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Abstract

In this paper, we provide new proofs of the existence and the condensation of
Bethe roots for the Bethe Ansatz equation associated with the six-vertex model with
periodic boundary conditions and an arbitrary density of up arrows (per line) in the
regime A < 1. As an application, we provide a short, fully rigorous computation
of the free energy of the six-vertex model on the torus, as well as an asymptotic
expansion of the six-vertex partition functions when the density of up arrows ap-
proaches 1/2. This latter result is at the base of a number of recent results, in
particular the rigorous proof of continuity/discontinuity of the phase transition of
the random-cluster model, the localization /delocalization behaviour of the six-vertex
height function when @ = b =1 and ¢ > 1, and the rotational invariance of the six-
vertex model and the Fortuin-Kasteleyn percolation.

1 Introduction

1.1 Definition of the model

The six-vertex model, first proposed by Pauling in 1935 to study the thermodynamic
properties of ice, became the archetypical example of a planar integrable model with Lieb’s
solution of the model in 1967 in its anti-ferroelectric and ferroelectric phases [31, 32, 33, 34|
using the Bethe Ansatz. We refer to [3, 35, 41] for detailed expositions and reviews and
to [2] for the most general solution. The six-vertex model on the torus is defined as
follows. For N, M > 0 with N even, let Tx s = (Z/NZ) x (Z/MZ) be the N by M
torus. An arrow configuration w is a choice of orientation for every edge of Tx ;. We say
that w satisfies the ice rule (or equivalently that it is a siz-vertez configuration) if every
vertex of Ty j has two incoming and two outgoing incident edges in w. These edges can
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be arranged in six different types around each vertex as depicted in Figure 1, hence the
name of the model. One may easily check that the ice-rule guarantees that each horizontal
line of vertical edges contains the same number of up arrows. From now on, let Q(Ty /)
(resp. Q™ (Txas)) be the set of six-vertex configurations (resp. containing exactly n up
arrows on each line).

I i i

Figure 1: The 6 possibilities, or “types” of vertices in the six-vertex model. Each type
comes with a weight a1, as, by, by, c1, co.

For parameters aq, as, by, ba, c1,co > 0, define the weight of a six-vertex configuration
w to be
e N1 N2IM3]1N4 N5 N6
Wy (w) := altay?b?by*c®cy®,

where n; is the number of vertices of Ty s having type ¢ in w. In this paper, we choose
to focus on a1 = as = a, by = by = b and ¢; = ¢ = ¢. Some of the results of this paper
may extend to the asymmetric case and will be the object of a future paper.

Define the partition functions of the six-vertex model and of the six-vertex model with
n up arrows per line, respectively, by setting

Z(TN,M,CL, b, C) = Z W6v<(JJ),
wEQ(TNyM)
Z(n)(TN’M,&, b, C) = Z WG\/(OU).

weQ™ (Ty,ar)
In the analysis of the model, it is customary to introduce the parameter

a’ +b? — 2

A= b (1)

Below, we consider the region of parameters (a, b, ¢) such that A < 1; see Figure 2 for the
phase diagram of the model.

1.2 Main results for the symmetric six-vertex model

It appears convenient to adopt a parameterisation of the weights which makes transpar-
ent the connection with the algebraic Bethe Ansatz construction of the model’s transfer
matrix. We thus introduce auxiliary parameters § € (0,7), r € R, and ¢ such that!

IThe existence and uniqueness of r, ¢ and § is proved via basic computation. Notice that the parameter
r has no influence on the probabilistic behaviour of the model.
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Figure 2: The expected phase diagram of the six-vertex model contains four regions: I
and II are called ferroelectric, III is antiferroelectric and IV is disordered. The latter
two regions correspond to A < —1 and A € [—1,1], respectively. The present paper
concerns only regions IIT and IV. The gray lines represent lines of constant A; the black
quarter-circle corresponds to A = 0.

o for -1 <A <1, A= —cos( with ¢ € (0,7)

asin% = rsin (1 — £)¢, bsing ::rsini—c, ci= 2’/‘COS%, (2)
o for A = —1,
a:=2r"=2  b:=2r c:=2r (3)
o for A < —1, A= —cosh( with ( € R}
asinh § == rsinh (1 — )¢, bsinh § := rsinh 9—75, ¢ := 2rcosh §. (4)

The first result goes back to Lieb [32, 33, 34| and Sutherland [40] and deals with the

per-site free energy defined by
— Lm lim -1

fla,b,c):= ]\}1_1&1(1)0 A}Ignoo wiv 108 Z(Tarw, a,b, c), (5)

in which the limits may be taken in any order as established in [35]. The mentioned papers

characterised the per-site free energy relying on the same strategy as the original paper [43|

which deals with the XXZ quantum spin chain. At the time, the closed expressions for

f(a, b, c) were derived under the hypothesis of the so-called condensation of Bethe roots.

As will be discussed more precisely later on in the introduction, the condensation property

has nowadays been rigorously established. Here, we develop an alternative technique for
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proving condensation which, on the one hand, turns out to be particularly effective for
our goals and, on the other hand, allows one to go beyond what can be rigorously proven
within the existing scope of techniques.

Theorem 1. For every a > b > 0 and ¢ > 0 such that A < 1 (c.f. (1)), using the
parameterisation (2)—(4),

( +o0
1 sinh[22=¢¢] sinh[(r — ¢)t]
log b — T dt  if—-1<A<1
80+ / 2t cosh[Ct] sinh[rt] fol<a<t
+00
_ inh[2T=¢] -1t
f(CL, bu C) ~ \Ylogbh / St s dt FA = —1 (6)
080+ cosh[t] 2t Zf ’
=L e~ "¢ sinh[2n¢0 /]

1 < ° A< 1.
ogat S +; n cosh(n() U

\

In particular f(1,1,1) = 3log(3) and f(1,1,2) = 21og[2T'(2)/T'(2)], with T the gamma
function.

Our second result deals with the following extension of the per-site free energy to
values of n and N:
n) . : n
f](V <a7 bv C) = ]Vllgnoo ﬁ 1Og Z( )(TN,Ma a, b7 C)'
It provides a characterisation of the subleading corrections to f J(\;L )(a, b,c) as n, N — +00
in such a way that n/N — 1/2. The condition on n and N appearing in the statement

below is technical and takes its origin in the statements of the subsequent theorems in
this paper.

Theorem 2. For N > 2 even and a,b,c > 0 leading to A < 1 (c.f. (1)), there exist
constants C,C((),C"(¢,0) € (0,00) such that for every
n < LN = CminfC2, log(N)?}, 7)

using the paremetrisation (2)—(4), we have

C(¢)sinf(1—22)°  f-1<A<1,

N

ceoi-2)  ga<-1, O

f](\;z)<a’bv C) = f((l,b, C) + O(%) - (1 + 0(1)) {

where o(1) means a quantity tending to 0 as n/N tends to 1/2.

Notice that for A € [~1,1), (8) only gives meaningful information when & — n ex-

2
ceeds V/N.

This extension has important applications for the six-vertex model and other related
models. The six-vertex model lies at the crossroads of a vast family of two-dimensional
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lattice models; for instance, it has been related to the dimer model, the Ising and Potts
models, Fortuin-Kasteleyn (FK) percolation, the loop O(n) models, the Ashkin-Teller
models, random permutations, stochastic growth models, quantum spin chains, to cite
but a few examples. Among such links, one can use the Baxter-Kelland-Wu mapping
between the six-vertex model and FK percolation [4] to deduce from Theorem 2 and the
dichotomy result of [13] that the phase transition of FK percolation on the square lattice
is continuous if the cluster weight ¢ satisfies 1 < ¢ < 4, and is discontinuous for ¢ > 4.
We refer to the papers where the results were proved (using alternative methods) for
additional details [13, 14]. It should be mentioned that the continuity result of [13] may
be deduced directly from Theorem 2 using the same procedure as in [18]. In the same
spirit, the results can be used to derive dimerisation properties of the anti-ferromagnetic
Heisenberg chain [1].

A second application of our results is related to the height function A of the six-vertex
model, which can be proved to be localised (meaning that the variance of h(x) — h(y) is
bounded uniformly in |z — y|) whenever a = b = 1 and ¢ > 2, and delocalised (meaning
that the variance of h(x) — h(y) tends to infinity logarithmically fast in |z — y|) when
a=b=1and 1 <c¢ <2 We refer to [16, 18, 22| for more details. It is conjectured
more generally that the height-function is localised when A < —1, and delocalised when
—1 < A < 1. This property is closely related to the existence of a massive (A < —1) and
massless (—1 < A < 1) regime in the XXZ spin-1/2 Heisenberg chain; there, the ground
state correlation functions of local operators at distance m decay exponentially fast in
m — 400 in the massive regime and algebraically in m in the massless regime. Indeed, one
can show that the XXZ spin-1/2 Heisenberg Hamiltonian ground state generating function
of the longitudinal spin-spin correlations does coincide with the generating function of
variances of the height function of the six vertex model. Thus, the power-law decay of
the correlators in the XXZ chain translates to the logarithmic growth of the variance of
the height function for the six-vertex model.

Finally, perhaps the most important use of our results is in [17], where a refined
version of Theorem 2 (see Section 8) is employed to show that the correlations of the
height function of the six-vertex model are invariant under rotations in the scaling limit,
when ¢ = b =1 and v/3 < ¢ < 2. This rotation invariance should in fact hold for every

€ [1,2] (but this has not been proven yet) and be wrong for ¢ > 2 (when the height
function localises, as discussed above). The argument of [17] involves the FK percolation
representation of the six-vertex model, and the rotational invariance result also applies to
critical FK percolation on Z? with cluster weight ¢ € [1,4].

1.3 Transfer matrix of the six-vertex model and the Bethe Ansatz

In order to understand the large scale asymptotics of Z™ (Ty a/, a,b, ) with 0 < n < N/2,
one introduces the transfer matriz Vi = Viy(a,b,c) (that we do not explicit here; see
e.g. [7]) defined as an endomorphism of the 2" -dimensional real vector space spanned by
the basis {\Ilg}g, where & = (zq,...,2,) with1 <z <--- <z, <N,0<n <N (below,



we use |Z| := n for the length of ¥) and Wz = (V3z(1),...,¥z(N)) € {£1}¥ is given by

" (Z) o +1 ifl'e{illl,...,xm},
SRR if i & {x1,..., 23}

In particular, one finds that
Z(Tnm,a, b, c) = Trace[Vy(a, b, )M,
AR (Tnar,a,b,c) = Trace[V]S,")(a, b, c)M], (9)

where ij,n)(a,b, ¢) is the block of the matrix Viy(a,b,c) restricted to the vector space
spanned by the Wz with |Z| = n. This vector space is indeed stable by Vy(a, b, ¢) because
of the conservation of the number of up arrow per horizontal line. In light of the above dis-
played equation, we have a clear interest in studying the spectral properties of Vy(a, b, ¢)
and VJS,")(CL, b, c). Standard arguments of rigorous statistical mechanics, see e.g. 35|, allow
one to conclude that

fla.bye) = lim FlogAn(ab,e) and  f(a.b,0) = Flog AR (a,b,c) .

1
N
where Ay(a, b, c) and A%)(a, b, c) are the largest eigenvalues of Viy(a, b, ¢) and Vjs,n)(a, b, c),
respectively. Note that since ij,n)(a,b, ¢) is a Perron-Frobenius matrix, c.f. e.g. [33],

Ag\?)(a, b,c) is the Perron-Frobenius eigenvalue of V]an)(a, b,c). The full transfer matrix
Vn(a, b, c) is not Perron-Frobenius, but it may be shown that its single largest eigenvalue
is Ag\?)(a, b,c).

