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Abstract
We take the occasion of this article to review one hundred years of the physical and math-
ematical study of the Ising model. The model, introduced by Lenz in 1920, has been at
the cornerstone of many major revolutions in statistical mechanics. We wish, through its
history, to outline some of these amazing developments. We restrict our attention to the
ferromagnetic nearest-neighbour model on the hypercubic lattice, and essentially focus on
what happens at or near the so-called critical point.
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1. Short motivation
How to provide an introduction to (part of) statistical physics aimed at a wide audi-

ence of mathematicians? The question is not easy, especially since the domain is positioned
halfway between theoretical physics and mathematics, and that contrarily to (some) other
fields of mathematics, it is hard to identify a theory that would embrace most of statistical
physics. A partial answer may be to follow the standard approach of teaching by examples,
and to pick what is maybe the most classical model of statistical physics, namely the Ising
model. Through its history, one may trace many of the revolutions, both on the theoretical
physics and mathematical sides, that statistical physics underwent in the last century.

We therefore chose to streamline this history, from the emergence of the model
to explain experimental results, to its modern applications in mathematics, physics, and
beyond. Obviously, the story will be tainted by the expertise of the author since thousands of
papers have been published on the subject, which ranges over many subfields of mathematics
and theoretical physics. A subjective selection of papers has therefore been made, and the
attention has been restricted to the model on the hypercubic lattice, at equilibrium, (for most
of the review) at criticality, and always with nearest neighbour ferromagnetic interactions
(we are well aware that non-critical and dynamical aspects, as well as long-range, random,
or antiferromagnetic interactions also are of prime importance).

We tried to respect the timing of the appearance of the different notions pertaining
to the model, and avoided as much as possible some tempting anachronisms. As a result,
certain readers may be surprised by some statements, knowing that simpler and more nat-
ural versions exist nowadays. Also, the large number of breakthroughs in the Ising model’s
history – Peierls’ argument, Onsager’s solution on the square lattice and the exact integra-
bility results that followed, Kadanoff’s scaling and universality hypotheses, the Lee-Yang
theorem, correlation inequalities, the Fortuin-Kasteleyn representation, reflection positivity,
Aizenman’s treatment of the random current representation and use of differential inequali-
ties, conformal field theory, rigorous renormalisation group, Chelkak-Smirnov’s conformal
invariance, 3D conformal bootstrap, to cite but a few – forced us to be very quick on some
of these developments. References are added for the avid reader. We also refer to [20,87] for
historical introductions, and [48] for a book on statistical physics including a study of the
Ising model.

2. The first twenty years: a laborious start
2.1. Ising model’s prehistory
In 1895, the French physicist Pierre Curie [30] noticed that magnets lose their mag-

netic attraction when they are heated above a certain critical temperature, now called the
Curie temperature (the phenomenon seemed to have been discovered before by the French
physicist Pouillet in 1832, see [71] for precise references and a discussion). While the Curie
temperature varies from slightly over 100 degrees Celsius for certain alloys, to 769.85
degrees Celsius for magnets made of iron, the underlying phenomenon is always the same:
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at a certain temperature, a magnet ceases to be able to keep a spontaneous magnetisation
and exhibits magnetisation only when an external field is applied to it. This phenomenon is
called a phase transition between a paramagnetic phase above the Curie temperature, and a
ferromagnetic phase below it.

Curie also identified a law, now called Curie’s law, relating the magnetic suscepti-
bility of the system to the temperature and the external magnetic field applied to the magnet.
He noticed the similarity between the ferromagnetic and paramagnetic phases of a magnet
in terms of the temperature and the external magnetic field applied to it, and respectively
the liquid and gas phases of a fluid in terms of the pressure and temperature. Pierre Weiss
[103] tried to produce an efficient physical explanation of this phenomenon by introducing
an assumption, referred to today as the mean-field approximation. This mean-field model,
called the Curie-Weiss model, gave rise to an interesting yet not fully accurate description
of the phase transition.

The German physicist Wilhelm Lenz got interested in Curie’s law. Lenz agreed
with one of Weiss’ suggestions that magnets are made of elementary pieces that behave
themselves as small magnets. Yet, he was at the same time in line with his contempo-
rary physicists, thinking that one of Weiss’ assumption, namely that elementary magnets
can rotate freely within a solid, was wrong. Taking this into account, he challenged the
rotational freeness. Observing that a crystal selects certain directions corresponding to its
symmetries, he made the assumption that elementary magnets also behave in this way. By
analogy, he then suggested that a crystal-like mechanism for magnets should favour that
neighbouring elementary magnets are aligned, therefore corresponding to either pointing in
the same or opposite directions. At the end, the reasoning of Lenz led to the assumption
that elementary magnets were taking only two possible directions that are opposite of each
other. He formalized this reasoning in [81].

At this stage, Lenz did not propose an explicit form for the interaction between
elementary magnets. Also, the paper approximately explained the typical behaviour of a
paramagnet having respectively zero magnetisation when no magnetic field is applied, and
a magnetisation when such a magnetic field is applied, but Lenz made no mention of what
will later be referred to as the ferromagnetic behaviour.

Ernst Ising was a German physicist born in 1900, who was a PhD student of Lenz
in Hamburg. He graduated in 1924 and published a paper [70] on Lenz’s model in 1925. So,
what did Ising actually achieve in his famous paper from 1925?

First of all, he went one step further than Lenz by specifying the interaction between
elementary magnets. He first made the assumption that interactions "decay rapidly with
distance, so that we, in general, to a first approximation, only have to take the influence on
neighbouring elements into account". He also assumed that "of all the possible positions
that the neighbouring atoms can assume in relation to each other, the one that requires the
minimum energy is when they are both acting in the same direction". These two assumptions
led to the mathematical model that we will define formally in the next section. In order to
treat this model, Ising made a further assumption: he assumed that the elementary magnets
are positioned on a linear chain.
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From all of this, Ising could deduce Curie’s law in the paramagnetic phase. While
this was a source for optimism, the latter was severely challenged by the observation that the
magnetisation was tending to 0 as the magnetic field vanishes, irrespective of the tempera-
ture. In other words, no explanation for ferromagnetism was in sight. Even worse, despite a
few attempts at generalising the model (Ising considered non-nearest neighbour interactions,
more possible directions for the elementary magnets, and a hybrid three dimensional model
that would correspond to a limit in which only pairs of neighbouring elementary magnets
in one direction truly interact), the ferromagnetism did not seem to be explainable. This
led Ising to conjecture that the model was not a good explanation for ferromagnetism (even
when considering higher dimensional base graph for the spins), a thought that he gathered in
a letter to American historian Stephen Brush years later: "I discussed the result of my paper
widely with Professor Lenz and with Dr. Wolfgang Pauli, who at that time was teaching in
Hamburg. There was some disappointment that the linear model did not show the expected
ferromagnetic properties."

After his PhD, Ising left academia to become a teacher in Germany before being
forced to step down due to his Jewish origins. He fled Nazi Germany and emigrated to
the United States, where he became a Professor in Physics at Bradley University. He never
published after his first original paper, and only later became aware of how famous the
model had grown into.

2.2. Formal definition
Let us turn to the formal definition of the model for our magnet. Consider a finite

non-oriented subgraph G = (V, E) of the hypercubic lattice Zd with vertex-set V corre-
sponding to the position of its elementary magnet constituents, and edge-set E modeling the
links between neighbouring ones. An edge e ∈ E is often written e = {x, y}, where x and y

are its endpoints. The elementary magnet at x ∈ V will be a quantity σx ∈ {−1,+1}, where
−1 and +1 correspond to the two opposite directions that it may take. The value σx is called
the spin at x, and the collection (σx : x ∈ V ) ∈ {−1, 1}V of all spins at vertices in V is called
the spin configuration, and should be understood as the state of our magnet.

The energy – or Hamiltonian – of a configuration σ on G is given by

HG,h (σ) := −
∑
{x,y }∈E

σxσy − h
∑
x∈V

σx, (2.1)

where h ∈ R is called the magnetic field. Sometimes, one may want to generalise the model
to accommodate non-nearest neighbour and non-ferromagnetic interactions by setting

HG,h, (Jx,y ) (σ) := −
∑
x,y∈V

Jx,yσxσy − h
∑
x∈V

σx (2.2)

where the (Jx,y : x, y ∈ V ) are called the coupling constants of the model. Except when
otherwise stated, we focus here on the Hamiltonian HG,h corresponding to what is called
the nearest neighbour ferromagnetic (n.n.f.) Ising model on G.
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Following Boltzmann, one considers the (grand) partition function of the Ising
model on G at inverse-temperature β and magnetic field h defined by

Z (G, β, h) :=
∑

σ∈{−1,1}V
exp[−βHG,h (σ)]. (2.3)

The quantity β is interpreted as the inverse of the temperature, as the latter corresponds to
the thermal excitation of elementary magnets, for which it is natural to predict that the larger
their excitation, the less relevant their interaction.

Physicists then consider the linear form defined for every function X : {−1,1}V → R
by the formula

〈X〉G,β,h :=
1

Z (G, β, h)

∑
σ∈{−1,1}V

X (σ) exp[−βHG,β,h (σ)]. (2.4)

At this stage, we do not consider 〈·〉G,β,h itself, and instead focus on a thermody-
namical quantity of the system called the free energy. Consider a box Λn := [−n, n]d ∩ Zd

and define the free energy of the d-dimensional Ising model by the formula

f (β, h) := −
1
β

lim
n→∞

1
|Λn |

ln Z (Λn, β, h) (2.5)

(the existence of the limit is justified by a sub-additivity argument left to the reader).
Originally, Lenz and Ising were interested in a quantity

m(β, h) := − ∂
∂h f (β, h), (2.6)

which is interpreted as the magnetisation of the system in the presence of a magnetic field
of strength h. One may then define the spontaneous magnetisation, which corresponds to
the remaining magnetisation when removing the magnet from the ambient magnetic field,

m∗(β) := lim
h↘0

m(β, h) (2.7)

(to justify the limit, one may prove that m(β, h) decreases as h decreases). The cases
m∗(β) = 0 and m∗(β) > 0 are respectively called the paramagnetic and ferromagnetic cases
as they correspond to the cases where the magnet respectively loses or keeps its magnetisa-
tion even without external magnetic field.

2.3. What does the Ising model truly model?
The Ising model did not develop quickly after its introduction. The original paper

was cited very sporadically in the ten years that followed. In fact, Ising himself was aware
of one citation to his paper only, and this lack of interest was one of the reasons that pushed
him to abandon academia.

There are several explanations why the paper received little attention. The first
one is that the negative result of the paper, stating that the model did not explain ferro-
magnetism, was a pretty disappointing one. The second is a timing problem. A few years
after Ising’s paper, Heisenberg introduced another model of ferromagnetism [63] based on
quantum mechanics, in which the “classical” spins of the Ising model are replaced by the
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quantum spins of electrons. In other words, Heisenberg’s model tries to explain ferromag-
netism via the interaction of the spin angular momentum of the electrons in the atoms,
while the Ising model was relying on their magnetic moments. In a certain sense, the Ising
model was a semi-classical version of Heisenberg model, and as such was violating the
latest developments of quantum mechanics. The discrepancy between the great predictive
successes of the Heisenberg model, and the impossibility to reconcile the Ising model with
the recent advancements in modern physics almost entirely disqualified the model as a good
description of ferromagnetic materials.

At this point, one may wonder why this model, initially introduced in theoretical
physics to explain ferromagnetism but seemingly failed to do so, did not simply fall into
darkness after this rocky start. An element of answer can be found in the developments of
other fields of physics, which we now review.

In 1919, the Russian-German chemical physicist Gustav Tamman presented an
interesting experiment in which atoms in alloys of copper and gold tend to be surrounded
by atoms of the other kind (to picture this, think of a chessboard colouring of the square
lattice). In Tamman’s experiment, the thermal agitation has a direct impact on how much
the atoms tend to be in the right places. In 1935, Bragg and Williams [19] explained this
phenomenon by a statistical mechanics’s argument involving the energy cost of having an
atom in the wrong place. Hans Bethe simplified the model by assuming that only nearest
atoms interact.

In 1936, Ralph Fowler and his team in Cambridge introduced another theoreti-
cal model to understand the adsorption of metal vapour on a glass. Fowler more generally
identified a class of experiments exhibiting similar behaviours, that he named cooperative
phenomena.

The German theoretical physicists Rudolf Peierls later noticed the similarity between
Bethe’s approximation of the Bragg-Williams model, Fowler’s theory of adsorption, and the
Ising model. While the original physical problems are different, the mathematical treatment
is in fact similar. In retrospect, Peierls was perhaps the first person to identify that the Ising
model could treat a number of different phenomena, even though the model was a coarse
caricature for each one of the phenomena in question.

This observation was maybe what kept the Ising model alive for some years, but it
is mathematics that truly changed the nature of the model and made it what it is today. We
now turn to the first mathematical breakthrough in the model.

