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Abstract

In this article, we consider the interlacement set Iu at level u > 0 on Zd, d ≥ 3, and
its finite range version Iu,L for L > 0, given by the union of the ranges of a Poisson cloud
of random walks on Zd having intensity u/L and killed after L steps. As L → ∞, the
random set Iu,L has a non-trivial (local) limit, which is precisely Iu. A natural question is
to understand how the sets Iu,L and Iu can be related, if at all, in such a way that their
intersections with a box of large radius R almost coincide. We address this question, which
depends sensitively on R, by developing couplings allowing for a similar comparison to hold
with very high probability for Iu,L and Iu′,2L, with u′ ≈ u. In particular, for the vacant
set Vu = Zd \ Iu with values of u near the critical threshold, our couplings remain effective
at scales R �

√
L, which corresponds to a natural barrier across which the walks of length

L comprised in Iu,L de-solidify inside BR, i.e. lose their intrinsic long-range structure to
become increasingly ‘dust-like’. These mechanisms are complementary to the solidification
effects recently exhibited in [27]. By iterating the resulting couplings over dyadic scales
L, the models Iu,L are seen to constitute a stationary finite range approximation of Iu at
large spatial scales near the critical point u∗. Among others, these couplings are important
ingredients for the characterization of the phase transition for percolation of the vacant sets
of random walk and random interlacements in the companion articles [19, 20].
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1 Introduction

Random interlacements form a prime example of a model exhibiting long-range dependence
which gives rise to intriguing critical phenomena. An instance of this is the percolation transition
associated to the vacant set Vu of random interlacements as u > 0 varies across a critical
threshold u∗, see [37, 34], which is intrinsic to various geometric questions concerning random
walk (or Brownian motion) in transient setups; see, e.g., [16, 6, 36, 42, 24, 39, 27].

Within the framework considered in the present article, the set Vu is a random translation
invariant subset of Zd, d ≥ 3, decreasing in u > 0 and obtained as follows. One introduces a
Poisson point process η∗ on W ∗ × R+, the space of labeled bi-infinite transient lazy Zd-valued
trajectories modulo time-shift; see §2.2 for precise definitions, in particular (2.26) regarding its
intensity measure. The interlacement set Iu = Zd\Vu at level u is defined, for a given realization
η∗ =

∑
i δ(w∗i ,ui)

, as the trace of all trajectories in this Poisson cloud with label at most u,

(1.1) Iu = Iu(η∗) =
⋃

i:ui≤u
range(w∗i ).

The use of lazy random walks in the construction is a matter of convenience and amounts to an
inconsequential rescaling of u.

Among its essential and also most daunting features, correlations in the occupation field of
Iu are governed by the Green’s function of the random walk, see, e.g., [37, (1.68)], and thus
decay like |x − y|2−d at large distances |x − y| → ∞ for any u > 0. A natural way to try to
tame this long-range dependence is to truncate the model by introducing a finite time horizon
for the trajectories; truncations of this and similar kinds have appeared in the literature, see
e.g. [8, 30, 7, 12]. The family of finite range models we will consider is defined as follows. Let
Px denote the canonical law of the discrete-time lazy random walk on Zd started at x and
X = (Xn)n≥0 the corresponding process. Consider the product measure ν on W+ × R+, where
W+ is the space of forward Zd-valued trajectories (supporting Px), with

(1.2) ν(B × [0, u]) = u
∑
x∈Zd

Px[X ∈ B],

for measurable sets B. The measure ν in (1.2) induces a Poisson point process η on W+ × R+,
defined on its canonical space (Ω+,A+), with ν as its intensity measure. For an arbitrary
(density) function f : Zd → R+ and L ≥ 1, one then defines, in analogy with (1.1),

(1.3) If,L = If,L(η) =
⋃

i :ui≤ 4d
L
f(wi(0))

wi[0, L− 1],

for a realization η =
∑

i δ(wi,ui), where wi[s, t]
def.
= {x ∈ Zd : x = wi(n) for some s ≤ n ≤ t},

for t ≥ s ≥ 0. In words, If,L comprises the trace of the first L steps of a Poissonian number
of trajectories, started with density proportional to 1

Lf(·). For u ≥ 0, we write Iu,L when
f(x) = u for all x ∈ Zd. The random set Iu,L is translation invariant, and, as will be shown in
Proposition 3.6, for any u > 0 one has that

(1.4) Iu,L d−→ Iu as L→∞.