The coordinate Bethe Ansatz, introduced by Bethe [6] in 1931, provides mathemati-
cians and physicists with a powerful way of obtaining eigenvalues of one-dimensional
quantum models and of the transfer matrices of certain two-dimensional lattice models.
In particular, Orbach [38] put it in a form allowing one to study the eigenvalues of the
XXZ spin-1/2 Heisenberg chain, a model sharing the same eigenvectors as the six-vertex
transfer matrix, see [36] for the explanation of this last fact. Further, since the visionary
work of the Leningrad School [19], the coordinate Bethe Ansatz has been put into a fully
algebraic framework, called nowadays the algebraic Bethe Ansatz, which is deeply con-
nected with the representation theory of quantum groups. This picture strongly simplified
the analysis of integrable models.

We now summarise the program corresponding to the implementation of the Bethe
Ansatz to understand the asymptotic of the largest eigenvalue of V]\(,n)(a, b,c). The sur-
vey [15] contains an elementary derivation of Bethe’s Ansatz intended for probabilists,
and is a useful reference for most of what is discussed above.

The Bethe Ansatz approach to the dominant eigenvalue

Step 1 Fix distinct integers or half-integers, depending on the parity of n, (nq,...,n,)
and consider a solution A = (A1,...,A,) € R™ to the following set of equations called the




logarithmic Bethe equations
PO —=—=> dN—N)=n;, V1<i<n, (10)

27 2T 4
7j=1

where p and ¥ are defined in Appendix A. While these functions do depend on A and
have quite different expressions in the regimes A < —1, A = —1 and |A| < 1, we shall
keep this dependence implicit. The coordinates of solutions to (10) are called Bethe roots.

Step 2 Consider the vector
T = ) w(@h) s
|Z|=n

for which ¢ (Z|\) is defined for every ¥ with |Z| = n by

Y(Z|N) : Z Help(%(k))zk H5 ®) » (11)

O'EGn k)<£

where G, is the symmetric group on n elements, (o) is the signature of the permutation
o, and
sinh(i( +z) —1<A<1,
s(z) = i+ A=1, (12)
sin(i¢ + x) A< -1

The Bethe Ansatz guarantees that for a solution to (10) which has pairwise distinct
coordinates that lie away from the singularities of p and ¥,

Vi (a,b, )0 = AP NP, (13)

where Ag\?) (A) is given by the formula

AP A =aV TT L) + 0¥ T M), (14)
j=1 j=1
in which
. Q. 4 . 34 i
/ _anh ()\—%C—geg) ( _smh()\+§472 94) _1 < A < 17
sinh (\+5¢—20¢) sinh(\+5¢—L6¢)
i q 31
L) = 27w and M(N) il ki A=1,
A5—10 Mg—r
sin( %C—%GC) _sin()\—l—%C—%GC) A< ]
[ emOac—teo) [ 0260




Step 3 Show that for the specific choice of (half-)integers n; = I; := i — %5 for

1 <1 < n, the vector \IJ%) (A) produced by Step 2 is the Perron-Frobenius eigenvector of
V](Vn) (a,b,c).

Step 4 Perform a large n, N asymptotic expansion of the formula in (14) to conclude.

Note that the Bethe equations ensure that the Bethe roots are not poles of L or M, so

that Ag\?) (A) is indeed well defined. Also notice that the Bethe equations and the resulting

)

vector \I!%l only depend on A (or equivalently on (); the only dependence on a and b (or

equivalently on 0) is in the formula for Ag\?) (A).
At this stage, implementing the above program rigorously requires particular attention
at certain points, namely:

In Step 1, for a given choice of n = (ny,...,n,), one must prove the existence of solutions
to (10). In the regime A < 1, Yang and Yang [43] proved the existence of Bethe roots
when n; = I; as above. Then Griffiths [24] established the existence of solutions to a
certain class of (half-)integers n. More recently, Kozlowski [30] established the existence
of solutions, as well as their uniqueness when N is large enough, for a wide class of
(half-)integers n describing the so-called particle-hole excitations.

In Step 2, in order to conclude from (13) that AS{,T) (A) is an eigenvalue of V]E,n)(a, b,c), it
must be shown that the Bethe roots’ coordinates are pairwise distinct and that \I’%l) (A)
is non-zero. This was shown to hold for the solution A associated with n; = I; by Yang
and Yang [43]. For solutions having pairwise distinct coordinates that are associated with
other choices of (half-)integers n and which satisfy some form of condensation, c.f. later

on, the non-vanishing of ‘115\7;) (A) for N large enough may be proved using the determinant

representation for the norm of \I/x;) (A), which was conjectured in [21, 29| and rigorously

proven in [28, 39|.

In Step 3, one should argue that the vector \115\7;) (A) obtained using the specific choice of

(half-)integers I; is indeed the Perron-Frobenius eigenvector of ij,n) (a,b,c). This was first
conjectured by Hulten [27] and was established by Yang and Yang [43]. Checking that
\Ilg\?) (A) is the Perron-Frobenius eigenvector is reasonably simple for A equal to 0 or —oco
(for A = —oo and general n this actually does require some effort). In order to extend
the result to an interval of values of A, one may prove the continuity or analyticity of
\Ifg\?) (A) as a function of A. If continuity is used, then one should additionally prove that
\115\7) (A) does not vanish outside of a discrete set of values of A.

In Step 4, in order to perform the asymptotic expansion, one needs to prove some form
of condensation of the Bethe roots A, i.e. the convergence of the point measure Lx‘) =
% > on_ 0y, towards a given measure in the large N limit. To be more precise, we should
first introduce the continuum Bethe equation whose solution allows one to characterise
the limiting measure. For ¢ € [0,00] (when |A| < 1) and ¢ € [0,7/2] (when A < —1),



define p(+|q) as the solution (the unique solvability was thoroughly discussed, by different
methods, in [12, 30, 44]) to the linear integral equation

o(Ma) + / "KO = plula)du =€), VAER, (cont.BE)

with K := %19’ and £ = %p’.
When n/N — m € [0,1/2] as n, N — 400, the point measure LE\?) associated with the

solution A to (10) corresponding to the choice of (half-)integers n; = I; converges weakly
towards p(A|Q(m))1_gm);0em) (A)dA, in which Q(m) is the unique solution to

Qm)
p(AlQ(m))dA = m. (15)
~Q(m)

The existence and uniqueness of Q(m) has been first proven in [12]. We also refer to
Appendixes B and D for a proof of Q(m)’s existence. The uniqueness of Q)(m) may be
obtained as a consequence of Theorem 3 below, and will be discussed thereafter. For
future reference, it may be useful to note that @) is increasing and Q)(1/2) = 7/2 when
A < —1and Q(1/2) = oo when |A| < 1.

Condensation of Bethe roots was first proven when 0 < A < 1 by Gusev [26] for any m
using convex analysis tools. Much later, Dorlas and Samsonov [10] used different convex
analysis techniques to prove the same result and were also able to prove condensation
for any m and A < —Ag with Ay large enough, viz. perturbatively around A = —oc.
More recently, Kozlowski [30] proved condensation for any value of m € [0,1/2] and A €
(—o0, 1), in particular away from the region where convexity or perturbative arguments
are applicable. That proof relied on developing a rigorous approach to dealing with the
non-linear integral equations governing the so-called counting function of the Bethe roots
that were introduced and handled, on a loose level of rigour in |5, 8, 42|. The non-linear
integral equation method allowed to rigorously establish the condensation of Bethe roots
associated with a large class of (half-)integers in (10), not only n;, = I;, as well as to go
beyond the limiting value, and to compute an all order asymptotic expansion in N for
[ F(w)dL) (u) for any A < —1 and m € [0,1/2], as well as for any —1 < A < 1 and
m € [0,1/2). However, owing to the lack of certain compactness properties, the non-linear
integral equation method does not allow one to reach rigorously® an estimate beyond o(1)
for

Q%)
[l ~ [ 160 i) (16
-Q(%)
when —1 <A < 1and m=1/2.

In this work, we develop a method which allows one to estimate (16) up to a O(1/N)

for -1 < A < 1and m = 1/2 and up to a O(In N/N) for A = —1 and m = 1/2.wit

2This was, however, achieved on a formal level in [9].
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Reaching these values of the parameters in the model plays a very important role for the
results obtained in [16, 17, 18] and this stresses the significance of our result.

1.4 Results for Bethe’s equations

For n < N/2, we will henceforth always consider the sequence of (half)-integers

=l =i—-" 1<i<n, (17)
appearing in (10).
For A < 1, recall that we are interested in the solutions A = (A\y,...,\,) € R to
N 1 . :
%p(/\i) ~ 5 ;ﬂ(& - \j) =1, V1 <i<n, (disc.BE)

where p and ¢ are defined in Appendix A. We will also ask that solutions are
e symmetric, meaning that A\, 1_; = —\; for every 1 <17 <n,
e strictly ordered, meaning \; < \;11 for every 1 < i < n.

The first main result of this section is the existence of solutions to (disc.BE) without
any assumption on n < N/2 or A # —1, with a quantitative control on how condensed
these solutions are.

Theorem 3 (Existence of condensed solutions to discrete Bethe equations when A # —1).
There exists a constant C' > 0 such that for every n < N/2 and every A € (—oo0,—1) U
(—1,1), there exists a symmetric strictly ordered solution X = (A1, ..., \,) to (disc.BE).
Moreover, for every f : R — R with integrable derivative, this solution X satisfies

53500 [ 0w < Sl (Cond)

Above, ( is related to A as in (2)—(4), while we introduced the shorthand notation
q:=Q(%). (18)

A solution satisfying (Cond) will be referred to as condensed. Note that the conden-
sation is fairly quantitative but that the control degenerates when A is approaching —1.
We refer to Theorem 6 for the treatment of the case A = —1.

The second theorem will be devoted to the existence of an analytic family of such
solutions. The existence of a continuous family of solutions has been previously proven
in [43]. Yet, we could not identify any use of the continuity property which warrants
mentioning this stronger statement. On the contrary, a property that seems crucial for
applications to Bethe’s Ansatz is the property of analyticity in A of the Bethe roots.
Analyticity may also be directly inferred from the results of [30] for A < —1 and all m as
well as for —1 < A < 1andm € [0,1/2). In this paper, we extend these analyticity results
(by another range of arguments) up to m = 1/2 in the sense described by Theorem 4 below.
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Theorem 4 (Analytic family of solutions to discrete Bethe equations). For every Ay,
there exist No(Ag) < oo and Cy(Ag) < oo such that there exists a unique family of
condensed symmetric strictly ordered solutions A — A(A) to (disc.BE), which is analytic
as a function of A on the following intervals:

o [f Ay > —1, on (Ao, 1) as soon as N > No(Ay) and n < N/2 — Cy(A).
o [f Ay < —1, on (—00,Aq) as soon as N > Ny(Ag) and n < N/2.

Moreover, there exists Ag € (—1,0) such that No(Ao) and Cy(Ag) can be taken to be 0.

We are currently unable to prove, with our method, the existence of an analytic
solution for arbitrary n < N/2 over the whole intervals (—oo, —1) and (—1,1). We refer
to the remarks in Section 3.2 for more details. However, this fact appears to be closely
related to the expected property that the model undergoes a phase transition of infinite
order at A = —1.

Our next result states that the eigenvalue (14) obtained from the Bethe roots provided

by Theorem 4 is indeed the Perron-Frobenius eigenvalue of VA(,")(a, b,c).

