections of the binary variables of r(ω).
This fact, and the above observation that the probability distribution of the random
current n conditioned on r(ω) does not depend on L, implies the existence of P̂#

β.

Proof of R2 (Translation invariance) Fix x ∈ Zd . The limit of the probability of the
event CE , where E is a finite set of edges, is the same if the sequence (ΛL)L¾0 is replaced
by the sequence (x +ΛL)L¾0. (Simply use (5.13) and the convergence of µ#

x+ΛL ,β to µ#
β.)

This immediately implies that P̂#
β is invariant under translations.

Proof of R3 (Ergodicity) Since every translationally invariant event can be approximated
by events depending on a finite number of edges, it is sufficient to prove that for any
events A and B depending on a finite number of edges,

lim
‖x‖1→∞

P̂#
β[A∩τx B] = P̂#

β[A] P̂#
β[B].
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82 The random current representation of the Ising model chap. 5 sec. 4

In view of the conditional independence of n given the parity variables r, the requirement
can be further simplified to the proof that for any two finite sets E and F of edges,

lim
‖x‖1→∞

P̂#
β[CE∪(x+F )] = P̂#

β[CE ] P̂#
β[CF ] .

Using the expression (5.13), for x large enough so that E ∩ (x + F ) =∅:

P̂#
β[CE∪(x+F )]

P̂#
β[CE ] P̂#

β[CF ]
=

µ#
β

î
e−βKE e−βKx+F

]
µ#
β

[
e−βKE

]
µ#
β

[
e−βKF

] .

Ergodicity of the random current states can therefore be presented as an implication of
the statement that this ratio tends to 1. This condition holds as a consequence of the
mixing property of the states µ#

β when restricted to functions which are invariant under
global spin flip (i.e. that f (−σ) = f (σ) for every spin configuration σ ). For completeness
we enclose the statement, which may be part of the folklore among experts, in the next
lemma, but we leave the proof as an exercise (one may try to use the random-cluster
model or an extension of Griffiths’ second inequality). We refer to [ADCS 15] for the
proof.

Lemma 5.20. For any β> 0, the state µ#
β is ergodic and mixing in its restriction

to the σ -algebra of even events, i.e. that for any pair of functions F ,G from spin
configurations to R with F (−σ) = F (σ) and G(−σ) = G(σ), the following limit
exists and satisfies:

lim
‖x‖→∞

µ#
β[F ×G ◦τx] = µ#

β[F ] ·µ
#
β[G] .

Define Pβ to be the law of◊�n1+n2, where n1 and n2 are two independent currents
with laws Pfree

β and P+β. We also set Eβ for the expectation with respect to Pβ.
Properties R2 and R3 of Proposition 5.19 imply immediately that Pβ is invariant
and ergodic with respect to shifts. We now state that there cannot be more than one
infinite cluster.

For any β> 0, there exists at most one infinite cluster Pβ-almost surely (at any
β¾ 0).

Theorem 5.21.

The proof of this theorem follows from the Burton-Keane argument presented
in the proof of Theorem 2.4. The proof requires a few trivial modifications and
we refer to [ADCS 15] for details. The main different comes from the fact that we
must replace independence in the proof by the fact that conditioned on the state of
everything else, one may open the edge e with positive probability. Let us show that
this property is true for the trace of the random current.

Lemma 5.22. Consider the map Φ̂N from percolation configurations onto itself open-
ing all edges {x, y} in ΛN with Jxy > 0. Let N > 0, then there exists c = c(N , J ,β)> 0
such that for any event E ,

Pβ[Φ̂N (E )] ¾ c Pβ[E ].

Proof. It is sufficient to consider events E depending on a finite number of edges. Let
PΛn ,β be the law of ÷n1+n2, where n1 and n2 are two independent currents with respective
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laws Pfree
Λn ,β and P+Λn ,β. Property R1 of Proposition 5.19 shows that PΛn ,β converges weakly

to Pβ. This reduces the proof to showing the existence of c = c(N , J ,β)> 0 on Λn , with
a value which does not depend on n >N .

Consider the transformation ΦN from pairs of percolation configurations on Λn onto
itself defined by

ΦN (n1,n2){x, y}=


(0,2) if (n1{x, y},n2{x, y}) = (0,0),

Jxy > 0, and x, y ∈ΛN ,
(n1{x, y},n2{x, y}) otherwise,

where exceptionally m{x, y} denotes m{x,y} for ease of notation. Fixω ∈ {0,1}Λn and let

Ω2 = {(n1,n2) ∈ (ΩΛn
)2 : ÷n1+n2 =ω}.