2.4. Peierls’ argument
While Peierls agreed with the majority of the physics community that the Ising

model was not a good model for ferromagnetism, he certainly recognised that the model
was of mathematical interest. Furthermore, he totally disagreed with the naive generalisa-
tion, based on the few attempts of Ising, of the absence of a ferromagnetic phase to higher
dimensional lattices. This led him to reconsider the problem of the Ising model in two and
three dimensions. As a result, he produced what is probably one of the most important
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papers in the early Ising history [91], in which he developed a technique which is now widely
known in statistical physics as Peierls’ argument.

Roughly speaking, the argument runs as follows. When considering a configuration
σ of the Ising model on Z2, or a finite subgraph of it, one may associate a subset E(σ)
composed of the edges {x, y} of the graph with σx , σy . In a planar context, one may draw
these edges e ∈ E(σ) by considering the dual edges (e∗ : e ∈ E(σ)) on the dual graph1;
see Figure 1. These dual edges and their endpoints form an even subgraph of the dual graph
(call Even(G∗) the set of such even subgraphs) which can be interpreted as a collection of
loops on the dual graph. The representation of configurations σ in terms of even subgraphs
is called the low-temperature expansion. Using the mapping between σ and E(σ), one may
rewrite the partition function as

Z (G, β, 0) =
∑

σ∈{−1,1}V
e−βHG,h (σ) = eβ |E (G) |

∑
F ∈Even(G∗)

e−2β |F | . (2.8)

This formula immediately highlights the fact that β large renders configurations F ∈
Even(G∗) with large loops unlikely. Building on this observation, Peierls was able to obtain
that m∗(β) > 0 for large values of β, see Frame 1 for more details.

The idea to introduce a model of “domain walls” separating the different phases
(here pure +1 and pure −1) from each other is not restricted to the Ising model: it has been
very fruitful to prove the existence of phase transitions, and Peierls’ argument is now one of
the most famous and robust arguments in statistical physics.

Frame 1: a quick version of Peierls’ argument
We do not consider the magnetization m∗(β) but rather the correlation

〈σ0σg〉Λ+n,β,0, where Λ
+
n is the graph Λn plus a vertex g, sometimes referred to as Grif-

fiths’ “ghost” vertex, connected to all the vertices on the boundary of Λn; see Figure 1
on the left. The limit as n tends to infinity can be shown to be m∗(β), so it is sufficient
to prove that the quantity is bounded away from 0 uniformly in n.

If one denotes by C = C(σ) the connected component of 0 in R2 \ {e∗ : e ∈
E(σ)}, one may decompose the magnetisation depending on the value of C to get

〈σ0σg〉Λ+n,β,0 = 1 − 2
∑

g<C∈Even((Λ+n )∗)

〈I(C = C)〉Λ+n,β,0. (2.9)

Now things become interesting. For every C = g, consider the configuration FlipC (σ)
obtained from σ by flipping the values of the spins inside C. This effectively corre-
sponds to removing the set ∂eC of edges in E(σ) with exactly one endpoint in C.

1 The dual graph G∗ = (V ∗, E∗) of a planar graph G = (V, E ) is the planar graph with vertex-
set given by the faces of G (including the exterior one) and edge-set E∗ given by unordered
pairs {u, v }, where u and v are two faces that are bordered by the same edge. When this
edge is e, we denote the dual edge {u, v } by e∗. The map e 7→ e∗ is therefore a bijection
between E and E∗. On the square lattice, the dual graph is nothing but the translate by
( 1

2,
1
2 ) of the square lattice itself.
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Taking into account the cost of this operation leads to

〈I(C = C)〉Λ+n,β,0 ≤ e−2β |∂eC |

for every C = g. At this stage, the fact that ∂eC is a loop and that there are at most
(k + 1)4k possible loops of length k surrounding the origin gives

〈σ0σg〉Λ+n,β,0 ≥ 1 − 2
∑
k≥1

k4ke−2βk > 1 −
8e−2β

(1 − 4e−2β)2 . (2.10)

3. Onsager’s 1944 revolution and the integrability of the Ising model
3.1. Kramers-Wannier treatment of the Ising model and duality
While Peierls’ result is certainly one of the first key rigorous steps in the under-

standing of the Ising model, the work [80] of Hans Kramers and Gregory Wannier in 1941
propelled the Ising model in another dimension in terms of mathematical interest. Indeed,
the two physicists agreed that the Ising model was not necessarily an accurate description
of ferromagnetism, but they were precursors in strongly believing that having mathemati-
cal models that can be rigorously analysed was of crucial interest for the understanding of
physical phenomena, even if only approximate.

Kramers and Wannier’s goal was to understand what happens for the Ising model
at arbitrary inverse-temperature. Peierls’ argument shows that the model behaves like a fer-
romagnet when β is large. A fairly simple argument, see Frame 4, shows that it behaves like
a paramagnet when β is small. It is therefore tempting to think that there is an intermedi-
ate inverse-temperature, playing the theoretical role of the inverse of Curie’s temperature,
that separates a paramagnetic phase from a ferromagnetic phase, i.e. a critical inverse-
temperature βc defined by the formula

βc = βc (Zd) := inf{β : m∗(β) > 0}. (3.1)

Of course, the notion of critical inverse-temperature immediately leads to the following
question: can one compute the value of the critical point βc?

The work [80] represented an important historical step towards this computation. It
involved a number of ideas that deeply influenced the way mathematicians and physicists
approach the Ising model. The first key observation is that Kramers and Wannier did not
work with the Ising model in the presence of a magnetic field (in other words, they set h to
be 0). Instead, they proposed to look at the specific heat defined by

C(β) := −β2 ∂2

(∂β)2 (β f )(β, 0). (3.2)

Kramers and Wannier argued that the critical point of the model on Z2 should correspond to
a value of β at which C(β) blows up. The next step is maybe the most interesting one. By
assuming that there exists a unique point at which C(β) blows up, they were able to predict
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Figure 1
On the left. A picture of the low-temperature expansion on Λ+1 . The set Λ

+
1 is depicted in dashed gray, and (Λ+1 )∗

in plain black. The edges in the dual configuration are depicted in bold. On the right. The set S(5, 3) with the
bottom and top sets depicted. In this case τ and τ are respectively constant equal to −1 and +1.

the value of βc . The reason behind this prediction is the following duality relation for the
free energy on Z2:

β f (β, 0) = β∗ f (β∗, 0) − 2β + ln 2 + 2 ln cosh(β∗), (3.3)

where β and β∗ are related via the formula tanh(β∗) = e−2β . The uniqueness implies that
βc must be the self-dual point satisfying β∗ = β, i.e. βc must be equal to 1

2 ln(1 +
√

2). Of
course, this reasoning is not a formal proof as it is a priori non-obvious that the singular
point is unique.

The proof of Kramers and Wannier of the duality relation is also of great interest.
Originally, they used so-called transfer matrices to do it; see Frame 2 for details. While
they did not invent those matrices (they already appeared in the work of Montroll [86]),
they probably made the first important use of them. Today, the derivation of this relation
is straightforward and does not rely on transfer matrices. It involves relating the partition
functions Z (G, β, 0) and Z (G∗, β∗, 0) using, for the first one, the expression given by the
low-temperature expansion (2.8), and for the second, an alternative representation called
the high-temperature expansion, obtained by van der Waerden [102] and briefly described
in Frame 4. When observing that the dual of a box in the square lattice is (except on the
boundary) a box of the square lattice, one obtains the identity above by considering larger
and larger boxes.

Frame 2: transfer matrices of the Ising model
To lighten the presentation we restrict our attention to the case h = 0. Consider

the slices S(N, M) := (Z/NZ)d−1 × ~0, M� with no edges between the vertices of the
bottom (Z/NZ)d−1 × {0} (we call (Z/NZ)d−1 × {M } the top of the slice); see Figure 1
on the right. Let σ |bottom and σ |top be the restrictions of σ to the top and bottom of

9 100 Years of the Ising Model



S(N, M), considered as two elements of {−1, 1}(Z/NZ)d−1 . Introduce the quantity

Z (N, M, τ, τ) :=
∑

σ∈{−1,1}S(N ,M )

exp[−βHS(N,M ),h (σ)]I(σ |bottom = τ, σ |top = τ), (3.4)

where τ, τ ∈ {−1, 1}(Z/NZ)d−1 , as well as the so-called transfer matrix

VN (τ, τ) := Z (N, 1, τ, τ) = exp
[
− β

( ∑
x∈(Z/NZ)d−1

τxτx +
∑

{x,y }∈E ((Z/NZ)d−1)

τxτy
)]
.

(3.5)
One immediately finds that Z (N, M, τ, τ) = V M

N (τ, τ). Other quantities of the model
may be written in terms of transfer matrices: for instance the partition function of the
model on the d-dimensional torus (Z/NZ)d becomes the trace of V N

N .
One important aspect of those transfer matrices VN is that certain questions on

the behaviour of the model are rephrased as spectral questions on the transfer matrix.
For instance, by letting M and then N go to infinity, one observes that the asymptotic
behaviour of the partition function on (Z/NZ)d−1 × (Z/MZ), and therefore the value
of the free energy, are connected to the asymptotic behaviour of the leading eigenvalue
of VN as N tends to infinity. This can very well be an intractable problem, but in some
cases it is not.

3.2. Onsager’s result
Kramers and Wannier’s results unraveled the potential mathematical interest of the

Ising model, but the real revolution came only a few years after with one of the most impres-
sive achievements in mathematical physics. Lars Onsager, Nobel prize winner in 1968, was
a Norwegian specialist in theoretical chemistry. He was particularly interested in mathemat-
ical problems and focused his attention on the Ising model for the formidable challenge that
its exact solution represented more than for his physical relevance2.

To everyone’s surprise, Onsager announced at a conference of the New York
Academy of Sciences in 1942 that he obtained the following exact expression for the free
energy (at zero magnetic field) of the Ising model on the square lattice Z2:

− β f (β, 0) = ln 2 +
1

8π2

∫ 2π

0

∫ 2π

0
ln[cosh(2β)2 − sinh(2β)(cos θ1 + cos θ2)]dθ1dθ2.

(3.6)
This implies, in physics jargon, that the model is exactly solvable. This solvability is itself
linked to a deep property of the model called integrability. Onsager’s underlying idea was
that the transfer matrices of the 2D Ising model are a product of two matrices that generate
(by taking successive brackets) a finite-dimensional Lie algebra. He used this observation to

2 His opinion on this fact seemingly evolved: in his first 1944 paper [88] he presents it as a
poor model of ferromagnetism, but a fairly good model for binary alloys, while in his paper
with Kaufman in 1949 [77] he describes it as a model for ferromagnetism.
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derive the asymptotic behaviour of the leading eigenvalue of these matrices in his famous
1944 paper [88]. In 1949, Bruria Kaufman [77] provided an alternative and simpler derivation.

A few years later, Onsager surprised the world of theoretical physicists again by
claiming an exact expression for the spontaneous magnetisation on Z2: for β ≥ βc ,

m∗(β) = (1 − sinh(2β)−4)1/8. (3.7)

While the result was announced by Onsager first, it was a young physicist, that would later
become one of the most influential theoretical physicists of the second half of the twentieth
century, Chen-Ning Yang (from Yang-Baxter’s equation, Yang-Mills’s theory, Lee-Yang’s
theory, etc.), who provided a mathematical proof [107] of this statement by achieving a
mathematical tour de force involving Toeplitz determinants. The proof relies on a com-
putation, again using transfer matrices but much more evolved than for the free energy, of
the two-point function 〈σ(0,0)σ(n,0)〉(Z/NZ)2,β,0, and the observation that

m∗(β)2 = lim
n→∞

lim
N→∞

〈σ(0,0)σ(n,0)〉(Z/NZ)2,β,0 (3.8)

(at the time, such an identity was not obviously true, but nowadays this can be proved easily
using for instance the FK percolation, see Section 7.2).

In the forties and fifties, these successes were considered by physicists as a math-
ematical curiosity rather than a truly crucial advance. Yet, they had a revolutionary impact
on theoretical physics for multiple reasons: First, the level of sophistication of the mathe-
matical tools used in the proofs is without any common measure with what was previously
used in such kinds of problems, and these techniques created whole new types of mathemat-
ical physics. Second, the behaviour of the model did not correspond to previous mean-field
approximations, thus invalidating rigorously the Curie-Weiss or Landau theories and open-
ing a new era in statistical mechanics. Third, the results had many direct applications for
the Ising model itself: for instance the specific heat C(β) can easily be shown to blow up
logarithmically as β approaches 1

2 log(1 +
√

2), thus confirming rigorously that this value is
the critical point of the system (the logarithmic blow up is one example of non mean-field
behaviour).

Numerous alternatives have been proposed to the approach of Onsager-Kaufman-
Yang, often referred to as the algebraic method. As a joke, Baxter and Enting named their
1978 paper [10], introducing a solution to the 2D Ising model involving the notion of star-
triangle transformation, the "399th solution of the Ising model". This count is, of course,
overestimated, but one can list a large number of alternative strategies.