Theorem 5 (The Bethe Ansatz gives the Perron-Frobenius eigenvalue). Fiz n < N/2.
For the analytic family of solutions A — A(A) on (u,v) to (disc.BE) given by Theorem 4
(with (u,v) = (—00,Ag) or (Ao, 1)), the quantity AE\?) (A(A)) constructed by (14) from
A(A) is the Perron-Frobenius eigenvalue of Vjsfn)(a, b,c) for every a,b,c such that A €
(u,v).

The last two theorems have the following direct consequence. For A # —1 and n <

N/2, consider the solution A(A) provided by Theorem 4. Since the functions log|L(x)|
and log |M (z)| are differentiable, the condensation and symmetry imply that

n q
4> log ()] = [ 10 LN p(Aa)aA +O( ),
j=1 e
and a similar expression for M. When a > b, one may check that the contribution to

Ag\?) ()\(A)) issuing from the L term is larger than the one issuing from the M term. This
allows one to deduce from the transfer matrix formalism and Theorem 5 that?

I3(@;b,e) = lim o log trace[Vyy" (a, b,¢) "]

= ¥ log [AY (A(8))]

=loga + /log |IL(N)| p(A|q)dX + O(%) (19)

—q

3The absolute value in log |L()\)| is harmless, as the symmetry of X implies that H;.L:l L();) is real
and positive.
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as long as n, N, A are in one the cases where Theorem 4 holds and a > b.

Theorems 1 and 2 follow from (19) once one can estimate efficiently the right-hand
side. At the core of this estimate is the following observation going back to [44]. Let K
be the operator acting on L*(I), where I = R for [A| < 1 and I =[5, %] for A < —1,
constructed from the integral kernel K (X — p); let R be defined by (id —R) = (id + k).
We refer to R as the resolvent, and to its integral kernel R as the resolvent kernel.

Then, (cont.BE) is equivalent to the linear integral equation

o)~ [ RO (el =) forall A€ R (20)

where p = (id — R){. The resolvent kernel R and p are best expressed through their
Fourier transforms/coefficients?

~

R:

_ ~_ &
= =~ and p:=

1+ K 1+
We refer to Appendix A for the explicit formulae.

Due to the definition of @, we have that I = [—Q(1/2),Q(1/2)], and thus p(\) =
p(AQ(3))- The rewriting of (cont.BE) as (20) has the advantage of putting emphasis on
the perturbative structure of the equation for ¢ located in the vicinity of Q(%)

=)

Up to now, our results were always stated for A belonging to strict subintervals of
(—o0,—1) or (—1,1). We conclude this section with a result dealing with the case A = —1.

Theorem 6. There exist Ny, Cy, C; > 0 such that for every N > Ny and
N
n < E - Cl<logN)27

there exists A — A(A) on (—1,1) such that
o for every A € (—1,1), AM(A) is a solution to (disc.BE)
e A — X(A) is analytic on (—1,1);
o for every A € (—1,1) and f € L'(R),

3208 ~ 00 o] < BT Wl e

4When |A| < 1, we consider square-integrable functions on R. For F in L?(R), the Fourier transform
of F' is given by

F(t) = /Re*“zF(sc)dm.

When A < —1, we consider m-periodic functions that are square integrable on [—7/2, 7/2] (call L2(R) the
set of m-periodic functions f with [ |f(¢)|?dt < 00). Then, for f € L(R), define the Fourier coefficients

f:Z—Chy
£ = =3 Flmern.

nez
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In Remark 19, we will also see from the proof that one can obtain a solution A(—1)
of (disc.BE) with A = —1 by taking the limit of %/\(A) when ¢ tends to 0. This solution

also satisfies (21).

Organization The paper is split into seven further sections and several appendixes. In
Sections 2 and 3, we present the proofs of Theorems 3 and 4, respectively. The sections
themselves start with general considerations and are then divided into the different cases
0<A<1 —-1<A<0and A < —1, as these exhibit different features. Sections 4 and 5
contain the proofs of Theorems 5 and 6, respectively.

Building upon these results, Theorems 1 and 2 are proved in Sections 6, and 7, re-
spectively. These sections are divided between the cases |A| < 1 and A < —1 as these
correspond to different behaviours.

Finally, Section 8 presents a refined version of Theorem 2. While being interesting in
its own right, this result is mostly useful in our subsequent paper [17].

The first Appendix lists the different definitions of functions in order to have a place
conveniently gathering all the formulae. The two other Appendixes gather properties of
p(:]q) and (cont.BE) so as to not overburden the rest of the text.

Acknowledgments The first author was funded by the ERC CriBLaM. The third au-
thor was funded by the Swiss FNS. The first, third, fourth and fifth authors were partially
funded by the NCCR SwissMap and the Swiss FNS. The first and fourth authors thank
Matan Harel for inspiring discussions at the beginning of the project.

2 Proof of Theorem 3

In this whole section, fix A € (—oo,—1) U (—1,1) and n < N/2. Recall that N is even
andthat]i:i—”THforlgign.

Below, we introduce the notion of interlaced solution which will be useful in the proof.
For ¢ > 0 (with ¢ <7/2when A < —1) and x € (—x, x¢), where zy = z¢(q) € RxU{+00}
is defined by

oo

/,O(Mfz)alA = & (zo — =),
0

introduce the quantile A(z|q) given by the formula

A(zlq)
p(Ng)d\ = §(x — =5H). (22)
0
Note that A(x|q) is unambiguously defined since p(A|g) > 0.

Due to definition of p(+|q) (see Appendix A and (20)), zo is equal to infinity for A < —1
and is finite, but larger than or equal to w/2 for A > —1. In the latter case, in order to

13



avoid unnecessarily heavy notation, we set A(z|q) = +oo for x > 29 and —oo for z < —xy.
Note also that by definition of g, c.f. (15) and (18), we have that ¢ = A(n+3|q) = —A(%]q).

Definition 7. Forn < %, k>1andqe Ry, A= (A\,...,\,) € R" is (k, g)-interlaced if
for every 1 <1 < n,
A(i— %lg) < X < Ali + &lg). (23)

We say that X is (k,q)-strictly interlaced if the strict inequalities hold.

Remark 8. When k = 1, this corresponds to a perfect interlacement between the \; and
the quantiles of the measure p(A|q)dA.

This notion of interlacement is useful since (k, ¢)-interlaced solutions obviously sat-
isfy (Cond), as is stated in the next lemma.

Lemma 9 (From interlacement to quantitative condensation). Fiz k > 1 and ¢ € R,.
For every (k, q)-interlaced X and every f : R — R with integrable derivative,

A(n+3lq)

| }sz / FOPOND) dA| < 1 ss s (24)
(3la)

with Ty = (A1 — £|q),A(n + £|q)). Furthermore, if f is monotonic, the constant
Kl f'|21(z,) can be replaced by

k+1 max{’f (\) — f(/\(n + %|Q)> (M) = f(A(%|Q))|}

Proof. By (22), the integral of p(-|¢) between A(j — |g) and A(j + 3|g) is +, as long as
both arguments are in between —zy and xy. Thus, we find

. A(n+31q) AGi+3l9)

1

=3 ) - / FOND]| <3 /|f Nlp(Ag)A
o (Xla) TTIAG-L1)

AGG+E19)

Z / 7l < 1 oz

where we invoked the trivial inequality, for A(j — 1[g) < X < A(J + 3]9),

Aj A(i+5la)
00 =1l =| [ rdn| < [ 1l
A AG=%1a)

14



In the case when f is non-decreasing (non-increasing works in the same way), (k,q)-
interlacement gives

AGG—%1q) A(G+E+1]q)
N / FNPDA < FOy) < N / FN PN g)dx (25)
(i—E-1lg) A(j+E5]9)

The lower-bound holds for n > j > (k 4 3)/2 while the upper one for 1 < j < n — &1

Summing the left-hand side over j > (k+3)/2, bounding from below the remaining sums of
f(A)) by k—;lf()\l), and the missing piece of integral by —%f(/\(n+%|q)) gives the lower
bound on the difference. The upper bound follows from analogous considerations. n

The core of the proof of Theorem 3 will be to construct solutions of (disc.BE) that lie
in the subset of R given by

Q. g := {strictly (k, q)-interlaced, symmetric, strictly ordered A with |\;| < R, Vi},

(26)
with g given by (18), as fixed points of a well-chosen function. This will be done by
picking k = k(A) and R = R(A, N) carefully, and then proving that the closure (0, g of
QY r is mapped to {2 r by this function. Then, the Brouwer fixed point theorem implies
the existence of a fixed point for this function, which is a solution to (disc.BE) due to the
choice of the function. While the proof is fairly similar in the different regimes, some tiny
differences still exist and we therefore divide it between the cases A € [0,1), A € (—1,0],
and A < —1. Let us mention that a fixed point method was already used, although in a
slightly different manner, for proving existence of Bethe roots in [24].

Remark 10. The reason for distinguishing between A > 0 and A < 0 issues from the fact
that X — 9¥(X) given in Appendiz A is respectively decreasing and increasing. Furthermore,
when A < 0, dividing between A < —1 and A > —1 comes from the small caveat that the
image of ¥ is an interval of length strictly smaller than 2w when A > —1 and equal to 2w
when A < —1.

Remark 11. We expect the existence of (1, q)-interlaced solutions to (disc.BE) for every
A < 1, even though we are currently unable to prove this fact for n close to N/2 (when
n/N < 1/2 — e, this follows readily from the results established in [30]). Below are plots

of

A

m = maX{N/ p(Aloc)d) 1 <0< N/2}
AD)

as a function of the system size N, for n = N/2 and different A > —1. One sees that the
quantity remains bounded by 1/2, meaning that the solution is (1, +o0)-interlaced.
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2.1 Case 0<A<1
Introduce the smallest odd integer k = k(A) € Z, such that

o > |9(+00) — I(—o00)| = 27 — 4] (27)

k+1

Consider the map ® : R™ — R™, A — u for which p; is defined for every 1 <i < n by
P(s) — % Y 0w — Ny) = %1, (28)
j=1

where p and ¢ are given in Appendix A.

This function is well-defined as the map = — p(z) — & > =1 Y(z — A;) is continuous
strictly increasing (here the fact that A > 0 ensures that o is decreasing) and tends to =71
with T := (1—2)7—((1—2%) at co. Also, since |371;| < 3 — % and T > Z (recall that
n < N/2 and that ¢ < 7/2 in this case), there exists a constant R = R(A, N) such that
|1;] < R for every 4. From now on, we fix this constant and show that ® maps € z onto
Q. r. The Brouwer fixed point theorem then implies that ® has a fixed point (since ﬁk, R
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is a compact convex set), which is a strictly (k,q)-interlaced symmetric strictly ordered
solution of (disc.BE).

Let g = ®(X) for some X € Oy r. That p is strictly ordered and symmetric is obvious
from (28), whose left-hand side is strictly increasing in p;. We therefore only need to check
the strict (k, q)-interlacement, which is a direct consequence of the following sequence of
inequalities:

Hi

2W‘N/ (M)

0

_ (Np 1:) N/ p(\g)dx — 271,

27
< B9 (100) — 9(—o0)| £ k. (29)

The first equality in (29) is due to the identity, valid for every x and ¢,

T

q
2n [ pttla)dt =pla) = [ 9~ Np(yi (30)
0 —q
which is the integrated version of (cont.BE) (recall that ¢ and p are odd). The first
inequality in (29) is an application of the definition of u; together with Lemma 9 applied

to the monotone function ¥(y; — -); it is also useful to mention that ¢ = A(n + %|q) =
—A(1 — 3]q), due to the definitions of q and A(:|g).