In view of (1.4), the random set Iu,L thus constitutes a finite range approximation of Iu in
law. One thus naturally wonders in how far (if at all) the limit L → ∞ can be understood
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in a ‘pathwise’ sense. Existing coupling techniques, which have a long history in the area,
see [38, 42, 28, 13, 29, 15, 2, 7], are virtually all local in the sense that trajectories entering
the picture evolve for a time much larger than the diffusive time scale associated to the box
in which the coupling is constructed. By adapting these methods, it is thus plausible (and
actually true, see Section 3) to expect Iu and Iu,L to be comparable inside a box of radius
R as long as L = L(R) � R2, which in itself is already not entirely straightforward to show,
cf. Proposition 3.4 below.

In contrast, for matters relating e.g. to the near-critical regime around u∗, one is often
interested in pushing such comparisons much further, to scales L = L(R) well below the diffusive
scale R2. This is related to the conjectured fractal nature of large clusters near the critical point.
The underlying question thus becomes one of witnessing ‘extended objects’ that carry long-range
information at spatial scale R (for instance, random walk trajectories evolving for time & R2)
‘materialize’ out of smaller (sub-diffusive) ‘particles’. We will return to this problem at the end
of this introduction, see Theorem 1.6, which illustrates our main results by yielding a coupling
with much smaller ‘localization scale’ L(R) than R2 in the regime near u∗. Theorem 1.6 is but
one application of the main couplings developed in this article, which we now present.

1.1. Couplings and obstacles. Our first two main results, Theorems 1.1 and 1.3 below, will

allow us to couple the sets Iu,L and Iu′,L′ for L′ ≤ L and suitable values of u, u′ with u ≈ u′

in such a way that their ranges almost coincide in large regions. These results will in turn lead
to meaningful couplings between Iu,L and Iu′ , as will be seen subsequently. We will henceforth
always assume that L ≥ L′ ≥ 1 are integers with L′ dividing L and such that

(1.5) L(logL)−γ ≤ L′ ≤ L(logL)−10,

for some parameter γ > 10. The restriction on L′ inherent to (1.5) is not severe, one can typically
extend the range of L′ by iterating the following results.

In attempting to compare If,L from (1.3) for a given profile f with If ′,L′ , let us first make
a reasonable guess at what a good choice of f ′ may be. A natural way to proceed is to cut
the trajectories comprising If,L into pieces of length L′. Foregoing for a moment the (strong)
dependence between successive starting points of the length-L′ walks (inherited from the longer
length-L trajectories) induced by this cutting procedure, one may plausibly choose f ′ = PL

′
L (f),

where for all f : Zd → R,

(1.6) PL
′

L (f)
def.
=

L′

L

L/L′∑
k=1

P(k−1)L′(f)

and Pnf(x) = Ex[f(Xn)] denotes the n-step transition operator associated to Px. Note in
particular that PL

′
L (·) acts as identity map on constant functions f(x) = u, x ∈ Zd.

The considerations leading to (1.6) are but a simple heuristic. For, unlike the trajectories
of length L′ constituting If ′,L′ with f ′ = PL

′
L (f), which have independent starting points, the

ones obtained after cutting If,L carry long-range dependence (for instance, most of the time a
walk of length L′ needs to start where a walk of same length L′ ends). The comparison between
the two sets is thus a-priori far from clear. A first idea to overcome this issue is to allow some
room for homogenization by leaving a suitable gap time 1� tg � L′ in the cutting procedure,
all while still retaining one of two possible inclusions. Of course this does not come free of
cost; in particular one should expect to end up with a slightly smaller proportion of walks of
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length L′. The following result turns this intuition into a theorem. We refer to the end of this
introduction regarding our policy with constants c, C etc., which only depend on d ≥ 3. Let
BN = [−N,N ]d ∩ Zd for any N ≥ 0 and recall that (1.5) is in force.

Theorem 1.1. For all u ∈ (0,∞) and integer K ≥ 0 the following holds. Given any function
f : Zd → [0, u] such that f(x) ≥ (logL)−γ for all x ∈ BK+L, there exists a coupling Q of two

{0, 1}Zd-valued random variables I1, I2 such that

I1
law
= If,L, I2

law
= I(1−C(L′/L)1/2)PL

′
L (f1BK ),L′ and

Q [I1 ⊃ I2] ≥ 1− C(u ∨ 1)(K + L)d e−c (L/L′)1/4
.