The first such strategy is called the combinatorial approach and is referring to an
original argument of Kac and Ward [72] rewriting the partition function of the model in
terms of the square root of the determinants of so-called Kac-Ward’s matrices using a
combinatorial expansion of the partition function generalising the van der Waerden high-
temperature expansion [102]. The advantage of such an approach is that it does not rely on
transfer matrices, and therefore is applicable to every finite planar graph, even with arbitrary
nearest-neighbour coupling constants. Unfortunately, the original argument was not entirely
rigorous and one had to wait until 1999 [33] to finally obtain a mathematical derivation of

11 100 Years of the Ising Model



this approach. Nowadays, the method is very well understood and especially useful in rela-
tion to discrete holomorphicity and higher genus graphs, see [29] and references therein for
a more complete account.

The (nowadays) most classical method is probably the Pfaffian method. It came
as an attempt to go around the substantial difficulties to make the combinatorial approach
rigorous. Due to Hurst and Green [66], Kasteleyn [76], and Fisher [46], the strategy consists
in writing the Ising partition function on a finite planar graph G in terms of the dimer (a
dimer configuration is a subset of edges which covers every vertex exactly once) partition
function on a related graph K (G) (the precise definition of the graph depends on the imple-
mentation of the Pfaffian method). It is then possible to relate the partition function to a
skew-symmetric adjacency matrix and express the partition as a Pfaffian, hence the name of
the method. This strategy has been the basis of a number of more refined results about the
model, in particular the computation of the spin-spin correlations of the model at and away
from criticality. For the deepest and most impressive results, we recommend that the reader
takes a look at the two books of McCoy-Wu [84] and Palmer [90].

Another approach of importance was proposed by Schultz-Mattis-Lieb in [96] to
tackle the cases for which a transfer matrix can be used. In this paper, they connected the
transfer matrix with the exponential of a quantum hamiltonian. This connection to 1D quan-
tum spin chains has been very fruitful and understood in a number of alternative ways since
then. As a byproduct, the authors were able to express the partition function as a Grassmann
"Gaussian" integral. The advantage of this way of writing the partition function is that the
Pfaffians emerge naturally. This approach is at the basis of renormalisation schemes in two
dimensions; see Section 8.3.

Yet another approach dealing with the context in which transfer matrices can be
applied is worth mentioning, as it is by far the most generalisable to other models. It is
based on the commutation of the transfer matrices attached to the model with different
critical parameters. Pioneered by Rodney Baxter, this approach consists in using the so-
called Yang-Baxter equation. The advantage is that the same strategy can be applied to
a very large variety of integrable systems, such as the six-vertex model, to cite only one
example. We refer to [9] and references therein for more details.

4. The fifties and sixties: the Ising model becomes a laboratory for
understanding critical phenomena
The fifties and sixties were probably the decades during which the Ising model

became an "unavoidable" model. The realisation that having a tractable model of statistical
physics could be a useful explanatory but also predicting tool became more and more obvi-
ous. The Ising model, with Onsager’s solution, was a prime example of a model with such
qualities.

The model therefore developed tremendously in the postwar era in theoretical
physics as well as in a rapidly growing field called mathematical physics. The latter gath-
ered more and more physicists that were interested in rigorous aspects of the objects they
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studied, and mathematicians willing to study problems that were naturally emerging from
physical modelling. The Ising model offered a wonderful playground for such scientists, and
the number of papers mentioning the model started to be counted in the hundreds.

4.1. Progress in mathematical physics: from perturbative regions of the phase
diagram to the vicinity of the critical point
During this period, the newly developing community of mathematical physicists

recognised that the study of phase transitions, and in particular of the critical phase (when
β is equal to βc), was a vast field of its own. While the previous developments mostly
concerned values of β and h that were far from the critical regime (Peierls’ argument
[91] or Baker’s use of Padé approximant [8] for instance), the situation changed drastically
around the fifties. The interest in the intermediate values of β became stronger and stronger.
Onsager’s solution offers a precise understanding of the critical behaviour of the 2D Ising
model, yet it has clear downsides related to the relative fragility of the integrability of the
system. As a consequence, mathematical physicists started using the Ising model not only
as a solvable system, but more generally as a good mathematical model that one should not
reduce to its integrability aspects. New rigorous techniques emerged during this period to
try to understand the vicinity of the critical point for non-integrable cases, for instance in
higher dimensions.

4.1.1. Correlation inequalities
It is natural to ask which monotonicity properties are satisfied by the system, in par-

ticular by the spin-spin correlations 〈σA〉G,β,h where σA :=
∏

x∈Aσx, when the parameters
vary (for instance, G, β or h).

To tackle such questions, mathematical physicists started proving what we now call
correlation inequalities using combinatorial arguments. Among the first such examples are
Griffiths’ inequalities [57]: for every β, h ≥ 0 and every A, B ⊂ V ,

〈σA〉G,β,h ≥ 0 and 〈σAσB〉G,β,h ≥ 〈σA〉G,β,h〈σB〉G,β,h . (4.1)

A byproduct of the second inequality when applied to B = {x, y} and summed over all edges
{x, y}, is that correlations 〈σA〉G,β,h are increasing in β (and also in G with a little bit of
additional work). One may derive the same for the spontaneous magnetisation m∗(β), so
that the definition of βc can now be rephrased as

βc = inf{β ≥ 0 : m∗(β) > 0} = sup{β ≥ 0 : m∗(β) = 0}. (4.2)

This implies in particular that there is indeed a unique transition between paramagnetic and
ferromagnetic phases.

Other interesting correlation inequalities were obtained in subsequent years. Let
us contemplate a few examples (we do not write them in full generality, and we drop the
subscript after 〈·〉):

• GHS’s inequality [59]: for h ≥ 0 and x ∈ G,
∂2

(∂h)2 〈σx〉 ≤ 0. (4.3)
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• Simon-Lieb’s inequality [83]: for S 3 0 and x < S, when 〈·〉S refers to the model
in S,

〈σ0σx〉 ≤
∑
y∈∂S

〈σ0σy〉S〈σyσx〉. (4.4)

• Messager-Miracle-Solé’s inequality [85]: for x, y ∈ Zd+ (below 〈·〉 is defined on Zd)

〈σ0σx+y〉 ≤ 〈σ0σx〉. (4.5)

• FKG’s inequality [47]: for any increasing functions f , g : {−1, 1}V → R,

〈 f g〉 ≥ 〈 f 〉〈g〉. (4.6)

This far from exhaustive list, which we did not discuss in detail, is intended to show the vari-
ety of possible correlation inequalities. Clever use of these inequalities provided the embryo
of what would be considered later as the theory of non-critical statistical physics systems
at equilibrium, as the correlation inequalities and their consequences often generalise in the
same (or slightly altered) form to a wider class of lattice spin models.

4.1.2. The Ising model with a magnetic field: the Lee-Yang theory
While studying the whole phase diagram is a Herculean task that was far beyond the

techniques developed at the time, a beautiful development enabled mathematical physicists
to understand the case h , 0.

The twin papers [82], referred to as the Lee-Yang theory, relate the regularity proper-
ties of the free energy (and therefore the location of singular points corresponding to places
where a phase transition occurs) to the locus of the complex zeroes of the partition func-
tion Z (G, β, h) when seen as a function of h ∈ C. Beyond the result itself, the philosophy
consisting in studying the complex zeroes of the partition function had a resounding effect
on the field of mathematical physics. This can be put in parallel with the analysis of zeroes
of the Riemann zeta function: one learns something about prime numbers by studying the
zeroes of a generating-type function associated with them.

The result of Lee and Yang is not restricted to the n.n.f. Ising model on G ⊂ Zd ,
but the latter gives an important application of it. In our context, let Z (G, β, h) ∈ C (for
h = (hx : x ∈ V ) ∈ CV ) be the partition function defined as in (2.3) with the difference that
the magnetic field is allowed to vary with the vertex, i.e. that the

∑
x∈V hσx term of the

Hamiltonian in (2.2) is replaced by
∑

x∈V hxσx . The result states that for this model, the
zeroes of the function h 7→ Z (G, β, h) are satisfying Re(hx ) = 0 for every x ∈ V .

As a consequence of this theorem, the free energy f (β, h) (which we recall from
(2.5) is expressed in terms of the limit of the logarithm of partition functions) is analytic as
soon as h , 0. Other consequences follow, such as exponential decay of so-called truncated
correlations of the system, as well as analyticity of the other thermodynamical quantities
when the magnetic field is non-zero. Roughly put, the Lee-Yang theory enables to under-
stand in full detail the part of the phase diagram corresponding to non-zero magnetic field.
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4.2. Revolutionary progress on the physics front
In parallel to these first successes in mathematical physics, revolutionary progress

was made during this period on the physical understanding of phase transitions. Among
other things, the scaling and universality hypotheses were formulated, and the pillars of the
renormalisation group were cast, in both cases using the Ising model as an important source
of inspiration.

4.2.1. Critical exponents and the success of scaling theory
A fundamental notion of physics is the assumption that thermodynamical quantities

of physical systems near criticality tend to take simple forms when expressed in terms of the
parameters of the system. A major advance was achieved in the sixties by American chemist
Benjamin Widom who proposed in [104] that these quantities are powers in each parameter.
For the Ising model, the parameters are β and h, and this scaling hypothesis translates
into the existence of so-called critical exponents. To give a few examples related to already
defined quantities, one may for instance predict that

m∗(β) = (β − βc)β+o(1)
+ m(βc, h) = h1/δ+o(1) 〈σ0σx〉βc,0 =

1
|x |d−2+δ (4.7)

(notice that β and β have nothing to do with each other), where o(1) is a quantity tending to
0 as β tends to βc , h tends to 0, or |x | tends to infinity, respectively. In fact, a whole family
of such exponents, denoted by α, β,γ, δ, η, ν (for the most classical ones) can be defined for
each model. Understanding the phase transition boils down to, among other things, deriving
those exponents.

Dealing with such exponents, one may naturally wonder how many degrees of free-
dom truly exist in statistical physics models. For instance, could some of these critical
exponents be connected via direct relations that would transcend the precise definition of
each model? In the sixties, physicists such as Essam, Fisher, and Widom himself, to cite
only those three (see [42, 45, 104] for some early works on the subject), started unraveling
systematic connections between the exponents, thus hinting towards the fact that only two
degrees of freedom exist and that exponents are related by so-called scaling relations

νd = 2 − α = 2β + γ = β(δ + 1) = γ
δ + 1
δ − 1

2 − η =
γ

ν
= d

δ − 1
δ + 1

. (4.8)

The scaling relations apply in a context which is far more general than just the Ising model
(see for instance [38] for a proof in the case of a large family of two-dimensional percolation
models). In the course of discovering these different scaling relations, the Ising model in two
and three dimensions played the important role of a sanity check. While other experimental
systems were used as testing grounds, the Ising model was the only example of a theoretical
system which did not exhibit mean-field behaviour (and therefore was not too “trivial”) and
for which such exponents were available, either rigorously thanks to the exact solution in
2D, or approximately thanks to Baker’s use of Padé approximant [8] in 3D.

To conclude this section, let us mention an important quantity, called the corre-
lation length ξ (β) of the system, that plays an important role in the scaling hypothesis (it
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corresponds to the exponent ν). We consider the case β < βc but a similar notion can be
introduced for β > βc , with analogous interpretations.

When considering, say, spin-spin correlations at criticality, one expects an alge-
braic decay as mentioned in (4.7). Yet, when β < βc , the scaling hypothesis cannot hold
uniformly in |x | and such a decay does not occur. In fact, it was found in many systems
that spin-spin correlations decay exponentially fast (see Section 7.1 for more details) and
the inverse-rate of decay is the correlation length ξ (β). This correlation length has an inter-
esting interpretation: it is the smallest scale at which the system with β < βc is off-critical,
meaning that when looking at a system with a size which is much smaller than ξ (β), the
difference between the system and a critical system will be invisible to the physicist’s eye,
while on the contrary when the size is much larger than ξ (β), the model looks similar to
the case of β � βc . In other words, when approaching the critical point, a system becomes
more and more “critical”. By how much this is true depends on the size of the system, and
the correlation length separates between the sizes at which the system looks critical, and the
sizes at which it looks clearly non critical.

4.2.2. Kadanoff’s block-spin renormalisation and universality
While Widom’s scaling hypothesis provides compelling evidence that critical expo-

nents exist, the underlying justification of the hypothesis itself remained slightly superficial
until Russian physicist Leo Kadanoff provided an illuminating argument for it. In his famous
1966 paper [73], Kadanoff suggested that the block-spin renormalisation transformation –
i.e. replacing a block of neighbouring sites by one site having a spin equal to the dominant
spin in the block – corresponds to appropriately changing the scale and the parameters β
and h of the model. Assuming that iterating this procedure somehow converges suggests
that the asymptotic properties of the system are described by a fixed point of a renormalisa-
tion map. As a result, one ends up with the scale invariance of the model. This argument,
inspired by the study of the Ising model, turned out to be the basis of the monumental theory
of the renormalisation group (RG) that was put in a general framework a few years later by
Kenneth Wilson [106].