2.2 Case -1<A<O0

As before, introduce the smallest odd integer k = k(A) € Z, such that (27) holds.

We are unable to use the map ® from the previous subsection as ¢ is now increasing.
We therefore change the map slightly and consider the map ¥ : R* — R™ A — p for which
1; is defined for every 1 < i < n by

1) NZﬁ + 2y, (31)

The map is again well-defined as p is continuous, strictly increasing, and p(R) is equal to
[ — m,m — (], while for any A € R™,

—Hr -+ F < ¥ VNN +FL < BE-O-F,
j=1
(we use that |9 <7 —2(, |I;| < (n —1)/2) which ensures that the left-hand side of (31)
lies in the range of p since n < N/2. Thus, as before, we may find R = R(A, N) large
enough such that |u;| < R for every i.
Again, we wish to prove that ¥ is mapping ﬁ;@ r to Q. g, which will imply the existence
of a fixed point, and therefore a strictly (k,q)-interlaced, symmetric strictly, ordered
solution to (disc.BE).
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Fix A € Oy g and set g = WU(X). The strict monotonicity and the fact that y; € (=R, R)
are immediate consequences of the definition of ¥ and the choice of R, and we do not
give further details. Lemma 9 applied to the decreasing function ¥(\; — -) implies that

No(u) < N [ 90 = Np(Na)dy

—q
+ Bl max {[9(N — A1) — 9\ — @), [I(A — ) — 9N + q)|} + 2L

Observe now that, due to (27), the maximum above is smaller than |27 — 4] < 27r/,erl
Since in addition \; was assumed smaller than A(i + ’; |q), and since ¥ is increasing, we

conclude that

p(u;) < N/ (i + £1g) — Np(A|g)dA + 271 + 2% = Np(A(i + £]q)),

where the last equality follows from (30) and the definition of A(i + £|q). Since p is
increasing, we get that p; < A(i + £|q). Similarly, one proves that p; > A(i — £|q).

2.3 Case A < —1

For A < —1 and g > 0, first observe that the function ¢(\) := 20(A) —0(A+5)—9(A=5) is
increasing on [0, 7/4] and decreasing on [7/4, 7/2] with ¢(0) = ¢(7/2) =0 and p(7/4) €
(0,2m). Moreover, ¢ is m-periodic and even (due to the corresponding properties for 1),
and therefore p(7/4) is its maximum over all R. Then, introduce the smallest odd integer
k € Z, such that

2T

k 7T
Pl > sup {|p(A)| : X € R} = ¢(F) (32)

In the present case, we reuse the map ¥ defined in Section 2.2. This map is well
defined since, in this regime of A, p is strictly increasing and p(R) = R.

For small values of NV, the existence of a fixed point of W (or equivalently of a solution

o (disc.BE)) that is not necessarily (k, R)-interlaced is easily obtained. Its condensation
may be derived by adjusting the constant C' in (Cond). Henceforth we focus on values of
N above a threshold independent of A chosen below.

Let p = WU(A) for some X € ﬁk,R. As in the previous part, it is immediate that y is
symmetric and strictly ordered. One should still establish the boundedness and the strict
(k, q)-interlacement of p. We will argue that the former is a direct consequence of the
later. We thus first establish interlacement.

To do so, one should start by establishing a generalisation of Lemma 9 to the case
of a function ¢ : [0,400) — R which is monotonous on [0, 7/2]. Here, we only treat the
case of n even and leave the details of n odd to the reader, since it only leads to minor
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modifications. We claim that, for any such function g,

‘ > g - N/g p(ula) du‘ < imaX{m J,m[g]}, (33)
where
m*[g] := max{|g(A;) —g(0)] : j=n—25,.. . ;n} and m7[g] :=[g(q) — g(Az41)] .

The inequality above is obtained in the same way as Lemma 9, and we give no further
details.

Define 9™ (\, p) := 9\ — ) + Y(A + p). Then a direct computation shows that the
functions 9™ (\;, ) for i = 1,...,n are monotonous on [0, 7]. Applying (33) to 9™ (\;, )
we find

= ]lv Z IV (Niy Aj) + %Tfi

Jj=1+%
q
> / 9™ (s, ) p(ala)dpe — Sgtmax{m [0 ()] m [0 )]} + F L (34)
0

1

It follows from the lower bound p(z|q) > p(x) > established in Lemma 29 of

20
Appendix D, that for each j
A(n+%1q)
An+ Ha) — At — 5+ Ha) < ¢ / p(Nq)dA = 25 <. (35)
Aln—j+%]q)

Therefore, the (k, q)-interlacement of A allows one to infer that A; = q 4+ O(%), with the
O(.) here and below being uniform in j = n — k—gl, ...,nand A < —1. Hence, since
q < m/2, any \; appearing in the definition of m™[g] exceeds 7/2 by at most O(£).
Direct computation show that 7/2 is a local extremum of p +— 9¥™ (A, ) on [7/2 —
n,m/2 + n] for some n > 0 independent of A and A. Thus, we conclude that for all N
large enough (which we will assume henceforth for reasons described at the start of the

proof), every 2n < N and i € {1+ %, n},
max{m™ [PV (A, )], mT [0V (A, )]} < [0V (A §) = 9V (A 0)] = (M)

Plugging the above into (34), we find
q
) = [ O mplala)ds — (D) + %
0
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Invoking the choice of k and the fact that A — () is increasing on R gives that
q
) > [ 9(Mm = 5l0) — ) plul)dn + %1y = p(A(n — 4la))
—q

This yields the lower bound for the (k, q)-interlacement of g. The upper bound is obtained
in an analogous way.

Finally, the (k, q)-interlacement of g and the upper bound A(n+ £|q) — A(n+ 3]q) <

% ensure that pu, < q+ % and thus,_ by symmetry, that u; € (=R, R) with
R:=7+ % The latter establishes that V(€ ) C % .

3 Proof of Theorem 4

Fix n < N/2. Since the dependence in A plays a role in this argument, we recall it in the
subscript of the map T : (A, A) — Ta(A) from [—o0, 1) x R™ to R defined by the formula,
for every 1 < i <n,

[TaM)]; = 30 N) = gy D0 = N) = L, 1<i<n. (36)
j=1

We remind that p and ¥ appearing above do depend on A, c.f. Appendix A.
The zeroes of T correspond to the solutions to (disc.BE) for A. The following propo-
sition will play a key role in the proof of Theorem 4.

Proposition 12. Let k be as defined by (27) for —1 < A < 1 and (32) for A < —1.
Then, there exists some universal constant C such that, for every A € (—oo,1) \ {—1},
every N large enough, and every

n S N/2 - Ck?21(_170) (A) s
we have that dT A is invertible at X for any (k, q)-interlaced, ordered, symmetric X.

With this proposition at hand, we are in position to prove the theorem.

Proof of Theorem /. Taking into account the definition of T and introducing Q(A) :=
Qua),ra,N), With € g given by (26) and R(A, N) as constructed in Subsections 2.1, 2.2
and 2.3, depending on the value of A, we can restate the theorem as the existence of an
analytic family A — A(A) such that A(A) € Q(A) satisfies TA(A(A)) = 0 for every A.

Consider some Ag for which we are in the possession of A(4y) € Q(Ag) satisfying
Ta,(A(Ap)) = 0. Using Proposition 12, the implicit function theorem for analytic func-
tions gives the existence of an analytic family A +— A(A) € R” such that TA(A(A)) =0
in a small neighbourhood of Ay. Continuity implies that by reducing the neighbourhood
if need be, we can further assume that A(A) € Q(A).
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Also note that a continuous limit as A — A; of A(A) € Q(A) with TA(AA)) =0
converges to A(A;) € Q(A;) with Ta,(A(A1)) = 0. Yet, we saw in the previous section
that solutions to (disc.BE) in Q(A,) are necessarily in Q(A,). Together with the previous
paragraph, this implies the existence of an analytic family of solutions on any open interval
on which the conditions of Proposition 12 hold, and which contains at least one value A
for which there exists a solution A € Q(A) to (disc.BE). The intervals of Theorem 4 are
indeed such that the conditions of Proposition 12 hold; the existence of solutions for some
A in these intervals is ensured by Theorem 3 (or alternatively by Lemmata 16 and 17,
see below).

To prove the uniqueness of the solutions for all A, it suffices to prove it for a single
value A; in each of the two intervals of Theorem 4. Indeed, assuming the existence
of multiple solutions at some value of A, the argument above implies the existence of
multiple analytic families of solutions in the whole interval. These families may no cross
inside the interval, due to the implicit function theorem, and would therefore contradict
the uniqueness at A;. We choose to check the uniqueness of solutions for A; = 0 and
A; a very large negative number. This is done by solving (disc.BE) explicitly for A =0
and A = —oo, then extending the property to large negative numbers by continuity; see
Lemmata 16 and 17 below for more details. ]

We now focus on the proof of Proposition 12, and divide it into three subsections
depending on the range of A as before. Note that since K = %19’ and £ = %p’, dTA(X)
can be rewritten as

0 - KN N i)
], 1 Y
i | K= A

N

3.1 Proof of Proposition 12 when 0 < A <1

For any A € R, the matrix dTa(A) is symmetric (since K is even) and positive definite
(since K > 0 and £ > 0 — these are derivatives of increasing and strictly increasing
functions, respectively). As a consequence, it is invertible.

Remark 13. Alternatively, in this regime, one can obtain existence and uniqueness of the
solution to the Bethe equation (disc.BE) as follows. Since dTa(X) is a positive definite
matrix, the function

n Ai Ai—A

50 =3 ([ w5 Z / S )

i=1 =1

1s strictly convex, and has therefore at most one extremum which, if exists, is its minimum.
The existence thereof can be obtained in at least three ways. Fither one uses the fixed point
theorem in the previous section, or one checks that S tends to infinity as soon as one of
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the \; tends to infinity (this is slightly technical), or finally one observes that at A = 0
there is an explicit solution and that the implicit function theorem guarantees that this
solution extends into an analytic function on 0 < A < 1.

3.2 Proof of Proposition 12 when —1 < A <0

Recall that in this regime we restrict our attention to n satisfying
n < N/2 — Ck? (37)
where £ is given by (27) while C' is yet to be determined. Also, we remind that q is given
by (18).
Fix A as in the proposition. The matrix dT A (A) is no longer obviously positive definite

and therefore not obviously invertible. In order to prove invertibility, we rather show that
the matrix A defined by

1 1 <& o
Ty, | @ g LKA =g

Aij = — = = S
“Np(A\jlq) 17

is diagonal dominant® hence invertible (note that Proposition 24(i) of Appendix B gives
that p(Alq) > 0 on R and therefore the matrix A is well-defined). The invertibility of
dTa(X) follows trivially from that of A. Checking diagonal dominance relies on two
computations.

On the one hand, Lemma 9 applied to A — K(\; — \) (since A is (k, q)-interlaced)
together with (cont.BE) gives

1 ! k kK|l )
A"Z—f)\-—/K)\»—)\p)\qd)\——K’ 1 =1-—>. (38
On the other hand, Lemma 9 applied to the function
A= fi(A) = K(A = A)/p(Aa)
gives®
1 K\ —XN\)
ZAJ[ - _Zﬂ—
oy N 27 p(Aela)
TK(\ —A) k
< —22 2 h(ANq)dN + — || il
< [ BB+ S,
I +q) -9\ —q) K
=— o ’ +N||fj/-||L1(Ik)
@)k L
< k—_i_l_'_NHfJ/'”Ll(Ik)a (39)

5Meaning that A;; > Zﬁﬁi |A;;| for every i.
6We also use the trivial facts that K(0) >0, p(Alq) > 0 and K = 3= in the first inequality.
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where 7, := [A(1 — £|q), A(n + £|q)].