The set ΦN (Ω2) is obtained from Ω2 by changing the value of the current n2 on edges
{x, y} withω{x,y} = 0 from 0 to 2. Therefore,

PΛn ,β[Φ̂N (E )] =
∑

ω′∈̂Φ(E )

PΛn ,β[ω
′]

=
∑
ω∈E

1

Card[Φ̂−1
N (Φ̂N (ω))]

PΛn ,β[Φ̂N (ω)]

¾ 2−|ΛN |2
∑
ω∈E

PΛn ,β[Φ̂N (ω)]

= 2−|ΛN |2
∑
ω∈E

Pfree
Λn ,β⊗P+Λn ,β[ΦN (Ω2)]

¾ 2−|ΛN |2
∑
ω∈E

Ä ∏
{x,y}⊂ΛN :ωxy=0

(βJxy )
2

2

ä
Pfree
Λn ,β⊗P+Λn ,β[Ω2]

¾ c
∑
ω∈E

Pfree
Λn ,β⊗P+Λn ,β[Ω2] = c PΛn ,β[E ] ,

where c = c(N , J ,β)> 0 does not depend on n. In the first inequality, we used the fact
that the number of pre-images of each configuration is smaller than 2 to the power the
number of pairs of points in ΛN (since one has to decide whether edges of ΛN were open
or closed before the transformation).

Let us continue with a crucial relation which justifies the consideration of Pβ.

For β¶βc , if µfree
G,β[σxσy]−→ 0, then Pβ [0↔∞] = 0.

Theorem 5.23.

Proof. Let us start by proving that Pβ[x↔ y] tends to 0 as x, y gets further and further
away.
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Let L> 0 and let x, y ∈ΛL. The switching lemma (Lemma 5.6) implies

Pfree
ΛL ,β⊗P+ΛL ,β

ñ
x
‘n1+n2←→ y in ΛL

ô
:=

∑
n1∈ΩΛL

:∂ n1=∅
n2∈ΩΛL∪{g}

:∂ n2=∅

wβ(n1)wβ(n2)I
[

x
‘n1+n2←→ y in ΛL

]
∑

n1∈ΩΛL
:∂ n1=∅

n2∈ΩΛL∪{g}
:∂ n2=∅

wβ(n1)wβ(n2)

=

∑
n1∈ΩΛL

:∂ n1={x,y}
n2∈ΩΛL∪{g}

:∂ n2={x,y}

wβ(n1)wβ(n2)

∑
n1∈ΩΛL

:∂ n1=∅
n2∈ΩΛL∪{g}

:∂ n2=∅

wβ(n1)wβ(n2)
.

The representations of spin-spin correlations in terms of random currents then imply
that

Pfree
ΛL ,β⊗P+ΛL ,β

ñ
x
‘n1+n2←→ y in ΛL

ô
=µfree

ΛL ,β[σxσy]µ
+
ΛL ,β[σxσy]¶µ

free
ΛL ,β[σxσy].

The right-hand side converges toµfree
ΛL ,β[σxσy] as L tends to infinity. Since the event on the

left-hand side can be expressed in terms of n̂1 and n̂2, the convergence of P̂+ΛL ,β and P̂free
ΛL ,β

to P̂+β and P̂free
β provided by Proposition 5.19 implies that the left-hand side converges

to Pβ [x←→ y]. (The percolation event does not depend on finitely many edges, but
justifying passing to the limit is straightforward by first considering the events that x is
connected to y in the box of size N .) Therefore,

Pβ [x←→ y] ¶ µfree
β [σxσy]−→ 0. (5.15)

We now wish to prove that Pβ[0 ↔ ∞] = 0. Let B ⊂ Zd be a finite subset. The
Cauchy-Schwarz inequality applied to the random variable X =

∑
x∈B I[x←→∞] leads

to (
|B |Pβ[0←→∞]

)2 :=Eβ[X ]
2 ¶Eβ[X

2] =:
∑
x,y∈B

Pβ[x, y←→∞].

The uniqueness of the infinite cluster (Theorem 5.21) thus implies(
|B |Pβ[0←→∞]

)2 ¶
∑
x,y∈B

Pβ[x, y←→∞]¶
∑
x,y∈B

Pβ[x←→ y]. (5.16)

Combining this relation with (5.15) and optimizing over B we get:

Pβ[0←→∞]
2 ¶ inf

B∈Zd ,|B |<∞

1
|B |2

∑
x,y∈B

µfree
β [σxσy]−→ 0

which proves the claim.

Remark 5.24. In the last step of (5.16) one can see uniqueness of the infinite cluster
used as a substitute for the classical percolation argument utilizing the FKG inequality,
which we do not have for random currents.
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Proof. We are now in a position to prove Theorem 5.16. Fix a pair of vertices x and y.
Applying the switching lemma (Lemma 5.6) again, we find that for L> 0:

µ+ΛL ,β[σxσy]−µ
free
ΛL ,β[σxσy] =

∑
n2∈ΩΛL∪{g}

:∂ n2={x,y}

wβ(n2)

∑
n2∈ΩΛL∪{g}

:∂ n2=∅

wβ(n2)
−

∑
n1∈ΩΛL

:∂ n1={x,y}

wβ(n1)

∑
n1∈ΩΛL

:∂ n1=∅

wβ(n1)

=

∑
n1∈ΩΛL

:∂ n1=∅
n2∈ΩΛL∪{g}

:∂ n2={x,y}

wβ(n1)wβ(n2) −
∑

n1∈ΩΛL
:∂ n1={x,y}

n2∈ΩΛL∪{g}
:∂ n2=∅

wβ(n1)wβ(n2)

∑
n1∈ΩΛL

:∂ n1=∅
n2∈ΩΛL∪{g}

:∂ n2=∅

wβ(n1)wβ(n2)

=

∑
n1∈ΩΛL

:∂ n1=∅
n2∈ΩΛL∪{g}

:∂ n2={x,y}

wβ(n1)wβ(n2)

Ç
1− I[x

‘n1+n2←→ y in ΛL]

å
∑

n1∈ΩΛL
:∂ n1=∅

n2∈ΩΛL∪{g}
:∂ n2=∅

wβ(n1)wβ(n2)
.