The block-spin argument of Kadanoff achieved much more than a physical justifica-
tion of the scaling hypothesis. Assuming uniqueness of the fixed point also implies that the
renormalisation of Ising models defined on different d-dimensional lattices should converge
to the same fixed point, and therefore share the same critical exponents. This was already
partially realised in 2D by observing the Ising model on the square, hexagonal, and trian-
gular lattices (they are all exactly solvable) as well as in 3D by approximations using series
expansions [34], but the renormalisation argument suggests that the few examples of equali-
ties between exponents are, in fact, the illustration of a much more general phenomenon.

What is now known as the universality hypothesis was explicitly formulated in par-
allel by Robert B. Griffiths and Kadanoff in 1971 [58,74]. Roughly speaking, it states that the
critical properties of a physical system only depend on

• the lattice dimension d;
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• the symmetry of the space of possible spins (Z/2Z symmetry for Ising);
• the speed of decay of coupling constants (this is only relevant when the Jx,y are
allowed to decay polynomially with ‖x − y‖, which is not the case in this text).

This realisation of universality is fundamental to the relevance of statistical physics as a
whole. To borrow from Kadanoff’s wording: “Why study a simplified model like the Ising
model? The strategy of studying physical questions by using highly simplified models is
made rewarding by a characteristic of physical systems called “universality”, in that many
systems may show the very same qualitative features, and sometimes even the same quanti-
tative ones. To study a given qualitative feature, it often pays to look for the simplest possible
example.”

To summarise Section 4, by the end of the sixties it became clear to mathemati-
cal physicists and theoretical physicists that the Ising model was one of the most striking
examples of a simple physical system which was rich enough to grasp a large variety of
phenomena falling in the range of statistical physics. Results on the Ising model started to
play a role similar to experimental results in the sense that they could corroborate or, on the
contrary, invalidate the embryo of a theory. It is fair to say that the importance of the model
was never argued upon later on and that it was finally recognised as one of the centerpieces
of modern statistical physics.

5. The sixties and seventies: emergence of the probabilistic interpretation
Physicists and mathematical physicists think of the quantity 〈·〉G,β,h as a form

attributing to each function X : {−1, 1}V → R (resp. C) a value in R (resp. C). In the late six-
ties and seventies, the rise of probabilistic methods led to an alternative interpretation of the
Ising model in which 〈·〉G,β,h is now understood as (dual to) a probability measure µG,β,h .
As a consequence of this reinterpretation, it becomes natural to ask what the properties of
a randomly chosen spin configuration are, and what the possible measures on the infinite
lattice that can be obtained as limits of measures in finite volume are.

5.1. The random geometry of the spin configuration
As mentioned above, 〈·〉G,β,h is the linear form associated with the probability mea-

sure µG,β,h on {−1, 1}V defined for every configuration σ by the formula

µG,β,h[{σ}] :=
1

Z (G, β, h)
exp[−βHG,h (σ)]. (5.1)

Then, quantities like 〈σA〉G,β,h can be interpreted as the correlations between the random
variables σx with x ∈ A. Note that in this interpretation the partition function is a normalis-
ing factor making the measure at hand a probability measure.

Let us assume for a moment that h = 0 and interpret the phase transition in terms of
probability. The structure of the probability measure is such that configurations have greater
probability if they have more pairs of neighbours with a similar spin. In this interpretation,
the larger β is the more important it is that neighbours have the same spins. In particular,
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in the limit as β tends to infinity, one ends up with one of the two configurations where all
spins are the same. It becomes then natural to expect that for β large, typical configurations
have an excess of one spin compared to the other. On the other hand, when β is very small,
how much the measure takes the agreements into account is fairly limited, and one may
expect that spins behave roughly independently, at least at large distance of each other.

The interpretation in terms of random variables opens new uncharted territories:
one can interpret probabilistically natural thermodynamical quantities such as magnetisation
(which corresponds to the expectation of the spin at a vertex) or surface tension. It also
opens a way to new problems, such as dynamics on the space of spin configurations or large
deviations (for instance for an Ising model at an inverse-temperature β, but with an excess
of +1 spins in a region and of −1 spins in another); see Frame 3.

Frame 3: sampling the Ising model – Glauber dynamics
The probabilistic interpretation naturally raises the question of sampling ran-

dom configurations according to µG,β,0 (set h = 0 for simplicity). A classical method
consists in expressing the measure as the invariant measure of a Markovian dynam-
ics (σ(t) : t ≥ 0) ∈ ({−1, 1}V )R+ , called the Glauber dynamics and defined as follows:
attach an exponential clock to each vertex of G. Each time a clock rings, say at time t
at x ∈ V ,

• If σx (t)
∑

y:{x,y }∈E σy (t) < 0, switch the value of the spin at x,
• Otherwise, switch the value of the spin at x with a probability equal to

exp[−2β
∑

y:{x,y }∈E σy (t)], and do not switch otherwise.

Since µG,β,0 is the only invariant measure for this dynamics, the limit as t tends to
infinity, irrespectively of the initial value σ(0), is sampled according to µG,β,h .

This dynamics was named after the American physicist Roy J. Glauber.
Alternative choices of dynamics are obtained by changing the jump probabilities. In
Figure 2, three simulations of the Ising model are shown respectively below (on the
left), at (in the middle) and above (on the right) βc .

5.2. Boundary conditions and the Gibbs formalism
An important output of the probabilistic interpretation of the model is that it

becomes natural to condition on spins in a subset of V . More precisely, let W ⊂ V and
let H be the graph with vertex-set W and edge-set induced by the edges of the graph G. Let
τ ∈ {−1, 1}V be a spin configuration on G. One may ask what is the law of the spins in W
when conditioning σ outside W to be equal to τ, i.e. what is µG,β,h[ · |σx = τx,∀x < W ]?

The answer to this question is best cast when introducing the notion of boundary
conditions. For a subgraph G of Zd and a configuration τ ∈ {−1,1}Zd , introduce the measure
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µτ
G,β,h

with τ boundary conditions defined like µG,β,h except that HG,h is replaced by

Hτ
G,h (σ) := HG,h (σ) −

∑
{x,y }∈E (Zd ):x∈V,y<V

σxτy . (5.2)

Note that the only values of τ that matter are on the exterior boundary of G, i.e. on the
vertices that are connected by an edge of Zd to a vertex in V .

With this definition, we obtain the following important property of the Ising model,
called the spatial Markov property: for every finite subgraph G of Zd , every W ⊂ V , and
every configuration τ ∈ {−1, 1}Zd , if H denotes the graph induced by the set W ,

µG,β,h[ · |σx = τx,∀x < W ] = µτH,β,h[ · ]. (5.3)

In words, when conditioning the Ising model on G to coincide with a given configuration
outside W , one gets the measure in H with the corresponding boundary condition.

This property offers a natural consistency relation between measures µτ
G,β,h

for
varying τ and G. As a byproduct, one is naturally led to postulate that any reasonable
infinite-volume version of Ising measures should satisfy the same consistency relation. One
therefore ends up with the following notion: a measure µ on ({−1, 1}Zd ,FZd ) is called a
Gibbs measure of the Ising model with parameters β and h if it satisfies the Dobrushin-
Lanford-Ruelle (DLR) property: for every finite V ⊂ Zd and τ ∈ {−1, 1}Zd ,

µ[ · |FZd\V ] = µτG,β,h[ · ] on Eτ µ-almost surely, (5.4)

where
• G is the graph induced by the vertex-set V ;
• Eτ is the event that σ and τ agree on the exterior boundary of G;
• FZd\V is the σ-algebra generated by the random variables (σx : x < V ).

The notion of Gibbs measure is not restricted to the Ising model (see [52] for a book on the
subject), but the classification of such Gibbs measures has been the object of intense study
in the specific case of the Ising model, with a very successful outcome.

The first question that one may ask is the existence of Gibbs measures. At least three
such measures can be defined in a fairly straightforward way. By taking limits as G tends
to Zd of the measures µG,β,h , µ+G,β,h , and µ

−
G,β,h

(where + and − refer, with a slight abuse
of notation, to τ equal to all +1 or all −1), one ends up with three (possibly equal) Gibbs
measures µβ,h , µ+β,h and µ−

β,h
. More generally, one may construct measures by taking all

possible sub-sequential limits of measures of the form µτ
G,β,h

, where one may even consider
τ as a random variable.

In general, the set of possible Gibbs measures on Zd is a non-empty simplex whose
extremal measures are called extremal states. One can therefore try to classify such extremal
Gibbs measures.

Some cases are quite simple to treat: for h , 0 or h = 0 and β < βc the simplex
is reduced to a singleton, i.e. there exists a unique Gibbs measure. When h = 0 and β =

βc , it was recently proved that this is also the case [5]. On the contrary, when h = 0 and
β > βc , things are more interesting. It was realised very early on that there may be more
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Figure 2
On the left. Simulations at three different temperatures (β < βc , β = βc , and β > βc ) of the Ising model with
plus boundary conditions on the top and minus boundary conditions on the bottom. Pluses are in gray and
minuses in black. Credit: S. Smirnov. On the right. An example of a bubble of minuses in an environment of
pluses at β > βc . Credit: Y. Velenik.

extremal states than the two obvious µ+β,0 and µ−β,0, but examples that were found did not
exhibit translation invariance. The most important such specimen was provided by Russian
mathematical physicist Roland Dobrushin [31], who explained that in three dimensions, the
measure µdobr

β,0 obtained by taking the limit of measures µτ[−n,n]3,β,0, where τ is all plus on
the upper half-space, and all minus on the lower half-space, was not translation invariant in
the vertical direction at high values of β. The existence of these Dobrushin states is related
to a very deep and still mysterious (at least on a mathematical level) phenomenon in 3D
statistical physics often referred to as the roughening phase transition.

Leaving non-translation invariant measures aside, many efforts were made to prove
that every translation invariant Gibbs state is a convex combination of µ+β,0 and µ−β,0. The
first result in this direction proved a stronger statement that draws a direct link with the
previous paragraph. In two dimensions, Aizenman [1] and Higuchi [64] proved in the eighties
that every Gibbs state, not only translation invariant ones, is a mixture of µ+β,0 and µ−β,0. In
particular, µβ,0 = 1

2 µ
+
β,0 +

1
2 µ
−
β,0. In higher dimensions, it took twenty more years to obtain

the result for every translation invariant Gibbs measure. We refer to the historical proof of
Bodineau [18] and to the recent generalisation of Raoufi [93].

5.3. Phase coexistence and Wulff shape
The classification of Gibbs states naturally raises the question of the coexistence

of different so-called phases. When h = 0 and β > βc , µ+β,0 and µ−β,0 are not equal: they
correspond to two extremal states, sometimes referred to as the plus and minus phases.
Now, what happens when one tries to “mix” the two states? For instance, how does it look
if one asks that part of the space is in one state, and the other part is in the other one?
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In 2D, an interface is created between the two phases (see Figure 2 for simulations
at different temperatures). While it is not obvious to define such an object in general, let
us consider the simple example of the Ising model on a finite box [−n, n]2 of the triangular
lattice with plus spins on the part of the boundary above the x-axis, and minus spins on
the rest of the boundary. In this case, one can draw a unique interface going from (−n, 0)
to (n, 0) winding between pluses and minuses. It was understood heuristically early on that
above criticality this interface should have the same fluctuations as Brownian motions, but it
took decades to turn this intuition into a rigorous proof, first in the large β regime and then
in the whole β > βc regime; see [56] and references therein. The techniques involved also
enabled mathematicians to understand precise asymptotics of spin-spin correlations in the
non-critical regimes. The theory, known under the coined name of Ornstein-Zernike theory,
is now an area of intense research and spans over a large variety of statistical physics models.
We refer to [23] for details on the Ising case.

When conditioning on the neighbourhood of the origin to be in a plus phase inside
a minus phase, one ends up with a “bubble” (see Figure 2 on the right) converging when
taking larger and larger volume to the so-calledWulff shape. In 2D, this bubble was analysed
in detail, see the book [32] and the article [67]. In 3D, the story is even more complex. The
boundary between the plus and minus phases is a kind of two-dimensional surface. The
study of this object is quite intricate, and the fluctuations of the surface are still widely
open. We refer to [15,17,24] and references therein.

6. The seventies and eighties: the Ising model and field theory
6.1. Constructive quantum field theory
Quantum field theories with local interaction are central in most subfields of theo-

retical physics, from high energy to condensed matter physics. The mathematical challenge
of the proper formulation of this concept led to the program of constructive quantum field
theory (CQFT). A path towards that goal was charted through the proposal to define quan-
tum fields satisfying Wightman axioms [105] using the Osterwalder-Schrader theorem [89], in
which case the construction boils down to producing relevant random distributions defined
over the corresponding Euclidean space that meet a number of conditions such as suitable
analyticity, permutation symmetry, Euclidean covariance, and reflection-positivity.

Finding these Euclidean fields boils down to constructing probability averages over
random distributions Φ(x) of the form

〈F (Φ)〉 ≈
1

norm

∫
F (Φ) exp[−H (Φ)]

∏
x∈Rd

dΦ(x), (6.1)

where

• F (Φ) is a smeared average of the form Tf (Φ) :=
∫
Rd

f (x)Φ(x)dx associated with
continuous functions of compact support f .