Now, we estimate the error terms (meaning the terms with factor £) in (38) and (39)
separately. Below, the constants C; are independent of everything else. We use analytic
properties of the solution to the continuum Bethe Equation (cont.BE) that are proved
in Proposition 24 of Appendix B. The assumption (37) plays an essential role in what
follows.

We start by estimating (38). Using that |p'(\)| < wp(N)/( (see Proposition 24(ii)) and
further invoking Proposition 24(i), we find:

p(—a) — p(A(1 = %|q)) <

o~

A(1/2]q) A(1/2]q) -
[ ans [ i = ()
A(1—k/2|q) A(1-k/2|q)

Furthermore, Proposition 24(iii) leads to
p(—q) > %(% — %) with ¢ >0. (41)
Combining the two last displayed equations we infer a lower bound

A1 —E|q)) > @ (L — ntCiky  with 0 = =,
p(A( Q‘q))— g(z N ) wi 1 o

Then Proposition 24(i), the monotonicity of p(-) on (—oo, 0] and the symmetry and (k, q)-
interlacement of X give that

p(Ala) > p(N;) = p(A1) = p(A(1 — £]q)) > (5 — =55). (42)

Now, since K is unimodal, even, and has limits 0 at +oo, ||K’||;1®r) = 2K(0). Using
this and the previous paragraph, we find
kK 1wy < 2CK(0)k < Cok
N p(Nlg) ~ a(N/2—=n—Cik) — N/2—n—Cik’

(43)

where the last inequality is obtained by observing that K (0) < Cy/( for some (-independent
constant Cl.

We now turn to the error term in (39). Proposition 24(ii) implies that for 1 < j < n,
t € Iy, and N large enough,

K =) 17/(tla)]
T o(t]0)?
_ KOy — O]+ KO — 1% explEAGla) ~ A1 - 5la))
- inf{p(t|q) : t € Iy} '

Using (40) and (42), direct computation allows one to obtain the upper bound

+ KA = 1)

exp (Z[A(zla) = A(L = £lq)]) < N/§4_(kn—_1)01k |
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Then, using that A(n + £|q) = —A(1 — £|q), the parity of p, Proposition 24(i) and the
previously mentioned bound K (0) < Cy/(, one deduces from (44) that

ko k , Cak||K|or
e . 1 < K 1
R A UL o erererd
k k
<01 : 4
_05( +N/2_n—01/€)N/2—n—C1k (45)

Plug (43) and (45) in (38) and (39), respectively, to find that

1 k
A=A, > - .
i ; R CGN/2—n—Clk

Taking C' large enough in the statement of the proposition ensures that A is indeed
diagonal dominant.

Remark 14. The difficulty in proving that A;j is diagonally dominant comes from the
estimates involving j close to 1 or n as approximating sums by integrals is not efficient
for these values of j. Another way of seeing this is that when j is far from 1 and n then
p(X\j|q) is larger and therefore the error term is smaller. Nonetheless, numerics suggest
that the matriz is diagonal dominant for every —1 < A < 1 and n < N/2, as shown on
the plots of m := min{A;; — > |A;;| : 1 <i < n} as a function of the system-size N, for
J#i

n = N/2 and at four different values of A.

1.2
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Remark 15. Since the differential is non-zero at A =0 (it is diagonal since K =0), we
obtain in particular the existence of an analytic family of solutions for every n < N/2 for
|A| < Ay with Ay small enough.

3.3 Proof of Proposition 12 when A < —1

Fix A as in the proposition. Again, dTA(A) is not obviously positive definite. At this
point, we may use a symmetrization trick like in the proof of Theorem 3 for A < —1.
This argument was presented in [14] and we refer to this paper for a full proof. Here, we
present an alternative proof that we find to be of some interest.

We show that dTA() is invertible by estimating the large N behaviour of det[dTA(A)]
with the help of Lemma 9. To start with, observe that

T 1= 600 = 5 DK =4) = €00 = [ KO mplula)dn + O (1K' =)

—q

k
= o) + O(%) - (46)
where 7, := [A(1 — £|q),A(n + £|q)] is a subinterval of [—m, 7] uniformly bounded in
n < N/2.
Since p(A|lq) > 0 on R, the above ensures that the matrix
M = K=
X(A))

is well-defined for any n, N. Then, introduce an integral operator M acting on L*(]—q, q])
with the integral kernel

M) =Y Lgg, (A 1) My plplq) (47)

4,j=1
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where J; := [A(i — ]q),A(i + %|q)] is a partition of the integration domain UP,J; =
(—q, q] as can be inferred from the identities

q=A(n+3lq) = —A(1 - 3la) .

The matter is that the Fredholm determinant of Id +M is equal to dety [Iy+M/N], where
Iy is the identity matrix. Indeed, by writing the Fredholm expansion for the determinant,
one has that

+00 1 .
det [Id+M] = dXdet [M (N, \;
Lz((gqvq])[ ] ;E!/ ¢ [ ( J)]
—q
400 1 q n n
=S5 [0 > TT{ta.00 10, 00p0ua) et ).
=1 i1, ie=1 s=1
-1 Jise-sge=1

q
Since Jp N Jy = 0 if k # ¢, by using that [ dulz(u)p(pla) = <, one obtains

—+00 n

det [ld+M] =D & > det[FMy] = det[ly + £ M].

L2((—aq]) R

Introduce the integral operator K on L?((—gq,q]) characterised by the integral kernel
K(A—p). Both M and K are trace class. Indeed, M is of finite rank while K has smooth
kernel and acting on functions supported on a compact interval [11]. Moreover, it holds

tr [ — M] = 2qK(0) — K(O)l

=
I‘M:
=)
:;\ —

=1

w0 4 o (%10} = o(h).

There we used the estimate (46). We now estimate the Hilbert—Schmidt norm of K — M.
One starts with the representation for the kernel

—

= 2qK(0) — K(O){

—q

n p(plq)
KO 1) — MO0 1) = leixjj()\,lu){f(()\—,u)—K()\i—)\j>5€()\j> b

ij=1

By using that A(z + k|q) — A(z|q) = O(k/N) uniformly in z, the mean-value theorem
and (k, q)-interlacement of A, one gets that

K\ —p)— K= \) = O<E>

N
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on J; x Jj. Then, the estimate (46) allows one to conclude that

k+1

k+1
K(A =) = MO )| < C—Zlmj A p) = Co =

2,7=1

This yields an estimate on the Hilbert-Schmidt norm [|[K — M||zs = O(%) since q is

uniformly bounded in n < N/2. Thus, since both K, M have finite Hilbert—Schmidt
norms, it holds [25] that their 2-determinants satisfy

Since for a trace class operator O one has det, [Id +(9} = det[Id +(’)] e Ol where the
determinant appearing on the right-hand side is the usual Fredholm determinant, one
infers that det[Id +M] —det[Id+K] = O(%) . Since Id +K is invertible on L*([—q, q])
for any ¢ € [0, 7/2] (this is for instance a consequence of the proofs of Propositions 23, 26,
and 28), this entails that det[ld —I—/\/l} # 0 for N large enough.

4 Proof of Theorem 5

Let us start by stating two lemmata.

Lemma 16. Let A(0) be the unique solution to (disc.BE) when A = 0. Then, one has
\I/X;) (A(0))ja=0 # 0 and Ag\?) (A(0))ja=0 is the Perron-Frobenius eigenvalue of

VY (V2rsin[T52), v/2r sin[2], rv/2)

for any r and 6.

Proof. For A = 0, the unique solution to (disc.BE) is given by

N(0) = pii, (%W).

(n)

It is then a matter of elementary computation to show that the entries of W)’ are strictly
positive, which concludes the proof of the lemma. O

Lemma 17. Let A — A(A) be an analytic solution of (disc.BE) defined on (—oo,v).
Then, for A sufficiently negative, \Ifg\?) (A(A)) is non-zero and AS\?) (A(A)) is the Perron-
Frobenius eigenvalue of V]\(,")(a, b,c).

Proof of Lemma 17. Exceptionally, consider (disc.BE) with A = —oo (see Appendix A).
First, note that
i—(n+1)/2

)\l(—OO) =T N—n
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for 1 < i < n is the k-interlaced, symmetric, strictly ordered solution of (disc.BE) with
A = —oo (simply note that 6_.,(A) = 2 in this case). We deduce that if

¢(“)(f|)\) -— lim % — Hei(n+1)/\k Z g(O_)HGQiAU(k)(xk—k)’

Ameo (_@'A)— k=1 oEG, k=1
n;o0 . b
VJS,’ )= lim ( ) ,
A——o0 E,Q (N—2n)
(—2A)2 x(N—2n
Ag\’,uoo) =,

then the Bethe Ansatz at A = —oo (or equivalently its limit as A — —o0) implies that

pEglmee) _ gl glmoo) gy gl > PN (EA(—o0)) s

|Z|=n

One gets the result by proving that \Ilg\?;oo) is non-zero and that AX?OO) is the largest

)

eigenvalue of ng,moo , which we next do.

We start by showing the first claim by considering the entry of \If%;oo) for 7, =
(2,4,...,2n). Setting 7 = ™™= one deduces from the above that

- —2(n+1)2 k
@D(Oo) (%P\(‘OO)) =7 4 det [Tj LJq ’
The determinant of the Vandermonde matrix (77%); ;. does not vanish since it corresponds

to the values 7, 72,...,7", which are all distinct owing to 2n < N. Hence, \1153;‘”) £ 0.
For the second property, we refer to [14, Lemma 3.2| for the full proof. ]

Finally, we are ready to prove the theorem.

Proof of Theorem 5. Consider an analytic family of solutions A +— A(A) as in the state-
ment of the theorem. Then A — \115\7) (A(A)) is an analytic family of vectors. By Lemma 16
for (u,v) = (A, 1) or Lemma 17 for (u,v) = (—o0,4y), \IIE\’,I)()\(AO)) # 0 for some
Ay € (u,v). The analyticity implies that \115\7;) (A(A)) # 0 for all but a discrete set D of A
in (u,v).

It follows that Ag\?) (A(A)) is an eigenvalue of ij,n)(a, b,c) for all A € (u,v)\ D. By
continuity of (a,b,c) — V]E,n)(a, b,c) and A — AS{,]) (A(A)), this property extends to all
values A € (u,v).

Now, since V]S,")(a, b, ¢) is an irreducible symmetric matrix, its Perron-Frobenius eigen-

value is isolated for all a, b, ¢ with A € (u,v). Lemmata 16 and 17 proved that Ag\?) (A(A))
is the Perron-Frobenius eigenvalue for some A € (u,v); by connexity and continuity of

both (a,b,c) — VJS,")(a, b,c) and (a,b,c) — Ag\?) this property extends to the whole set of
parameters a, b, ¢ with A € (u,v). ]
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Remark 18. The analyticity of A — A(A) was only used once in the proof above, namely
to show that the vector \IJS(;) (A(A)) is non-zero for (almost) all A.

It is highly non-trivial that this property hods for all A, N and n. The norm of
\I/X;) (A(A)) has been arqued to be given in terms of the determinant of dTA(X) in [21, 29]
and this was proven in [28, 39]. The results reads

[P AA)]2 = FO) det[dTa(N)] (48)

for some explicit non-zero function f. Therefore, proving that the vector is non-zero
amounts to proving that the differential of Ta is invertible which, as shown above, auto-
matically implies analyticity.