Yet, any configuration n2 with sources at x and y such that x and y are not connected in
ΛL necessarily satisfies that x and y are connected to g . Therefore,

µ+ΛL ,β[σxσy]−µ
free
ΛL ,β[σxσy]¶

∑
n1∈ΩΛL

:∂ n1=∅
n2∈ΩΛL∪{g}

:∂ n2={x,y}

wβ(n1)wβ(n2)I[x
‘n1+n2←→ g ]

∑
n1∈ΩΛL

:∂ n1=∅
n2∈ΩΛL∪{g}

:∂ n2=∅

wβ(n1)wβ(n2)
. (5.17)

We shall now estimate the sum in the numerator by comparing it to the corresponding
sum in which the source condition of (n1,n2) is changed to ∂ n1 = ∂ n2 =∅.

Fix a sequence of vertices x = x0, . . . , xm = y with Jxi xi+1
> 0 for any 0¶ i < m. For any

L large enough so that xi ∈ΛL for all i ¶ m, consider the one-to-many mapping which
assigns to eachω a modified current configuration n2 with the change limited to n2 along
the set of edges e j = {xi , xi+1}, j = 0, . . . , m− 1, at which the parity of all these variables
is flipped, and the value of the new one is at least 1 at each edge. Under this mapping, the
image of each pair (n1,n2) that contributes in the numerator of (5.17) lies in the set for

which the connection event x
‘n1+n2←→ g remains satisfied, but the source set of n2 is reset to

∂ n2 =∅.

Classifying the current pairs according to the values of all the unaffected variables of
{(n1,n2)}, and the parity of n2 along the set of edges e0, . . . , em−1, it is easy to see that
under this one-to-many map the measure of each set is multiplied by a factor which is
larger than or equal to

Γxy =
m∏

j=1

min

®
sinh(βJe j

)

cosh(βJe j
)
,
cosh(βJe j

)− 1

sinh(βJe j
)

´
.
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(i.e. the original measure multiplied by Γxy is dominated by the measure of the image set.)
This allows us to conclude:

∑
n1∈ΩΛL

:∂ n1 = ∅
n2∈ΩΛL∪{g}

:∂ n2={x,y}

wβ(n1)wβ(n2)I[x
‘n1+n2←→ g ]¶ Γ−1

xy

∑
n1∈ΩΛL

:∂ n1=∅
n′2∈ΩΛL∪{g}

:∂ n′2=∅

wβ(n1)wβ(n
′
2) I[x

‘n1+n′2←→ g ] .

Inserting this in (5.17), we find that

µ+ΛL ,β[σxσy]−µ
free
ΛL ,β[σxσy] ¶ Γ

−1
xy Pfree

ΛL ,β⊗P+ΛL ,β[x
‘n1+n2←→ g ] .

Taking the limit L→∞ (which exists by Proposition 5.19) we obtain

0 ¶ µ+β[σxσy]−µ
free
β [σxσy] ¶ Γ

−1
xy Pβ [x↔∞] .

(The percolation event on the right does not depend on finitely many edges, but justifying
passing to the limit is straightforward by first considering the events that x is connected
to distance N .)

We now consider β¶βc . Theorem 5.23 implies that Pβ [x←→∞] = 0, and hence for
any x, y ∈Zd : µ+β[σxσy] =µ

free
β [σxσy]. Thus, using the FKG inequality:

0¶µ+β[σ0]µ
+
β[σx]¶µ

+
β[σ0σx] =µ

free
β [σ0σx]

for any x∈Zd . The assumption that µfree
β [σ0σx] averages to zero over translations leads to

µ+βc
[σ0]=0.

E ¨ e
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Chapter 6Chapter 6

Epilogue

This book presented a few graphical representations of lattice models. By lack of space
and energy, we did not discuss a number of graphical representations. The zoo of
these graphical representations is huge, and applications range from the lattice models
described in this book to other models such as quantum chains or particle systems. In
each case, correlations of the original model get rephrased into connectivity properties
of a percolation-type model.

For completeness, we mention a few graphical representations which were omit-
ted in this book: the low and high temperature expansions of the Ising model, loop
O(n)models, cluster expansions, random-walk representations, etc (see e.g. [DC 11]
and references therein)... We refer to the extensive literature on these subjects for a
comprehensive study of these models.

Going back to the graphical representations presented in this book, their study
involves techniques coming from several fields of mathematics, including mathemati-
cal physics, probability, discrete complex analysis, combinatorics, exact solvability,
etc. The theory lies at the interplay of all these domains, making it a rich and beautiful
area of active research.

E ˝ e
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