• H (Φ) is a Hamiltonian H (Φ) :≈ (Φ, AΦ) +
∫
Rd

P(Φ(x)) dx with (Φ, AΦ) a posi-
tive definite and reflection-positive (see Section 6.2) quadratic form, and P(Φ(x))
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an even polynomial whose terms of order Φ(x)2k are interpreted heuristically as
representing k-particle interactions.

By linearity, the expectation values of products of such variables can be rewritten as〈 n∏
j=1

Tfj (Φ)
〉

:=
∫

(Rd )n
Sn(x1, . . . , xn)

n∏
j=1

f (x j ) dx1 . . . dxn, (6.2)

where the Sn(x1, . . . , xn) are the Schwinger functions of the corresponding Euclidean field
theory which can be interpreted heuristically as pointwise correlations 〈

∏n
j=1Φ(x j )〉. Inter-

preting (6.1) raises a number of problems of varying difficulty.
The simplest example of Euclidean fields are the reflection-positive (see Section 6.2

again) Gaussian fields, for which H (Φ) contains only quadratic terms. Gaussian fields are
alternatively characterised by 2n-point Schwinger functions satisfying Wick’s law:

S2n(x1, . . . , x2n) =
∑

π pairings

n∏
j=1

S2(xπ (2j−1), xπ (2j)). (6.3)

The field theoretical interpretation of (6.3) is the absence of interaction. Due to that and to
their algebraically simple structure, such fields are referred to as trivial.

The next level of difficulty is to add the next lowest order even term, i.e. λΦ4 for
λ > 0. Note that, if it exists at all, the corresponding field is a random distribution so mak-
ing sense of this fourth power is not straightforward. The heuristic RG approach to the
problem by Wilson [106] indicates that in low enough dimensions, the problem could be
tackled through a renormalisation procedure. The CQFT program has successfully yielded
non-trivial scalar field theories over R2 [55] and R3 [44,54], and is still a lively field of math-
ematical physics.

A natural example aimed at constructing a Φ4
d
functional integral is to regularise it

with a pair of cutoffs: at a short distance (ultraviolet) scale and a large distance (infrared)
scale. A lattice version of that is the restriction of Φ(·) to the vertices of a finite graph
Λ

(a)
R := (aZ)d ∩ [−R, R]d , where a and R play respectively the roles of the ultraviolet and

infrared cutoffs. For the corresponding finite collection of variables (φx : x ∈ Λ(a)
R ), the

Hamiltonian is then interpreted in terms of a Riemann-sum style discrete analog of the
integral expressions, leading to the following statistical-mechanics Gibbs equilibrium state
average

〈F (φ)〉 =
1

norm

∫
R
Λ

(a)
R

F (φ) exp [−H (φ)]
∏

x∈Λ(a)
R

dρ(φx ), (6.4)

with a Hamiltonian H (φ) and an a-priori measure ρ of the form

H (φ) = −
∑

{x,y }⊂E (Λ(a)
R )

φxφy , dρ(φx ) = e−λφ
4
x−bφ

2
x dφx , (6.5)

where dφx is the Lebesgue measure on R. This is called the φ4 lattice model.
The cutoffs are removed through the limit R ↗ ∞ followed by a ↘ 0. Parameters

may be added to adjust in the process the spin-spin correlations 〈φx1 . . . φxn 〉 in such a way
that they stabilise to the Schwinger functions Sn(x1, . . . , xn) in the continuum limit scale.
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The Ising model can be thought of as a limiting case of a φ4 lattice model as it
is obtained by letting λ = b/2 tend to infinity (the limit of the measures ρ then forces the
spins φx to take the values ±1). Actually, the discrete approximations of the φ4 functional
integral and the Gibbs states of an Ising model are always connected. This relation is based
on a construction which was initiated by Griffiths to obtain the Lee-Yang theorem for the φ4

lattice models, and was advanced further by Griffiths and Simon [60]. A probability measure
on ρ(dφ) on R is said to belong to the Griffiths-Simon class if the expectation values with
respect to ρ can be represented as an Ising model on the complete graph with well-chosen
coupling constants, or as a limit of such models (satisfying some mild tail conditions). The
φ4 lattice model belongs to the Griffiths-Simon class. For this reason, most techniques that
are at our disposal for the Ising model apply to the Griffiths-Simon class. This makes the
Ising model an object of major interest when working on CQFT. The developments of the
model have therefore been deeply connected to CQFT in the eighties, and we now discuss
some examples of such interactions.

6.2. Reflection positivity
The notion of reflection positivity was introduced in Quantum Field Theory in the

work of Osterwalder-Schrader [89], and we refer to [16] for a review. While reflection pos-
itivity did not emerge initially as a property of the Ising model, the model remains one
of the most natural instances of a reflection positive model, and some of the most striking
applications of reflection positivity are indeed dealing with the Ising model.

Consider the Ising model on a d-dimensional torus TL := (Z/LZ)d with L even
and split equally the torus into two pieces T+L and T−L using hyperplanes (the two pieces are
isomorphic to [0, L/2] × (Z/LZ)d−1) and consider a reflection ϑ with respect to one of these
hyperplanes mapping T+L to T−L . We say that 〈·〉 is reflection positive if for all f , g : T+L → R,

〈 f ϑg〉 = 〈gϑ f 〉 and 〈 f ϑ f 〉 ≥ 0, (6.6)

or, in other words, that f ,g 7→ 〈 f ϑg〉 is a positive semi-definite symmetric bilinear form. The
archetypical examples of reflection positive measures are the Ising n.n.f. measures 〈·〉TL,β,0,
but many other examples exist, including some Ising models with long-range interactions.

Reflection positivity has two important implications, namely gaussian domination
leading to the infrared bound, and the chessboard estimate. By lack of space, and since most
of the applications of reflection positivity to the specific example of the Ising model rely on
the infrared bound, let us focus on it and gaussian domination.

Gaussian domination is a statement linking the partition function of the Ising model
with magnetic field to the partition function of the model without it. Formally, it states that
for every function h : V → R, ZL (h) ≤ ZL (0), where

ZL (h) :=
∑

σ∈{−1,1}V
exp

[
− β

∑
{x,y }∈E (TL )

(σx − σy + hx − hy )2
]
. (6.7)

Gaussian domination can be proved via reflection positivity through the two hyperplanes
mentioned above to show that for each h, a symmetric version of h with respect to a
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hyperplane has a larger value of ZL (·). Gaussian domination immediately implies a Fourier
version of the infrared bound by using a second-order expansion of ZL (h) near 0: for d > 2
and every (ax ) ∈ CTL summing to zero,∑

x,y∈TL

axay〈σxσy〉TL,β,0 ≤
2
β

∑
x,y∈TL

axayG(x, y), (6.8)

where G(x, y) is the Green function of the simple random walk on Zd .
In the specific case of the Ising model, the Messager-Miracle-Solé inequality

enables to turn this Fourier estimate into a pointwise estimate on the two-point function:
there exist C,C ′ > 0 such that for every β > 0 and every x, y ∈ Zd ,

〈σxσy〉β,0 − m∗(β)2 ≤ C
β G(x, y) ≤ C′

‖x−y ‖d−2
2

. (6.9)

This is particularly interesting when β approaches βc from below, as it implies that the
spin-spin correlations decay algebraically fast at βc , with an exponent at least d − 2.

6.3. The random current revolution
The context of CQFT was also at the origin of one of the most important revolutions

in our understanding of the Ising model that we will describe in Section 6.4. The technique,
called the random current representation, was introduced by Aizenman (inspired by combi-
natorial identities from [59]). It became one of the most powerful and robust tools available
to mathematicians to study the Ising model. We describe it now (see [35] for a review).

The whole story starts with the observation that the component exp[βσxσy] of the
Hamiltonian term attached to each edge can be rewritten using Taylor’s expansion to get

Z (G, β, 0) =
∑

σ∈{−1,1}V

∏
{x,y }∈E

∞∑
n{x,y }=0

(βσxσy )n{x,y }

n{x,y }!
=

∑
n∈ZE+

wβ (n)
∑

σ∈{−1,1}V

∏
x∈V

σ∆x (n)
x ,

(6.10)
where

wβ (n) :=
∏
{x,y }∈E

βn{x,y }

n{x,y }!
and ∆x (n) :=

∑
y∈V :{x,y }∈E

n{x,y } . (6.11)

Now, the involutions on spin configurations switching the spins at a vertex immediately
imply that the sum on σ on the right-hand side is either equal to 2 |V | if ∆x (n) is even for
all x ∈ V , or 0 otherwise (this seems like a very elementary observation, but it bears at the
heart of it the +/− symmetry of the space of possible spins).

Call a function from E to Z+ a current. A source of the current will be a vertex x
with ∆x (n) odd. The set of sources will be denoted by ∂n. The previous discussion and the
notation lead to the identity

Z (G, β, 0) = 2 |V |
∑
∂n=∅

wβ (n), (6.12)

where from now on we omit to specify that we consider currents when using the notation n.
A current n with ∂n = A can be interpreted as the occupation time of a collection

of paths pairing vertices of A and loops – or equivalently the number of times the collection
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of paths and loops goes through an edge. The decomposition into loops and paths is not
unique, nonetheless it remains interesting to interpret currents in terms of them.

Proceeding in a similar fashion with the numerator of the spin-spin correlations, we
get that

〈σA〉G,β,0 =

∑
∂n=A wβ (n)∑
∂n=∅ wβ (n)

. (6.13)

In words, one may write spin-spin correlations in terms of weighted sums of currents with
specific source constraints ∂n = A and ∂n = ∅. Note that the source constraint is not the
same for the numerator and denominator.

Frame 4: the high-temperature expansion and βc > 0
The high-temperature expansion of the Ising model, due to van der Waerden

[102], can be neatly defined here as the set of edges with an odd current (it can also be
obtained by a direct expansion using that exp[βσxσy]= cosh(β) + sinh(β)σxσy). One
ends up with another expression of the partition function in terms of even subgraphs

Z (G, β, 0) = cosh(β) |E |
∑

F ∈Even(G)

tanh(β) |F |, (6.14)

which resembles the low-temperature expansion, except that it is on G instead of G∗ and
that it is valid for arbitrary graphs and not only planar ones. In particular, one may easily
deduce the Kramers-Wannier duality between the low and high temperature expansions
at temperatures β and β∗ satisfying tanh(β) = e−2β∗ in the case of the square lattice.

One application of currents (or alternatively high-temperature expansion) is
obtained by considering a mapping from currents with ∂n = {x, y} to currents with
∂n = ∅ setting the current on a path from x to y of odd current (such a path necessarily
exists) to 0. This many-to-one mapping (one has to keep track of the path and the value
of the current on it to reconstruct the preimage) increases drastically the weight of the
current as soon as β � 1, which shows that the spin-spin correlations 〈σxσy〉G,β,0 are
decaying exponentially fast in this regime. This implies in particular that βc > 0.

A key observation of Aizenman is that the so-called switching lemma, see Frame 5,
pertaining to combinatorial properties of the random current model, could be used to rein-
terpret spin-spin correlations as well as many other properties in terms of probabilities
involving multiple independent currents. This lemma completely changed the point of view
on currents, as it transforms them from a combinatorial type object into a probabilistic one.
In particular, intuitions coming from probabilistic models such as random walks and perco-
lation was later used to prove new theorems on the Ising model; see Sections 6.4, 6.6, and
7.1.

25 100 Years of the Ising Model



Frame 5: the switching lemma for random currents
Write n ∈ FA if there exists k ≤ n with ∂k = A. Note that if A = {x, y}, this is

equivalent to the existence of a path from x to y which is made of edges with a positive
current. Recall that A∆B denotes the symmetric difference of the sets A and B. With
this notation, the switching lemma [59] states that for every F : ZE+ → R and every two
sets of vertices A, B ⊂ V ,∑

∂n1=A
∂n2=B

w(n1)w(n2)F (n1 + n2) =
∑

∂n1=A∆B
∂n2=∅

w(n1)w(n2)F (n1 + n2)I(n1 + n2 ∈ FB).

(6.15)
The name of the lemma is fairly self-explanatory, as it consists, when considering sums
of two currents, of a recipe to switch the sources from the second one to the first one.
The proof is a very entertaining combinatorial problem that is left to the reader.

A direct application (to illustrate the strength of the lemma) is the case A = B,
which gives immediately that

〈σA〉
2
G,β,0 = P

∅
G ⊗ P

∅
G[n1 + n2 ∈ FA], (6.16)

where PBG is the measure on currents n on G with ∂n = B attributing to each such n
a probability that is proportional to w(n), and ⊗ denotes the product for probability
measures. In words, one may interpret the square of spin-spin correlations 〈σA〉G,β,0 as
the probability, for the sum of two independent random currents, of pairing the elements
of A by paths of positive current. One may also try as an exercise to recover Griffiths’
inequalities from the switching lemma.