In conclusion, proving analyticity of the solutions and using the strategy above, rather
than proving their continuity and separately that the resulting vector is non-zero, bypasses
the use of (48) and contains no additional complications.

5 Proof of Theorem 6

Let k = Cylog N and n < N/2 — C1k*. The constants Cy and C; will be chosen large
enough in the course of the proof.

To start, we follow the argument of Theorem 3 in Section 2.2 to guarantee that for
each —1 < A < 0, every (k, q)-interlaced solution is strictly interlaced. For the proof to
work, we need to check that

90 — A1) — 9 — )] < 2k, (49)

In order to do that, remark that extremum calculation and (k, q)-interlacement imply
that

yw&—AQ—M&—qNS%ﬂM;qN
< 209(A(1 - &[a))|
= 4| arctan [tanh (A(l — %Iq) cot(()

[E—

¢
< 271 + 4 arctan [ 5
A= 510G - %))
2m + 2
> a7 3
A1 -5QG - %))
C
<27+

log [$(Chk? — C"k)]

In the third line, we used that tanh(y) < y and cot({) < 1/(, and that ¢ — A(zx|q) is
decreasing for < (n+1)/2 in this regime of A. In the last line, we used (42). Overall, we

29



deduce that there exits a constant c3 > 0 independent of everything such that for every
-1 <A<O,

(A — A1) = 9N — q)] < 27 — 1023N'
We deduce (49) by fixing Cj large enough. In particular, we obtain the equivalent of
Theorem 3, namely that for every —1 < A < 0, there exists a (k, q)-interlaced strictly
ordered symmetric solution A(A) to (disc.BE).

We now need to prove that the family A(A) can be assumed to be analytic. We follow
the argument of Section 3.2, with minor changes which we describe next. As in Section 3.2
we may use (49) to deduce (38) and (39). It remains to bound the error terms. We start
with (39). Since N/2 —n — k > C1k? — k, (45) leads to

Aoy < —mm AL G
NI = e (N2 —n—Ck) = Cik— 1

This can be made smaller than 1/(4k) by choosing C' large enough. The same argument
applies to the error term in (38) and the proof follows.

Remark 19. The uniform (Colog N, q)-interlacement shows that the entries of %/\(A)
are bounded uniformly in A so that we may extract sub-sequential limits as ¢ tends to 0 to
approach (Cylog N, q)-interlaced strictly ordered symmetric solutions A(—1) to (disc.BE)
for A = —1. Here, one should use the convergence on compact subsets of R, as A — —1,
viz. ¢ = 07, of p(-/C), V(-/Q), %K(/O and %5(/0 to pia=—1, Vja=—1, Kja=—1 and {a=—
given in Appendiz A.2.

To prove an analogue of Theorem 3 for A = —1, one may employ the bounds of Sec-
tion 2.2 and rescale all variables by 1/C. This allows one to conclude that ¥ maps %Q;@R
onto %Qk,R and so, by taking the ¢ — 0 limit, yields a Brouwer fized point for the map
Via—_1. The unique fized point of this map coincides, by construction, with any sub-
sequential limit of %/\(A) as ¢ tends to 0. Thus, such sub-sequential limits are unique,
which shows that %/\(A) does converge to a (Colog N, q)-interlaced, strictly ordered, sym-
metric solution A(—1) to (disc.BE) for A = —1.

6 Proof of Theorem 1

We prove the statement for a > b and A # —1. The results extends to all @ > b > 0 and
¢ >0 with A < 1, since the left and right sides of (6) are Lipschitz in each coordinate of
(a,b,c). The particular expression for A = —1 is obtained by taking the limit either from
above or below in (6).

We start with the expression

N
Z(TN,M7 a, b7 C) = Z Z(n)<TN,M7 a, b7 C)?

n=0
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which gives

i 108 Z(Twar a.b,¢) = max fi(a.b.¢) = {77 (a,,0), (50)
where in the second equality we restrict our attention to n < N/2 thanks to the symmetry
n <— N — n corresponding to the symmetry under the reversal of all arrows. The last
equality uses the classical fact that fj(\f )(a, b, ¢) is maximal for n = N/2, see [14, Lemma
3.6] or [33] for a proof.

For 0 <A <1or A< —1, we can apply (19) to n = N/2 to get

Q(1/2)
£ (a,b,0) = max{ loga + / log [L(A)[p(\)dA + O(%) .
-Q(1/2)
Q(1/2)
ogb+ [ loglMpAA+OH)}. (1)
-Q(1/2)

We claim that the same holds for —1 < A < 0. Notice however that we do not have
access to f](\,N/ 2)(a, b,c) in this case. Yet, the inequality”

L (e b)Yy b

Z0N(T b,c) > —
(Twar, a,b,¢) 2 N \4max{a,b,c}

is sufficient to obtain (51) as we can apply (19) to n := N/2 — Cp, and then compare

N, n
SN to ) and p(3) to p(AQ(5 — ).
Overall, we see that the only remaining difficulty is to compute

Q(1/2) Q(1/2)
loga + / log |[L(N\)|p(A)dX\  and  logb+ / log |[M(X\)|p(X)dA.
—Q(1/2) —Q(1/2)

We shall only focus on the evaluation of the first term and split the proof in two depending
on whether |A| < 1or A < —1. We leave to the reader the verification that the first term
does indeed dominate the second when a > 0.

6.1 Case |[A] <1

When |A| < 1, we use the Fourier transform on R. Define

C(z) := 3 log[L(z)L(—x)] = log|L(z)| forx € R (52)

"The displayed inequality can be obtained from the easy observation (already made in a number
of papers, see e.g. [18]) that there exists a map from configurations with n + 1 up arrows per row to
configurations with n up arrows per row constructed by choosing a path of oriented edges cycling around
the torus in the vertical direction with length smaller than M N/n (such a path always exists and there
are at most N4MN/" choices for it) and reversing all arrows on it. This changes the weights, hence the
factor min{a, b, ¢}/ max{a, b, c}.
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and observe the exact expressions given in Appendix A for the different functions and
their Fourier transforms. Recalling that p is even and Q(1/2) = +o0, we find that

+oo +oo

fla,b,c) —loga = / Ca)p(z)de = = [ C)p(t)dt
T 1 sinb(%4) sinh{(r — 0)4]
__4 2cosh (CL) sinh [ L] dt.

Using that

some algebra and the change of variables ¢t — 2t give the result.

Remark 20. For the special case a = b = ¢ = 1, we may compute the integral directly.
After a fairly elementary computation, we recover the classical result of Lieb [33]

= Log[l — —2—]
1.1.1) = 1+2coshz dr = 31 4 ]
f( ) ) / COSh(Bx/4) xr = Og[3]

—00

The particular expression for a = b =1 and ¢ = 2 is obtained from (6) by direct compu-
tation.

6.2 Case A < —1

When A < —1, we work with 7-periodic functions and consider Fourier coefficients.
Again, we introduce C(z) = C(z) := 1 log[L(z)L(—x)] and use the exact expression of
the functions and their Fourier coefficients given in Appendix A. We deduce that

w/2

flab.e)~loga= [ Claplaids =23 fmCln
—w/2 n=o (53)
_jnjc Sinh [2n¢0 /7]
nEZZ\{O} 2n cosh(¢n)

32



7 Proof of Theorem 2

7.1 Focusing on the asymptotic in the ¢ variable

We claim that it suffices to estimate the asymptotic behaviour of

Q(1/2)

s@= [ Clom m—/c p(alg)ds (54)

—Q(1/2)

as ¢ /* Q(1/2), with C defined in (52).

Indeed, (19) shows that f(a,b,c) — f™(a,b,c) = 6f(Q(n/N)) + O(1/N). Recall
that (19) is obtained from Theorem 4 whenever A # —1 and (7) holds. For A = —1,
if (7) is satisfied, (19) may be deduced from Theorem 6.

The asymptotics of Q(n/N) as n/N approaches 1/2 are given by Propositions 25, 27
and Lemma 30 of Appendixes B, C and D, respectively, and read
1—-2m

= CA for A € [—1, 1) and mli}llll/Zm (g) for A < -1

~Y

for some constant Ca > 0.

The estimation of (54) is different for —1 < A < 1 and A < —1 and does not refer
anymore to the discrete Bethe equation. Deriving Theorem 2 from the asymptotics of (54)
obtained below and those for () mentioned above is a matter of simple algebra, which we
do not detail further.

Remark 21. The constant Ca was explicitly computed in [12]. We do not need the precise
value here and therefore work with this weaker and simpler result. We provide however in
Proposition 25 of Appendiz B an integral representation for Ca in terms of the solution
to a Wiener-Hopf equation on R, .

7.2 Case |Al <1
Consider the function G defined for x € R by

G@w—cuwi/R@—wcwmy
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Using (20), then reorganizing the integrals (in particular using that C' and R are even),
and then passing to Fourier gives that

5ﬂ@=i/C@W@MﬂMM¢W—//%X@R@—yM@MﬂwN¢My

R

G(2)p(2|q)Ljp)>qd

/
- [avamos - [ [ew™ =S e e e
/

i(t —s)

~ — ~ eiQ(t_S) _ eiQ(S_t) — s
GOty —tm [ ([ I o).

2T &\D0 2

R+i6 R

it —s) 27

In the last identity we use that
k) C(k) ~ wsinh [k¢2]
1+ K (k) k cosh [k$]

is integrable on a neighbourhood of R and has exponential decay. We now perform two
elementary residue computations. Fix 7/( < f < 37/ and s € id + R for 6 > 0

~

very small. Since Res;—1ir/¢[G] = F2isinf and there is no other pole of G in the strip
{z € C:Im(z) < B} (and G tends to 0 at infinity), we get

elalt=s) .t

ela(t—s) a dt a elalim/C—s) R & &
o = — —ir . t)5-
/ t—s ()Qiﬂ' (s>+z'7r/g—s eSizinc| ]+/z(t—s) ()27r
R R+8i
N e—a7/C—igs
= G(s) —2isind injc s +e Ppih(s)
where i A
iq(t—s ;
@) _ e ITIG(t £4p) db
g (s) / t—s+if (55)

R
and similarly

ez‘q(s—t) . dt e—qTr/C+z'qs

— Gt — = —2isinf ——— + ¢ Pa(=)
/t—s ()27T o z'7r/C+s+e Y (s)
R

Putting these two displayed equations in the first one gives that

. _ar A e i et ds
1) =250 % [ 5Tl (m/c—s+z'7r/c+s) 2
R

- (56)
=1 [ D) + i (s)ds

R
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We first justify that the second term is a O(e 7). Clearly, i € L%(R) and [|4{* 2Ry <
C' uniformly in ¢. Furthermore, it is established in Proposition 25 of Appendix B that
given

e(z) == —e %m1R+(x),

we find that

qm

p(zlq) = p(z) + e < [(T—e)(x—q)+ (T —¢)(—q — ) + 6T(x)] (57)

where |07 ||pe®) + [[0T | 1ry = O(e %) and T is the unique solution of the integral
equation

T(x) - / Rz — y)T(y)dy = e(x). (58)

By interpolation theorems for L spaces, we get that T" and 47T belong to L*(R) with norms
uniformly bounded in ¢. Therefore, p(-|q) € L*(R) with a norm controlled uniformly in g.
All of this ensures that the last term in (56) is indeed O(e=%9).

—_— 1

Since p(+|q) is even and T

[0 (st o) i 2 7 st dae i (59)

is the Fourier transform of ¢ , we find

/¢ +is + w/( —is) 27

Plugging = + ¢ in (57), and performing an asymptotic development of (57) (at first order)
enables us to recast (56) as

5f(q) = 4sinfe ¢ /e_xz {p(m +q) + e ¢ [T(:v) —e(x)+T(—x —2q) + 0T (x + q)} }dm

+ o(e_Qq%),
where we used the fact that § can be taken strictly larger than 27 /(. Then, by using
e plx+q)=c(z+q)(1+ e_%ﬁqée(x)) with ||de|| 1,y bounded uniformly in g,
e T € L™(R),
e the fact that as \ tends to infinity,
T(A) = O(max {e"7-c* e t}).

which follows from the integral equation satisfied by T', the fact that '€ L'(R) and
similar estimates for the behaviour of R(\) when A — o0,
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one readily infers that

oo

5f(q) = 4sinfe ¢ ~/e_IZT(JC)daz + o(e7?10).

0

Thus, all-in-all, we get that with q = Q(n/N),

1@ = (L + o) (3 - §)*sind- g [T
Note that the constant is strictly positive since T > 0 on R.

7.3 Case A = —1

We omit the proof as it is the same as in the previous section, using Appendix C instead
of Appendix B.

7.4 Case A < —1

Following the same reasoning as in the previous section gives

/2 q
1@ = [ Cwpis - [ C@plalas
—x/2 —q
w/2
~(r —20p($[CE) - [ C@Rla - Fdo+o(1)].
—r/2

It remains to prove that the following quantity is strictly positive:

/2
c()- [ CwRla-gido= 2 Y (-17Cm) - = 3(~1)"Clm) Rw
/2 neZ nez

_ %Z(—n“—c@

neZ 1+ K( )
B Slnh ZnC ]
Z 2n cosh(n()’

neZ

Positivity then follows from the Parseval identity combined with the fact that the inverse
Fourier transforms of both tanh[n¢]/(2|n|) and sinh [2n¢2]/sinh [n(] are positive.
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8 A refined version of Theorem 2 (under additional
conditions)

In this section, we prove a sharper version of Theorem 2 under mild conditions on a, b, ¢
and n, N.

Theorem 22. For N > 2 and a # b and ¢ > 0 leading to |A| < 1, there exists a constant
C'=C(0) < oo such that for everyn < N — C/(,

](\;Z) (CL, b7 C) - f(CL, b’ C) - O(C) Sln‘g(l + O(]'))(l - %)2 + O(WL (60>
where o(1) is a quantity tending to zero as n/N tends to 1/2.

The improvement with respect to Theorem 2 is that the O(1/N) is replaced with the

more precise O(m) This will be particularly useful in [17], where it is used to prove

that N|f](\7)(a,b, c) — f](\?ﬂ)(a,b, ¢)] = 0 as N — oo, with n < +/N. This convergence is
expected to hold for all n = o(N), when A € [—-1,1).

Proof of Theorem 22. Due to the form of (60), it suffices to prove the statement for N
large enough. Fix for now n and N as in the theorem; we will see later which bounds are
needed on N.

Consider the analytic family A = (A; : 1 < i < n) given by Theorem 4 on (A, 1). We
start by improving on the condensation formula of Theorem 3. Introduce, for a fixed A,
the quantity Diff : [1,...,n] — R defined by

Diff (i N/ p(Aq)d
(ila)

Diff := max{|Diff(:)| : 1 <i < n}.

Claim 1 There exists Cy > 0 such that for every f : R — R with integrable first and
second derivatives, and for every A = (N\; : 1 <i < n) with Diff < %,

20 )= [ s

Diff Co(1 + Diff)
B/ CEL.L

I et + 12t q.q)-

Proof. Using that the integral of p(A|q) between A(j — 3|g) and A(j + 1[q) is + gives

n

n A(i+1/2]a)
%;f( - [ o A=Y g T = S

= JaG-1/20)
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Differentiating the definition of A(z|q) gives

, B 1
M) = S RGe

Therefore, if we set I; := [j—3,j+ 1] and g(y) := f(A(y|q)), a change of variables implies,
for every 7,

A(J+1/2|q +1/2
" AGIa) = S = ] [ (a) - gl
A(j—1/2lq) j—1/2
< 4N||g L)

and, since \; € [A(j — %|q),A(j + %|q)] thanks to | Diff(5)] < 1/2,

(+1/2la)
/A [F(A) = F(AGa))[p(Ala)dA = iIf(Aj) — f(A(jl9))]

(—1/2/q)
|D1ff( )lH Nl

\lef( )|
< T(HQ’HLI@) + 119" 22 cryy)-

Summing these estimates on j gives

1O Diff 1 + Diff
¥ 2 fO) / JNpNa)dA| < = N9l qazmsrjay + H—57 19" L a/2me1/2)-
j=1

To conclude, observe that

191z qu/zmrisany = 1 2 aa)
and
1 o' (-q)
1 1! !
o < || Pl + | o Plloree
9" et /2 masay Np(-|q) pe(cqqy 1= Np(-[q)? (g 140D

which, combined with the bounds
(Np(zlg) = co(N — 2n — Co)

(which is obtained from (42), the monotonicity of p on (—o0,0] and the assumption
Diff < 1/2 which implies interlacement of A with k£ = 1) and |p/(x|q)| < %p(:c|q) (Propo-
sition 24(ii)) on [—q, q], gives the claim. O
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Claim 2 There exists an absolute constant Cy € (0,00) such that for every A € (—1,1)
and every n < N/2 — Cy/(,
Cy

Diff < .
BECN —an— )

Proof. The constant C5 will be chosen at the end of the proof; it will be apparent that it
is independent of n or N. For A = 0, the result is obvious as the explicit (and unique)
solution of the discrete Bethe Equation satisfies Diff = 0.

Assume that there exists A € (—1,1) such that Diff =

first equality and then (disc.BE) in the second, we find

25 < §. Using (30) in the

DIff(1) = o p(\) - / "9 — wplula)du — I

1 O N

= 9

3 22 0= 0 = 5 [ 90 = st d
7=1

Now, we use that for K = ;-¢', |K'| < C|K| and ||K| g = 1 — % (see the Appendix

again). Apply Claim 1 to 7Tq?()\ — ) (and bound the L' norm on [—q, q] by the L' norm
on R) to get

cory : Co(1 + Diff)
| Diff ()| < Diff - || K || 11m) W(CHKIHLI(R) + Kl w)),
O/
<(1-2)Diff + ——2>
_( W) ! —i_.]\[—QTL—C'O7

where Cj is the constant given by Claim 1, and Cj depends on Cp, but not on Cs. Since
this applies to all ¢, we conclude that
wC{

DiHSZC(N—Qn—CO)' (61)

Choose now Cy so that Co > 7Cj. Then (61) contradicts our assumption on Diff, and

we conclude that there exists no A € (—1,1) with Diff = m By the continuity
of Diff as a function of A and considering the fact that Diff = 0 for A = 0, we conclude
that Diff < W for all A S <_1, 1) ]

We are now in a position to conclude the proof of Theorem 22. Let C' = (5 be given
by Claim 2 and fix a, b, ¢ as in the theorem. By taking N large enough, we may assume
that the value A corresponding to (a, b, ¢) is contained in the domain in which A is defined
for any n < N/2 — C/( (see Theorem 4). Then (19) states that

Flog A (0) = % - C\) +O(e™),
=1
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where C(.) is the function defined in (52). Claims 1 and 2 give

a(3)
dloga)- | PRECVZELENE
g
03 / Cg / ,
< 1 ) .
< CN(N_Qn_CO)HCHL ® T RN 2 ) CIC lorwy + 1€ 22 Ry)
Co

S IN(N—2n—Cy)

Furthermore, Sections 7.1 and 7.2 give that

a(3)
/ Y C(N)p(N)dA = f(a,b,c) — C(A)(1+0o(1))sinf(1 — %")2
—a()
The above implies (60) by choosing C' large enough. [

A formulae for the different functions and their Fourier
transforms

Recall the parameterisations (2), (3) and (4) of the weights a,b,c. We remind that we
always assume that ¢ > b > 0 which corresponds to 6 € (0,7/2].

A.1 Case |[A] <1

If ¢ := arccos(—A) € (0, 7), we have for = € R, using the principal branch of the logarithm,

sinh (i¢/2 + x)

. (
pl) :=ilog sinh (i¢/2 — )’
., sinh (i¢ + )
19(13) = 'LlOg m,
,_ / o sin (2¢)
K(z) = %19 (z) = %sinh (x +i¢) sinh (z — iC)’
sin (¢)

€)= 2 () = o SR G r Dk o= /D)
1

ple) = 2¢ cosh (mx/¢)’
C(z) := 3log[L(z)L(—x)].

Moreover, the following direct consequences of the formulas above are used in the text:
p is strictly increasing, odd and p(R) = (=7 + (/2,7 — (/2); ¥ is decreasing for A > 0,
increasing for A < 0 and constant for A = 0; and finally 9(R) = (—|7 — (|, |7 — (]).
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We will also use the following Fourier transforms (with the relevant continuous exten-
sion at ¢t = 0 when needed):

_ sinh[(7 — 2()t/2]

A N
~ . sinh[(7 — ()t/2]
&) = sinh [7t/2]

S — 1
) = 2 cosh (Ct/2)’
Git) = 27 smh(;(t)at)'

t

A.2 Case A =-1
We have

pCW:Zibg(Zgiz),

z%@::zmg(?+x),

1 q/ _ 1
K =596 = ey
1 ./ _ 2

1
pl) = 2 cosh [rz]’

C(z) := 3 log[L(z)L(—z)] = 5 log [

We will also be interested in the following Fourier coefficients (with relevant extensions
at t = 0)

~

K(t) = e,
g(t) = elil/2,
At = <0 :

14 K(t)  2cosht/2]
e~ T (1 — eIt

1

6(75) =7

41



A.3 Case A < —1

We have
R sinh (2¢)
K(z) = 50 (z) = 5- sin (x + () sin (x — i¢)’
L sinh ¢
5(33') = 217rp (l’) 27r sin (x + ZC/Q) sin (SU - ZC/2)
anx 1

A) = 8 3 k] — % = 7]

Clx) = %log[L( )L(=)].

The functions p and ¥ are then defined as the odd smooth functions on R that have %5
and 3 K as derivatives. In particular, on (-7, 7), they are equal to

2
o(x) = iln sin(i¢/2 + x)
sin(i¢/2 — x)’
9(x) = iln sin(i€ +z)
sin(i¢ — z)’
Moreover, the following direct consequences of the formulas above are used in the text: p
is increasing and maps R to R; ¥ is increasing; J(|—n/2,7/2|) = [, 7] and ¥ extends to R
as a quasi-periodic continuous function. The function K is even, unimodal, and has zero

limits at +oo.
We stress that these formulae do not extend, per se, beyond (-7, 7). We will also be
interested in the following Fourier coefficients, when 20/7 < 1,

K(n) = e~ 2Inlc
E(n) = e "I¢,
" £(n) !
n)= = = )
pln) 14+ K(n) 2cosh[n(]
C(n) = ﬁ(e"""’l_k e~ Im+3)0) — %e""'c sinh [2¢n¢]

if n # 0, and 6(0) = (.

A4 Case A = —
We have

I
b
8

I
N
K

/\/\Q/-\/\
~— — — ~— ~—
Sy .

-



B Analysis of continuum Bethe equation for |A| < 1

In this appendix we gather some information on p(x|q) when |A| < 1. The first proposition
justifies the existence of this quantity.

Proposition 23 (Existence of solutions to (cont.BE)). For every |A| < 1 and g > 0, there
exists a unique solution x +— p(z|q) to (cont.BE). Furthermore, for every m € [0,1/2],
there exists Q(m) satisfying (15).