6.4. Triviality in dimension d > 4
In 1982, Michael Aizenman and Juerg Fröhlich [2,49] independently proved that the

scaling limit of the Ising model is trivial in dimension five and more in the following sense.
Consider discrete smeared averages defined by

Tf ,L (σ) :=
1
√
ΣL

∑
x∈Zd

f (x/L) σx , (6.17)

where f ranges over compactly supported continuous functions, and ΣL :=
〈(∑

x∈ΛL
σx

)2〉
denotes the variance of the sum of spins over the box of size L. The theorem states that when
d > 4, these smeared averages Tf ,L (σ) are approximately Gaussian of variance 〈Tf ,L (σ)2〉β

in the sense that there exists an explicit constant Cf > 0 such that for every β ≤ βc , every
L ≤ ξ (β), and every z > 0,

���
〈

exp[z Tf ,L (σ) − z2

2 〈Tf ,L (σ)2〉β]
〉
β − 1 ��� ≤

Cf z4

Ld−4 . (6.18)

In words, the previous statement claims that the characteristic function of Tf ,L (σ) is close
to the one of a Gaussian random variables.
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As a direct consequence of this result, one obtains that any well-defined scaling
limit of the Ising model, and in fact more generally of the φ4 lattice model, is inevitably
Gaussian. The result marked a brutal stop in the CQFT program outlined in Section 6.1
as the proofs suggested, while not proving, that the model should also be trivial in four
dimensions.

As mentioned above, one of the most striking applications of the random current
representation is related to CQFT. Indeed, Aizenman’s proof of this theorem relies on a
beautiful parallel between random walks and the paths joining sources in currents. We do
not resist discussing this link below. But before doing so, let us mention that the approach
of Fröhlich in [49], based on the Brydges-Fröhlich-Spencer (BFS) walk representation of
spin-spin correlations [21], is deeply connected to the random current as well. The walks in
the BFS representation play the roles of the paths between sources in the random current.
The advantage of this alternative approach is that it works for more general models, at the
cost of losing the switching lemma and its benefits.

Let us focus on the four-point function and define the corresponding Ursell function
given, for x1, . . . , x4 ∈ Z

d , by

Uβ
4 (x1, . . . , x4) := 〈σx1 · · ·σx4〉β −

∑
π pairing

2∏
i=1
〈σxπ (2i−1)σxπ (2i) 〉β . (6.19)

A simple exercise involving the switching lemma shows that

Uβ
4 (x1, . . ., x4) =−2〈σx1σx2〉〈σx3σx4〉P

{x1,x2 } ⊗ P{x3,x4 }[x1, . . ., x4 all connected in n1 +n2],
(6.20)

where connected in n1 + n2 means being connected by a path of edges with n1 + n2 not
equal to zero. If one remembers that one can think of a current with sources x1 and x2 as
a path connecting the two vertices together with a collection of loops, one can reinterpret
the right-hand side of the previous identity at the light of so-called random walks (a random
walker traces his way through the vertices of a graph by picking its next steps at random
among neighbours of where it currently stands – this Markov process is one of the most
fundamental objects of probability theory). It is a classical result that two random walks
connecting two pairs of points that are at a mutual distance of order L intersect with a
probability bounded away from 0 as L tends to infinity in dimensions d < 4, and tending to
zero in dimension d ≥ 4.

At this stage, it is totally unclear why the paths linking the points x1 and x2 in n1,
and x3 and x4 in n2, would behave as random walks. It is also unclear what would be the
impact of the additional loops. Still, it is tempting to think that if an analogy with random
walks was valid, then it would single out dimensions d ≥ 4 as being dimensions for which
Uβ

4 becomes much smaller than products of two-point correlations or, in other words, for
which Wick’s law would become asymptotically valid, thus hinting at triviality.

When the dimension is strictly larger than 4, the story for random walks becomes
even simpler, as the expected number of intersections is also tending to zero with L. Using
the infrared bound to estimate the spin-spin correlations of the Ising model, one may go
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around the difficulty of proving a random walk type behaviour for currents to show that the
intersection probability is tending to 0.

Making the argument work for currents in dimension 4 is more subtle because,
contrarily to larger dimensions, the expected number of intersections does not tend to 0
when L tends to infinity. Hence, in order to prove that the intersection probability goes to
0, one inevitably has to go deeper in the understanding of the analogy between currents and
random walks.

6.5. Rigorous renormalisation group in 4D Ising
The triviality of the Ising model in dimension d > 4 naturally raises the question

of its triviality in dimension d = 4, which is not only the pertinent physical dimension for
CQFT, but also for the so-called 4 − ε expansions providing information on dimension 3. In
the eighties, Wilson’s renormalisation group method was already in every physicists’ tool-
box, yet the challenges to overcome to cast the general theory in a mathematical framework
seemed out of reach. Interestingly, a very relevant case became an important exception.

Consider the lattice version of the φ4 model discussed in Section 6.1. The case
b = λ = 0 corresponds to a Gaussian field known under the name of discrete Gaussian
Free Field (GFF), which enjoys a number of striking features. One of them is that the model
converges, when rescaling the lattice, to the continuum GFF. In a series of impressive papers
[43, 51, 62], mathematical physicists proved in the eighties that, when starting from a weakly
coupled φ4 lattice model (meaning that λ is small), one may apply a multi-scale analysis to
prove convergence of the model to the continuum GFF.

Several methods were used at the time, but let us mention that the method of
Gawedski and Kupiainen [51] can be thought of as a rigorous version of Kadanoff block-
spin renormalisation procedure. It consists of writing the model in terms of averages of
spins over large blocks of size Lk , and to average them out scale by scale. At leading order,
each step of the procedure boils down to modifying the parameters of the model. Of course,
the reality is much more complicated than the first order analysis suggests, and the renor-
malisation scheme is quite complex.

An alternative to this block-spin renormalisation was later developed by Bauer-
schmidt, Brydges, and Slade [11] in order to obtain refined results, as well as to treat more
general models. In these alternative approaches, the block-spin analysis is replaced by the
following strategy: one thinks of quantities in the φ4 lattice model as being expressed in
terms of the discrete GFF itself. In order to control the asymptotic behaviour of such
quantities, one decomposes the covariance of the discrete GFF into a sum of finite-range
covariances that one integrates out one by one. At each step a change of the parameters
of the system is required to keep things converging towards a limit. Doing so enables the
authors to focus their attention on how the parameters evolve under this procedure. This
evolution can be thought of as the renormalisation map in the renormalisation group.

The level of sophistication of these techniques is quite astonishing, and the preci-
sion of the results outstanding. As one may guess, this comes at a price. At the bottom of
both strategies lies the fact that the original φ4 lattice model is in the “vicinity of a model”,
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the Gaussian Free Field, that enjoys a number of nice properties. As a result, the technique
is (as for today) perturbative in nature, which is somehow its main limitation. We will see
another instance of such a renormalisation scheme, this time near another fixed point, when
discussing the 2D Ising model.

6.6. Forty years later: the random current strikes back
While renormalisation techniques provided impressive rigorous results in dimen-

sion 4, they remained as we mentioned perturbative, meaning that they required that the
lattice φ4 model one starts from has a small φ4 term. Yet, if one would like to construct a
non-trivial 4D quantum field theory, one would definitely try to start with a strongly coupled
φ4 lattice model (meaning with a φ4 terms which is not a priori small), for instance working
with the Ising model which in some sense can be thought of as the model with the strongest
possible coupling, thus excluding existing renormalisation group techniques.

This asks for another approach, and this is probably why one had to wait for forty
years to finally obtain a proof of the triviality of the 4D Ising and φ4 lattice models, which
states [4] that there exists c > 0 such that for the n.n.f. φ4 lattice model on Z4 with parameters
b, λ, and a compactly supported continuous function f , there exists Cf > 0 such that for
every β ≤ βc = βc (b, λ), every L ≤ ξ (β), and every z > 0,

���
〈

exp[z Tf ,L (ϕ) − z2

2 〈Tf ,L (ϕ)2〉β]
〉
β − 1 ��� ≤

Cf z4

(log L)c
. (6.21)

The strategy of the proof uses a more delicate probabilistic perspective on the ran-
dom current than in [2], still keeping in mind the interpretation in terms of random walks of
the paths joining the sources of the current. Indeed, it can be proved that two random walk-
ers in four dimensions going from points to points that are all at a mutual distance of order
L intersect with probability of order (log L)−c for some universal constant c > 0. The reason
is that while the expected number of intersections is of order 1, the number of intersections,
when such intersections exist, is with high probability quite large in L (and is growing with
L). The core of the paper is to apply a similar argument to the paths in the random cur-
rent. Of course, challenges emerge when trying to handle the highly non-Markovian paths
obtained by considering the paths joining the sources in currents. Nevertheless, guided by
the random walk intuition, one can build a multi-scale analysis to prove that conditioned on
intersecting, random currents intersect a large number of times, and ultimately deduce from
this the triviality result.

7. The last fifty years: Ising model and percolation
Percolation theory gathers under its umbrella a variety of random graphs systems.

A configuration on G = (V, E) is an element ω = (ωe : e ∈ E) ∈ {0, 1}E which is interpreted
as a subgraph with vertex-set V and edge-set {e ∈ E : ωe = 1}. Then, different percola-
tion models can be defined by considering different measures on {0, 1}E . Historically, the
original model, called Bernoulli percolation, is defined in such a way that the ωe are inde-
pendent Bernoulli random variables. It was introduced to understand the behaviour of liquid
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in a porous medium. Nevertheless, the theory of non-Bernoulli models has been found to
be related to a variety of other models of statistical physics explaining various physical
phenomena.

As often, the Ising model has played an essential role in the development of perco-
lation theory, and conversely certain advances in percolation theory have been fundamental
to our understanding of the Ising model. Sometimes, the link between the two models is
simply an analogy between their behaviours, but sometimes the connection is much more
direct. For instance, spin-spin correlations can be rewritten in terms of a percolation model,
in which case we speak of the percolation model as being a graphical representation of the
Ising model. We now propose to discuss some examples of these links between the Ising
model and percolation.

7.1. Percolation interpretation of random currents
We have seen one example of a graphical representation in Frame 5 where the

squares of spin-spin correlations get rephrased as connectivity properties of the sum of two
currents. One may easily define a percolation model out of the pair of currents above by
saying that for an edge {x, y}, ω {x,y } = 1 if (n1 + n2){x,y } > 0. Then, the square of the spin-
spin correlations between two points becomes the probability, for this percolation model,
that x and y are connected in ω.

The best illustration of how intuition from percolation or the Ising model can drive
developments on the other model is provided by an important result on the Ising model
in the regime β < βc . This result from 1987, due to Aizenman, Barsky and Fernandez [3]

(see [39] for an alternative argument), states that correlations of the n.n.f. Ising model decay
exponentially fast as soon as β < βc in the sense that for each such β, there exists τ > 0
such that for every x, y ∈ Zd ,

〈σxσy〉β,0 ≤ exp(−τ‖x − y‖). (7.1)

We say that the phase transition is sharp: there is no intermediate phase (βexp, βc) in the
Ising model in which spin-spin correlations would decay polynomially. Let us mention that
a similar exponential decay was obtained recently for truncated correlations 〈σxσy〉β,0 −

m∗(β)2 when β > βc , see [36].
This theorem is of fundamental importance for the following reason. Perturbative

results, which are combinatorial in nature, are valid under the assumption that certain quan-
tities decay exponentially fast, and in fact with a rate of decay which is sufficiently large.
While this hypothesis is important to apply the techniques, it happens to be of little rele-
vance from a physical point of view. In fact, one expects that most of the phenomenology
remains unchanged as long as spin-spin correlations decay exponentially fast. As a conse-
quence, (7.1) can be thought of as a bottleneck in the understanding of the phase β < βc: as
soon as it is obtained, a number of important results can be derived from it. As an example,
the results on fluctuations of interfaces and Ornstein-Zernike estimates were proved to hold
in the whole regime β < βc . The result also provides meaning to the correlation length ξ (β)
mentioned in Section 4.1, as it proves that it is finite as soon as β < βc .
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Let us now comment on the proof. The argument relies on a fruitful idea consisting
in deriving differential inequalities between thermodynamical quantities of the Ising model.
The archetypical example of such differential inequalities are given, for the problem at hand,
by (recall that the magnetisation m = m(β, h) is a function of β and h)

m ≤ tanh(βh) ∂
∂(βh) m + m2(β ∂

∂βm + m) and m ∂
∂βm ≥ c. (7.2)

The interesting feature here is that similar differential inequalities appear when studying
Bernoulli percolation. In fact, a number of results were obtained in parallel during the
eighties, where each result for Ising had its pendant for Bernoulli percolation, and vice
versa. As an example, critical exponents for d > 4 were obtained by Aizenman and Fer-
nandez [7] using differential inequalities that can be adapted to Bernoulli percolation. These
techniques are useful to transform qualitative results (e.g. a quantity tends to 0) to quantita-
tive ones (e.g. exponentially fast). We do not resist mentioning one of them: for h = 0 and
β < βc , (

1 −
B
χ

) 2dχ2

1 + B
≤ ∂

∂β χ ≤ 2dχ2, (7.3)

where χ(β) :=
∑

x〈σ0σx〉β,0 is the susceptibility, and B(β) is the Bubble diagram and is
given by

B(β) :=
∑
x∈Zd

〈σ0σx〉
2
β,0. (7.4)

Since the Infrared Bound implies that B(β) remains bounded uniformly in β < βc as soon
as d > 4, χ(β) must blow up like 1/| β − βc | as β approaches βc from below.