Proof. The operator K on L'(R) N L>°(R) defined by

ki) = [ " Ko - ) )y

satisfies that

4C — 2
St Y
27

Hence, Id +K is invertible and the solution p(A|q) is unique and lies in L'(R) N L*°(R)
with a uniform bound on the norm. Since K(z) is smooth in z and ¢, the Fredholm series
representation for the resolvent of Id +/C [25] allows one to infer that (z,q, A) — p(z|q)
is smooth.

The existence of @(m) follows readily from the continuity of the map (z,q,A) —
p(x|q), the mean-value theorem, and the fact that p(z|0) integrates to 0 while p(-) =

p(lQ(3)) to 3. O

The following proposition gives the necessary properties for the proof of Theorem 4
when —1 < A < 0 (see Section 3.2).

1Kl oo oo = (Kl oot < K |11 = [0(400) — F(—00)] (62)

Proposition 24 (Properties necessary for Theorem 4). Fixz ¢ > 0. Then, there exist
c,C > 0 such that for every —1 < A <0,

(i) ForqeR andz € R, 0 < p(x) < p(x|q) < p(x) + p(q).

(i) For everyz € [~q— 2.0+ <], (zlg) < Cetplala).
(iii) For every m, %(% —m) < p(Q(m)) < %(% —m).

The lower bound of (i) was first established in [12].

Proof. Recall that R = K /(1 + K). Following [44], one gets that R > 0 since R = pK /¢
and therefore

R(\) = / o\ — 9)F(y)dy (63)

R
in which p is obviously positive while
= : T—2¢
1 K . 1 sin (—27
F(x):—/ ,\(w)e’mdw = p—r: Ceem) — >0,
27 J £(w) 2(m — () cos (5=2m) + cosh (%)
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where the second equality follows from a straightforward residue computation.
The operator U on L>(R) N L'(R) defined by

uifle) = [ R

satisfies

= K(0 T—20 1
00 = [0 < |y = B0) = }(20) = N
so that the version (20) of (cont.BE) immediately gives that
plalg) =) Ur[pl(x). (65)
k=0

This expression and the fact that R > 0 gives the lower bound of (i). For the upper
bound, we isolate the first term in the sum and then use operator bounds to get that

plelg) < p() + Y U |ew@osr=@ - PLjaialle < p(2) + p(9)-
k=1

To get (ii), differentiate (20) with respect to x and then integrate by part to obtain that
p'(-|q) satisfies the functional equation:

p'(xlq) — R\[_R(T — )P (ylg) dy = p'(x) + [R(x — q) — R(z + q)]p(qlq)-

The claim follows by using the same expression as (65), as well as the bounds
0/(2)| < Zp(x)  and  pg) < C'ep(x)

for |z] < g+e, and |R||ls < C/C.
We now focus on (iii). The definition of m, (20), and
. K —2
Roy = RO mo
1+ K@) 2r—=2¢

<1
2

give that
Q(m)
~m= [ o)z~ [ plal@um)iz
R —Q(m)
— [ salQuds— [ R - y)ololQGn))dyds
[-Q(m),Q(m)]¢ Rx[-Q(m),Q(m)]c
st [ oelQEds > gt [ e~ g, (60)
[-Q(m),Q(m)]° [-Q(m),Q(m)]¢

N[
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as m — 1/2. Above, we set [—Q(m),Q(m)]® := R\ [-Q(m), Q(m)]. Plugging again the
expression (65) in this estimate to replace p(:|Q(m)) by p in the integral, and then using
the explicit formula for p gives the result easily. O

We finish with the properties necessary to obtain Theorem 2 for |A| < 1.

Proposition 25 (Properties necessary for Theorem 2). There exists C > 0 such that for
every |A| < 1:

(i) There exists a unique solution T € (L N L*)(R) of the functional equation

T(x) —/R(x—y)T(y)dy =e(x) with e(z) = %e_IglM(x). (67)

(ii) For every ¢ > 0 and x € R,
plala) = pla) + e [(T = e)(q = 2) + (T = ¢)(—q —2) + 6T(x)],  (68)
where ||6T ||oo + [|6T ||y < Ce™2.
(iii) It holds

Q(m)

o~y

lim (1 —m)e

m—1/2 ™

+o0
= — : / T(\)dA.

Note that, in fact, one may solve (67) in terms of a scalar Riemann—Hilbert problem
by implementing the Wiener-Hopf method. However, we will not need such a precise
information on 7" and will thus establish Proposition 25 by more elementary means.

Proof. We stress that, below, all domination relations O( f) will be uniform in A, viz. bounded
by Cf with C' being A independent. We start with Item (i). Introduce the operator V
on L>®(R) N LY(R) defined by

WH@rz/R@—yﬁ@wy

which has || - ||1(r)— 11 (r)-Operator norm smaller than 1/2, owing to the chain of bounds
VIl < 1R[]l flli < 3| f]l1. This justifies the existence and uniqueness of T' € L*(R)
and gives the formula

T=> Ve (69)

For item (ii), introduce Ui [f](x) := V[f(£q £+ -)](—g £ x) and observe that U[f] =
U [f]+U_[f]. Further, by introducing the operators 7, 7+ such that 7.[f](z) = f(£q=*x)
and 74[f](z) = f(—q £ x) one finds that Uy = 7.V 7.. Therefore, one finds that

p(Aq) = p(N) + D Uy + U (N) =D UE +UE)[p] + 6Tpen (V)

E>1 k>1
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in which

Pert Z Z Z ' [P]()\) (70)

k>1 p=1 ei€{£}
#{ie;=+}=p
A direct calculation yields
+o00 —-q
U (N0 = [ R-g+ A= pdu [ Bla+ - ) 0)a ()
0 —o0

In order to estimate the norm of UTU~ one recalls the convolution representation for
R (63) which shows that R is monotonously decreasing on R, and enjoys the bound

R(A) = O(b(\)) as A — 4oo and where b()\):=max{e = e e CN} (72)
This immediately yields

e U fllrry < BCONIR] Lyl 1l 2 ry

Clearly, similar bounds do hold for [|[U_U,[f]| 1 &)
Now, observe that 7.7. = Id, so that (Z/{i)k[p] = 73 V*[p(+q £ -)]. The uniform in
x > 0 expansion

. _ o 2%(qt2)
p(q+1) = e_?qe(:z)<1 +(5e(ac)> with  e(z) = —————— . (73)
14 e “clme

yields

Z (ui)k[P] = e 7y [T— e] + e 9T, with 0Ty = ZTi Flede] (74)

k>1 k>1

By using that

UL 10y p1/00®)y = IV p1/sor) < 36c = =0 <3 (75)

one infers that )
e
”5T:|:||L1/00(R) < Z —||2(52||L1/oo(R+) < Ce ¢?,

9k
k>1
Further, given ¢; € {£} such that #{i : ¢, =+} € {1,...,k— 1}, there is necessarily
at least one change of sign in the string €1, ..., e, so that one gets

e+ Ue o)y = 5 LUy, U Uy} < C 2 b(20)
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This leads to the estimate on d7,e introduced in (70):

16T pere | 1/ Ry CZZCP “2b(2g)-e T < Ceb(2q)- Y (22)" = C'(¢)e” <"b(2q) .

k>1 p=1 E>1

There, e <7 issues from the estimates of the action of U* on p. Thus, one obtains the
representation (68) with 07" given by

0T = 6Ty + 6T- + 6Tpere and |07 || ey = O(b(2q) + e 2¢9). (76)

For Item (iii), recall the exact representation for 1 —m given in (66). Then, by virtue
of (68) one gets
/ p(Alg)dr = 2 / (AN + 200 / (T—e)(\)dA + 2 / (T(—q—N\)+5T(N)dA . (77)
[~a.q° q 0 q

There, we used that ¢ has support on R,. The part involving 67" can be directly estimated
when ¢ — 400 to give O(e™27). By repeating the previous reasoning, it is easy to see that

/ p(A)dX ~ e ¢1 / e(A)dX
q 0
Further, by using the integral equation satisfied by T, one gets that
o0 —2¢ 0 oo
/T(—q— A)d\ = / / R\ —2q — p)T(p)dpd
q o0 o0

< T|w | R2g+N)dA < Cb(2q) .

["
/

Thus, by substituing ¢ < @Q(m) in the above estimates and using that Q(m) — +o0o as
m — + by virtue of Item (iii) of Proposition 24, one obtains that

o0

3—m = e—%QWW a C{ /T()\)d)\ + O(b(zQ(m)) + e—22Q<m>>} .
0

Therefore

liml{% —m}e%Q( ) =

T
= ¢ | T
0

The constant on the rhs is strictly positive since T' is given by a sum of strictly positive
terms.

]
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C Analysis of continuum Bethe equation when A = —1

Proposition 26 (Existence of solutions to (cont.BE)). Fiz A = —1 and q¢ > 0, there
exists a unique solution x — p(z|q) to (cont.BE). Furthermore, for every m € [0,1/2],
there ezists Q(m) satisfying (15).

Proof. The proof valid for |A| < 1 does not generalise directly since estimating that
the operator K has || - |[z1_zi-norm strictly less than 1 demands more effort, see [30].
However, by working with (20) instead of (cont.BE), one readily checks that the fact that
the operator U has norm smaller than %, which gives the existence of solutions. The rest
of the proof is the same. O

The following proposition gives the necessary properties for the proof of Theorem 2
when A = —1. The proof is the same as for |A| < 1.

Proposition 27. Fix A = —1. There exists C > 0 such that

(i) There exists a unique solution T € L'(R) of the functional equation
7(0) ~ [ Roslo = y)T()dy = e(a) = ¢ " La, (z). (73)
0

(ii) We have that
p(zlg) = p(z) +e (T —¢)(g —2) + (T = ¢)(—=¢ —2) + 6T(x)],  (79)

where ||0T || e ry + (|07 || 1Ry < Cle™2.

(iii) lim (5 — m)e® ™™ egists and belongs to (0,00).
m—1/2

Note that, above, R_; stands for the resolvent kernel to the operator Id+/C at A = —1
and acting on L%(R).

D Computations for A < —1

Proposition 28. For every A < —1 and q € [0,7/2], there exists a unique solution
z — p(x|q) to (cont.BE). Furthermore, there exists Q(m) satisfying (15).

Proof. In order to circumvent the problems with estimating ||K||r1(—q.q)—1!(—q.q)> WE
again work with the alternative representation of the integral equation (20) in which

1 eQi)\—|n|C
RA\) = — Y ———.
2w £~ cosh(n()
Then, it remains to use that ||R||11(—x/2,x/2) = 1/2 so as to conclude as in the A = —1.

Finally, the existence of Q(m) follows from the same argument as in the |A| < 1 case. O
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Lemma 29. [t holds p(x|q) > p(x) > %

Proof. The explicit expression for p implies that p(x) > 2—1< It is thus enough to establish
the upper bound. This follows from an expression similar to (65) for A < —1 and the
fact that R > 0. To check the latter, note that

~ KEn) . ~ e=2nl¢
R(n) = p(n) ) p(n)é(n) = =TS
so that R is the convolution of p and £ which are both positive. O]
Lemma 30. For A < —1, we get
. 1—2m .
lim ————— = p(3).

m—1/2 T — 2Q(m)

Proof. Equation (20) and the observation that || R|[pi(_z z}) = + along with the continuity
of p give

Q(m)

(r—20)p@ 4o~ [ [ pwl@m)RE -y dyds

—Q(m) [-Q(m),Q(m)]°
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