Another striking instance of how fruitful the connection between percolation mod-
els and the Ising model was for the development of both models is the following continuity
result of the phase transition of the 3D Ising model, due to [5], stating that the n.n.f. Ising
model satisfies m∗(βc) = 0 for every d ≥ 3.

The argument relies on percolation methods applied to the double random current
representation of an argument of Burton and Keane proving the uniqueness of the infinite
connected component of percolation. The whole argument can be improved and extended
to study all translation-invariant Gibbs measures, obtaining the classification result already
mentioned in Section 5.2.

7.2. Fortuin-Kasteleyn percolation
Another (and in fact older) example of a graphical representation is provided by a

special case of the Fortuin-Kasteleyn (FK) percolation. In this model, introduced in [47], the
measure φG,p,q is given, for G = (V, E) finite and ω ∈ {0, 1}E , by

φG,p,q[{ω}] :=
1

Z (G, p, q)
p |ω | (1 − p) |E |− |ω |qk (ω), (7.5)

where p ∈ [0, 1] and q > 0 are the parameters of the model, called respectively the edge-
weight and the cluster-weight, |ω | :=

∑
e∈E ωe is interpreted as the number of edges in ω,

and k (ω) is the number of connected components of ω.
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Figure 3
The Edwards-Sokal coupling, with on the left a picture of the FK Ising configuration (bold edges are those with
ωe = 1), in the middle, spins are attached to each cluster (one example in black and others in grey), and on the
right, the spins without the FK Ising configuration.

When q = 1, one ends up with the classical Bernoulli percolation model in which
the ωe are independent. When q , 1, the state of edges is no longer independent and one
ends up with a dependent percolation model whose study is central in modern probability
theory. From now on, we focus on the case q = 2, which we call the FK Ising model. We
confine our discussion to two features of this percolation model, namely its link to the Ising
model, and the FKG inequality.

Let us start with the former, which provides a recipe to obtain the Ising model
configuration out of FK Ising; see Figure 3. Consider a random variable ω ∈ {0, 1}E with
the law of FK Ising with parameter p ∈ [0, 1] and construct σ ∈ {−1, 1}V by

• choosing for every connected component C of ω a spin σC uniformly between
−1 and +1, and independently of the other connected components.

• defining σx = σC for every C and every x ∈ C.
Then, σ has the law of the Ising model on G with parameter β = 1

2 log[1/(1 − p)] and
h = 0. This coupling, due to Fortuin and Kasteleyn and often referred to as the Edwards-
Sokal coupling due to the paper [40], enables to express correlation functions of the Ising
model in terms of FK Ising. For instance, by decomposing on the events that x is connected
to y or not in ω, one easily gets that

〈σxσy〉G,β,0 = φG,1−e−2β,2[x connected to y in ω]. (7.6)

Similarly, 〈σA〉G,β,0 = φG,1−e−2β,2[FA], where FA is the event that each connected compo-
nent ofω contains an even number (possibly equal to 0) of vertices in A. Another interesting
feature of this coupling is that it is at the basis of so-called cluster algorithms due to Swend-
sen and Wang, who used it to speed up the Glauber dynamics and the simulation of the Ising
model, in particular near the critical point. The interest of FK Ising and more generally FK
percolation models with q ≥ 1 is that they enjoy some nice monotonicity properties (depen-
dent percolation models satisfying these properties have been an object of intense study
in the past ten years). Let us mention two such properties. The Fortuin-Kasteleyn-Ginibre
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(FKG) inequality states that for every increasing functions f , g : {0, 1}E → R,

φG,p,q[ f g] ≥ φG,p,q[ f ]φG,p,q[g]. (7.7)

This inequality is often used for indicator functions of increasing events (i.e. events for
which the indicator function is an increasing function), in which case the inequality states
that increasing events are positively correlated. Another manifestation of the monotonicity
properties is the monotonicity in p: for every increasing function f : {0,1}E → R and p′ ≥ p,

φG,p′,q[ f ] ≥ φG,p,q[ f ]. (7.8)

These monotonicity properties are particularly useful. The second one applied to
FK Ising and the indicator function of FA implies that 〈σA〉G,β,0 is increasing in β, and the
first one applied to indicator functions of FA and FB implies the second Griffiths inequality
〈σAσB〉G,β,0 ≥ 〈σA〉G,β,0〈σB〉G,β,0.

7.3. The broader impact of the Ising model on dependent percolation models
In the first fifty years that followed its introduction, the theory of percolation was

much more advanced for Bernoulli percolation than for other dependent percolation models.
The past ten years have seen tremendous progress in bridging the gap between our under-
standing of the Bernoulli case and the others. The interplay between dependent percolation
models and the Ising model has been fundamental for these developments.

We already saw that the Ising model is related to FK Ising and a percolation model
created out of random currents. It does not come as a surprise that one of the first dependent
percolation models to see significant progress in its understanding was the FK Ising. Of
course, the Edwards-Sokal coupling enables to transfer immediately certain known facts
about the Ising model to its percolation representation (for instance, the critical point of the
FK Ising on Z2 is 1 − e−2βc =

√
2/(1 +

√
2) thanks to Onsager’s result). Also, the model

enjoys some specific features that make its direct analysis simpler than for other dependent
percolation models.

For all these reasons, the FK Ising became the entrance gate to a new realm of
results on dependent percolation models. A perfect illustration of this is provided by the
study of crossing probabilities for planar dependent percolation models. Let us provide
slightly more detail.

One important feature of critical dependent percolation models in two dimensions
is that they satisfy the box-crossing property (BCP), and its connected notion the Russo-
Seymour-Welsh theory (RSW). More precisely, if for a rectangle R, the event Cross(R)
corresponds to the existence of a path in ω between the left and right sides of R, the proper-
ties (BCP) and (RSW) for a percolation model on Z2 with measure P are the following:

• (BCP) for all ρ > 0, there exists c > 0 such that for every n ≥ 1,

c ≤ P[Cross([0, ρn] × [0, n]) |ω |[−n, (ρ+1)n]×[−n,2n]c ] ≤ 1 − c almost surely. (7.9)

• (RSW) for all ρ > 0, there exists C > 0 such that for every n ≥ 1,

P[Cross([0, ρn] × [0, n])] ≥ P[Cross([0, n] × [0, ρn])]C . (7.10)
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These two properties have been the driving force of the progress in our understanding of
the 2D dependent percolation models. The FK-Ising model played an essential role in these
developments, as it was the first dependent percolation model for which (BCP) could be
proved [37]. This development triggered a whole new direction of research that led to sub-
stantial progress in our understanding of (BCP) and (RSW) for various percolation models.

8. Over the last ten years: conformal invariance of the Ising model
8.1. What is conformal invariance?
As mentioned before, Kadanoff used his block-spin renormalisation to predict that

the large scale properties of the critical Ising model were invariant under scaling. The same
argument also leads to postulate translation and rotation invariance. In 1970, Polyakov
[92] suggested a much stronger invariance of the model. Since we saw that it is natural to
associate a QFT with the large scale properties of the critical Ising model, and since this
QFT is a local field, these properties should be invariant under any map which is locally
a composition of translation, rotation and homothety. As a corollary one predicts full con-
formal invariance, i.e. invariance under all one-to-one holomorphic maps. This prediction
was turned into a classification of possible conformal field theories (CFT) in 2D in seminal
papers by Belavin, Polyakov and Zamolodchikov [12] that generated an explosion of activity,
allowing non-rigorous explanations of many critical phenomena.

From a mathematical perspective, the notion of conformal invariance of a model is
not straightforward to define. A number of interpretations of the limit of large scale proper-
ties – called the scaling limit – can be taken, and we mention a few now.

For clarity of the exposition, we focus on the critical Ising model on Zd and its
rescaled versions aZd for a > 0. We drop the subscript referring to β and h as they are fixed
to be equal to βc and 0 respectively. Consider a simply connected domain Ω ( Rd .

(Spins) The most natural approach is to consider the spin-spin correlations defined for every
a > 0 and x1, . . . , xn ∈ Ω by

S(a)
Ω

(x1, . . . , xn) := 〈σ[x1]a . . . σ[xn]a 〉aZd∩Ω, (8.1)

where [x]a is the vertex of aZd ∩ Ω closest to x. These Schwinger functions already
appeared as the key players in CQFT. One is then interested in the limit as a tends to 0
of these properly renormalised quantities. If the limit exists, we call it SΩ(x1, . . . , xn).

(Energies) Another object of interest is the energy-energy correlations. For a > 0 and
x1, . . . , xn ∈ Ω, one considers at the quantities

T (a)
Ω

(x1, . . . , xn) := 〈ε(x1)a . . . ε(xn )a 〉aZd∩Ω, (8.2)

where ε {u,v } := σuσv − 〈σuσv〉aZd and (x)a is the edge closest to x. The quantity εx is
called the energy. One is again interested in the limit TΩ(x1, . . . , xn) as a tends to 0 of these
properly rescaled quantities.
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(Geometry of interfaces) In two dimensions, another direction was proposed in the nineties.
It consists in considering the low-temperature representation, i.e. the interfaces between plus
and minus spins. In a domain Ω, it creates a family of non-intersecting loops together with
arcs from boundary to boundary. Let CΩ be the set of such collections of loops and arcs.
The set CΩ can be turned into a metric space by attaching a distance dΩ which, heuristi-
cally, states that two configurations are close to each other when the large loops and arcs
are close to each other. Let us call C (a)

Ω
the random variable obtained by considering the

low-temperature expansion of a critical Ising model configuration in aZd ∩Ω. Here, we are
interested in the limit of C (a)

Ω
as a random object.

Now, what do we mean by conformal invariance? Roughly speaking, we mean
that certain quantities of the model are conformally covariant/invariant. With the defi-
nitions above, it would for instance mean that there exists a way of renormalising the
S(a)
Ω

(x1, . . . , xn) and T (a)
Ω

(x1, . . . , xn) in such a way that they converge to quantities
SΩ(x1, . . . , xn) and TΩ(x1, . . . , xn) that satisfy that there exist ∆σ, ∆ε such that for every
conformal (i.e. holomorphic and one-to-one) map f : Ω→ f (Ω), we have

Sf (Ω) ( f (x1), . . . , f (xn)) = | f ′(x1) |−∆σ · · · | f ′(xn) |−∆σ SΩ(x1, . . . , xn), (8.3)

Tf (Ω) ( f (x1), . . . , f (xn)) = | f ′(x1) |−∆ε · · · | f ′(xn) |−∆ε TΩ(x1, . . . , xn). (8.4)

For the geometry of interfaces, the situation is even simpler as one means that the family of
loops and arcs C (a)

Ω
converges to a limit CΩ as a tends to 0 and that this limit satisfies that

Cf (Ω) and f (CΩ) have the same law for every conformal map f : Ω→ f (Ω).

8.2. Conformal invariance of the 2D Ising model
Around fifteen years ago, Smirnov [100] and Chelkak and Smirnov [28] obtained a

major breakthrough towards proving conformal invariance of 2D Ising model. This funda-
mental proof, that we discuss below, opened the way to a very deep understanding of the
scaling limit of the model.

A few years later, Chelkak-Izyurov-Hongler [27] proved conformal covariance of
the spin-spin correlations (with ∆σ = 1/8). It was later proved in [22] that the quantities
SΩ(x1, . . . , xn) are the Schwinger functions of a random distribution, that can be understood
as the spin-field that physicists sometimes refer to. In the same spirit, conformal covariance
of the energy-energy correlations was proved in [65] (with ∆ε = 1). In this case, one may
prove that the correlations are not the Schwinger functions of a random distribution. Turning
to interfaces, the following result was the culmination of the theory: the arcs in CΩ are given
by the so-called free arc ensemble of parameter 3 and the loops by conformal loop ensembles
of parameter 3 in the simply connected domains obtained as the complements of the arcs
(see [13,14]). In particular, the scaling limit is conformally invariant. This body of work uses
the ideas from [28, 100] together with the theory of the Schramm-Loewner evolution and its
consequences.

As mentioned above, an important breakthrough came from the works [28, 100]

where conformal covariance of so-called fermionic observables f (a)
Ω

is proved. Those
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observables are linear combinations of order-disorder operators (see Frame 6) considered
by Kadanoff and Ceva in [75], see also [26] for several connections to other classical objects.

Frame 6: Fermionic observable
Consider a simply connected domain Ω ⊂ C and for a > 0, let Ω be the largest

connected component of aZ2 ∩ Ω. Consider n vertices x1, . . . , xn of Ω, and n faces
f1, . . . , fn of Ω such that f i is bordered by xi for every 1 ≤ i ≤ n. Choose n disjoint
cuts `1, . . . , `n, i.e. families of dual edges (e∗i ( j)) forming self-avoiding paths in the
dual from the unbounded face to the center of f i . Define the disorder operator µ` for
a cut ` as the observable that effectively switches the coupling constants of the edges
ei ( j) associated with the e∗i ( j) in the cut (it can be written as a product of terms of the
form exp[−2βσxσy] over edges appearing in the family of edges {ei ( j) : i, j}). Then,
the order-disorder correlations are given by the formula

F (a)
Ω

(x1, f1, . . . , xn, fn) := 〈σx1 µ`1 . . . σxn µ`n 〉Ω. (8.5)

Let us mention that these quantities can be expressed in terms of correlations of Grass-
mann variables in the Schultz-Mattis-Lieb representation [96].

Smirnov introduced a fermionic observable f (a)
Ω

defined at centers of edges
{x, y} of Ω that can be written as a linear combination (with complex coefficients) of
the F (a)

Ω
with x1 equal to x or y, and f1 to one of the two faces bordered by {x, y}.

The details of the definition are unimportant here and the take-home message is that
Chelkak and Smirnov proved that the limit (as a tends to 0) of these fermionic observ-
ables is conformally covariant.

The conformal covariance of the fermionic observable should be understood as the
first brick among the conformal covariance results of spin-spin, energy-energy correlations,
and even of the conformal invariance of interfaces. Let us mention that these results require
substantial additional ideas compared to [28,100]. In fact, conformal covariance/invariance of
virtually all quantities one may be interested in the 2D Ising model can be recovered today.

The proof of the theorem relies on the observation that f (a)
Ω

is the solution of a dis-
crete version of a Riemann-Hilbert boundary value problem. More precisely, the function
can be proved, via combinatorial arguments involving the van derWaerden high-temperature
expansion, to be preholomorphic (see Frame 7), and to satisfy certain boundary conditions.
These special features are connected to the integrability of the model. From general prin-
ciples on preholomorphic functions, the limit as a tends to 0 of these objects must be the
holomorphic solution of a continuum Riemann-Hilbert boundary value problem, which can
be computed and proved to be conformally covariant. Such reasoning has been used in
several existing proofs of conformal invariance, for instance for dimers or Bernoulli site per-
colation on the triangular lattice. It has created an explosion of results in the field as many
quantities can be proved to converge using a similar strategy.
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Frame 7: Preholomorphic observables
The notion of preholomorphic function on a planar graph G appeared implic-

itly in the work of Kirchhoff on electrical networks [78]. It was explicitly linked to
holomorphicity in the work of Isaacs [68,69], in which the author proposed to discretise
the Cauchy-Riemann equation to get to the definition (on the square lattice)

F (NW ) − F (SE) = i[F (N E) − F (SW )], (8.6)

where NW , SW , SE, and N E are the four corners found in counterclockwise order
around each face, when starting from the top left vertex.

The properties of preholomorphic functions have been the object of a renewed
interest with the emergence of the question of conformal invariance in connections to
boundary value problems. Indeed, general theorems stating that preholomorphic func-
tions satisfying certain boundary value conditions converge when taking finer and finer
meshsize to holomorphic solutions of the continuum version of the boundary value
problem took a central place in the theory.

In the case of the Ising model, the complexity of the boundary value problem
(involving a condition on the argument of the fermionic observable) pushed Smirnov
to introduce a stronger notion of preholomorphicity, called s-holomorphicity, which is
also satisfied by fermionic observables. The advantage of this notion is that it enables
one to define the imaginary part of the primitive of the square of the observable, which
roughly speaking becomes the discrete solution of a Dirichlet boundary value problem,
a much more tractable problem for which convergence (when a tends to 0) can be
proved very elegantly.

8.3. Towards universality of the 2D Ising model
As mentioned in Section 4.2.2, the large-scale properties of the critical Ising model

should not depend on the precise properties of the underlying graph. With the tremendous
successes that have been achieved over the years in the case of the Ising model on Z2 and
more generally on planar graphs, it is natural to test the validity of the universality hypothesis
in this context. Several advances have been made in this direction in the last fifteen years.

The first impressive progress can be found in the work of Chelkak and Smirnov
themselves [28]. They observed that the preholomorphicity argument leading to conformal
invariance can be articulated naturally in the setting of so-called isoradial graphs. An iso-
radial graph is an embedding of a graph G in the plane such that every face of the graph is
inscribed in a circle of radius 1. In this context, one may define special coupling constants
Jx,y depending on the graph in such a way that βc = 1 and that the fermionic observable is
naturally preholomorphic on this graph. Then, the strategy of Chelkak and Smirnov on the
square lattice applies to isoradial graphs with the same conclusions. Note that this result can
be understood as a universality result on the graph (isoradial graphs are a fairly large family
of planar graphs, even though not fully general), but that the choice of Jx,y is determined by
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the embedded graph itself. Moreover, a striking feature of this theorem is that no transitivity
or quasi-transitivity is required for this to work.

In recent developments, Chelkak generalised the conformal invariance result to a
wider class of Ising models, namely those defined on planar locally-finite doubly periodic
weighted graphs (G, J), i.e. weighted graphs which are invariant under the action of some
lattice Λ ≈ Z ⊕ Z (in such case G/Λ is a finite graph embedded in the torus). For such
models, Chelkak proved in [25] that there exists an embedding in the plane, called an s-
embedding, with the property that the scaling limit of the critical model defined on this
embedding is conformally invariant.

This result is a strong indication of universality for planar graphs. Now what
happens beyond planar graphs? The universality conjecture asserts that the scaling limit
depends on the large scale geometry of the graph (for instance a planar Euclidean geome-
try). In particular, one may consider the graph obtained with the vertex-set Z2 and edge-set
given by pairs of vertices at a distance at most R of each other. This model, called the finite-
range model on Z2, should have a behaviour that is similar to the nearest-neighbour case as
it is “almost planar”. The additional difficulty is that non-planarity immediately breaks the
integrability of the system. The universality of such Ising models has been investigated in
two different directions.

First, one may consider finite-range models that are perturbations of the nearest-
neighbour integrable case, meaning that non-nearest neighbour interactions are very weak,
i.e. that Jx,y is small when 1 < ‖x − y‖2 ≤ R. Using the Schultz-Mattis-Lieb Grassmann
representation [96] of the nearest neighbour case, one may express the partition function and
more generally the energy-energy and spin-spin correlations in terms of Grassmann vari-
ables, and therefore at the end in terms of the nearest-neighbour model. Using an elaborate
multi-scale analysis and studying the renormalisation of parameters induced by this multi-
scale analysis, Giuliani-Greenblatt-Mastropietro derived in [53] the large-scale behaviour of
energy-energy correlations in the full plane. While the previously mentioned renormalisa-
tion schemes in dimension 4 were enabled by the fact that the model is a small perturbation
of the discrete GFF (which is a gaussian process), the two-dimensional case relies on a
similar connection, this time to the n.n.f. Ising model on Z2 (which has a Grassmannian
structure). As a consequence, the strategy suffers from the same limitations as the 4D case
in the sense that it is restricted to small perturbations of the n.n.f. Ising model on Z2.

A totally different approach explaining the emergence of planarity in finite range
Ising models was proposed in [6] based on the random current representation. The underlying
idea relies on the fact that thanks to the switching lemma, intersection properties of random
currents with sources are related to the structure of n-point correlations in the model. Yet,
the intersection properties of long paths on the graph induced by Z2 and the edges between
vertices at a distance R of each other resemble the ones that can be obtained for planar
graphs. As an example of a possible application, one can obtain that spin-spin correlations
on the boundary of a domain Ω have a Pfaffian structure, a result which is specific to the
universality class of the 2D Ising model. More precisely, for any collection of points x1 =

(k1, 0), . . . , x2n = (k2n, 0) satisfying k1 < k2 < · · · < k2n on the boundary of the upper
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half-plane H := Z × Z+,

〈σx1 · · ·σx2n 〉H,βc = Pfaffn
( [
〈σxiσx j 〉H,βc

]
1≤i< j≤2n

) [
1 + o(1)

]
, (8.7)

where o(1) is a function of the points x1, . . . , x2n which tends to zero for configuration
sequences with min{|xi − x j | : 1 ≤ i < j ≤ 2n} tending to infinity.

This is, to the author’s knowledge, the first property witnessing the 2D Ising univer-
sality class that can be obtained in a level of generality that is not restricted to planar graphs
and their perturbations. Also, the proof relies on the key properties of the Ising model that
one would like to use: the ± spin symmetry (entering the story through the use of the ran-
dom current representation) and the large scale planarity of the underlying graph (which for
finite range models on Z2 is the reason behind the “almost” intersection properties of long
paths). The trade-off is that full conformal invariance of this family of models is still out of
reach.

8.4. Conformal bootstrap in 3D Ising model
At this point, we already mentioned that the 1D Ising model was trivially solved in

the original paper of Ising [70], and that it took 20 more years to achieve a solution of the 2D
Ising model [88]. We also saw that the model in dimensions 4 and higher is much simpler
as its large-scale properties should be Gaussian. This singles out 3D as the remaining chal-
lenging dimension. To the best of our knowledge [101], it is not known whether the model
is integrable or not. This is particularly problematic as the third dimension is probably the
most relevant one physically (for instance the model should be in the universality class of
liquid–vapour systems, and totally anisotropic magnets).

In recent years, a striking progress has been made on the physics side using the
so-called conformal bootstrap. A conformal field theory (CFT) is characterised by the cor-
relation functions 〈−−〉 of an infinite number of local operators A(x), which in the case of
Ising should be understood as the objects obtained by taking the limit of random variables
defined in terms of spins next to a given position of space. For example, the scaling limit of
spin and energy observables σx and ε {x,y } = σxσy − 〈σxσy〉 give such local operators in
the case of Ising, but one may think of more complicated ones, such as the scaling limit of
(products of) the gradient σx+y − σx of the spins.

Conformal invariance already forces huge constraints on the correlations of oper-
ators in the theory. Oversimplifying slightly, for scalar local operators there must exist
exponents ∆A and coefficients fABC such that

〈A(x)A(y)〉 =
1

‖x − y‖
∆A
2

, (8.8)

〈A(x)B(y)C(z)〉 =
fABC

‖x − y‖
∆A+∆B−∆C
2 ‖y − z‖∆B+∆C−∆A2 ‖z − x‖∆C+∆A−∆B2

(8.9)

(in (8.8), we adopted without loss of generality the normalization of A that makes the con-
stant in the numerator equal to 1). The exponents and coefficients depend a priori on the
CFT, but a striking feature is that there exists a way, called the conformal block decomposi-
tion, to express multi-point correlations of local operators in terms of three-point functions
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by gluing points together using the so-called operator product expansion. This theoretically
shows that all the information in a CFT can be encoded in terms of the ∆A and the fABC .
Of course, determining these coefficients is very difficult.

While in 2D this was done in the eighties, the analogous question remains widely
open in 3D. Nevertheless, one can proceed in a slightly different way by asking which
choices of these quantities can lead to a consistent CFT. This approach, called the con-
formal bootstrap, was shown to be amazingly powerful in 3D. The underlying idea is that
one is facing an infinite family of consistency relations coming from different ways of apply-
ing the conformal block decomposition (which is not unique). For instance, one may start
with 〈A(x1)A(x2)A(x3)A(x4)〉 and proceed by gluing first x1 and x2 or, on the contrary,
x3 and x4. This leads to two decompositions of the same object as a linear combination
(with positive coefficients in the Ising case) of known objects called the conformal blocks.
Equalling these two decompositions, one ends up with constraints on the possible exponents.

There is a priori no reason to be able to determine the critical exponents as the
unique values satisfying a (finite) number of constraints thus obtained. Indeed, the set of
possible values may not shrink when considering more and more conditions, but it happens
that in the case of the Ising model, the region of the plane for possible critical exponents
(∆σ,∆ε ) for the spin and energy local operators can be reduced drastically, to a point where
estimates – namely (∆σ,∆ε ) = (0.5181489(10), 1.412625(10)) – using this bootstrap tech-
nique become way better than Monte-Carlo simulations. We refer to [41, 79, 94] for some of
the original papers and [98] for a review of the most recent progress in this very exciting area
of modern theoretical physics.

Let us conclude that even if one may use conformal bootstrap to exactly identify the
critical exponents, this would leave the question of proving that the critical 3D Ising model
indeed converges to a CFT widely open. In some sense, getting sufficient information on
the possible scaling limits and proving that these scaling limits indeed exist are two almost
entirely disjoint questions even though, of course, one may hope that information on the
former question would help answer the latter.

9. A tail to this story
The Ising model has always played the role of a locomotive in the developments of

statistical physics. Its central place and incredible properties turn it into an amazing play-
ground for both mathematicians and physicists. As a consequence, during most of its history
novel techniques were developed to solve problems on it, which later led to whole indepen-
dent fields of mathematical physics (integrable systems, graphical representations, rigorous
renormalisation methods, etc).

Let us mention several long-standing problems remaining widely open for this
model. At the top of the list, universality of the 2D behaviour (see Section 8.3), critical
properties of the 3D model (see Section 8.4), and the roughening phase transition (see
Section 5.3) are among the most important unsolved puzzles. Solving them will proba-
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bly require the development of new techniques that will again, through cross-fertilisation,
benefit the whole field of statistical mechanics.
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