(1.7)

Theorem 1.1 will follow from a more general result, Theorem 4.1, proved in Section 4; see
also Remark 4.2,1). The discussion leading to (1.7) crucially relied on the fact that the inclusion
of range-L′ trajectories into range-L ones permits one to forget about gaps between walks. On
the contrary, the opposite inclusion requires gluing shorter length-L′ trajectories into longer
ones. This is much more difficult to achieve, and the coupling we derive to this effect in the next
result, Theorem 1.3 below, is correspondingly more involved. As one of the main innovations
of this article, we now introduce an obstacle set O, which is at the heart of this coupling. We
will in fact couple the models outside an enlarged obstacle set Õ. In a nutshell, the walks of
length L′ will be ‘wired’ into walks of length L using obstacles, met frequently and by many of
the random walks entering the picture, as ‘hubs;’ cf. Figure 1.

BK+2L

L̃

O

Figure 1 – A longer length-L trajectory (red) is obtained by ‘gluing’ pieces of shorter
length-L′ trajectories (green) within the enlarged obstacle set (orange).

We now introduce the obstacle set O. We assume that O is a disjoint union of boxes of equal
radius `O ≥ 1, called obstacles. The collection of such boxes is denoted by BO, whence

(1.8) O =
⋃

B∈BO

B.
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For U ⊂ Zd, let HU denote the entrance time of X in U , see below (2.5) for notation. The key
features of O in (1.8) are encapsulated in the following:

Definition 1.2. Let K ≥ 0, L ≥ 1, δO ∈ (0, 1) and MO ≥ 1. An obstacle set O ⊂ BK+2L is
called (δO,MO)-good if

(Visibility condition): Px[HO > L(logL)−10γ ] ≤ δO, for all x ∈ BK+L;(1.9)

(Density condition):
Pµ[XHO ∈ B, HO <∞] ≥MOL,
for all B ∈ BO with B ∩ UO 6= ∅,

(1.10)

where UO = BK+
√
L(logL)γ , Pµ =

∑
x µ(x)Px and

(1.11) µ = α−11UO , with α = (logL)10γ .

The term obstacle is fitting, cf. for instance [35]: indeed verifying the conditions of Defini-
tion 1.2 will notably require some control on gO(·, ·), the Green’s function of the walk killed
on the obstacle set O, see (2.4) for notation. Further note that, apart from (δO,MO), a good
obstacle set also depends implicitly on L, K, `O and γ (> 10), cf. above (1.5). The parametriza-
tion in (1.10) is chosen so that MO will eventually correspond to a number of trajectories. The
manufacture of a good obstacle set is somewhat intricate because O needs to meet competing
interests in satisfying (1.9) and (1.10) simultaneously. We return to this below the next theo-
rem. In doing so, we will give concrete examples of obstacle sets O satisfying Definition 1.2. In
applications of interest, O itself will typically also be random.

In order to state our second main result, which exhibits a coupling with inclusions in the
‘hard’ direction, opposite to that of Theorem 1.1, we introduce in analogy with (1.8) the set

(1.12) Õ =
⋃

B∈BO

B̃,

where, for every B ∈ BO, B̃ is the concentric ball of radius ˜̀O = `
1+ 1

100
O . We refer to the set Õ

defined by (1.12) as enlarged obstacle set in the sequel.

Theorem 1.3. For all u ∈ (0,∞), integer K ≥ 0 and ε ∈ (0, 1), the following holds. Given any
f : Zd → [0, u] such that f |BK+L

≥ (logL)−γ and f = 0 outside BK+L, and any (δO,MO)-good

obstacle set O(⊂ BK+2L) with C`
−1/100
O ≤ ε, there exists a coupling Q of (I1, I2) such that

I1
law
= If1BK ,L, I2

law
= I(1+ε)PL

′
L (f),L′ ; and, for L ≥ L0(d, γ, u),

Q
[
(I1 \ Õ) ⊂ (I2 \ Õ)

]
≥ 1− C(u ∨ 1)(K + L)d

(
e−c(ε

2MO∧(L/L′)1/4) ∨ δO
)
.

(1.13)

The inclusion (1.13) complements (1.7) but obviously the price to pay is to avoid the enlarged
obstacle set Õ. This is because Õ delimits a region in which pieces of trajectories are glued
together to form longer ones; cf. Figure 1. We will soon see (§1.3) how (1.13) can be employed
to deduce meaningful statements e.g. concerning boundary clusters of vacant sets. For the time
being, an obvious question is to construct (δO,MO)-good obstacle sets, i.e. having small δO and
large MO in view of the error term appearing in (1.13).
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1.2. Constructing good obstacle sets. Considering the event on the left-hand side of (1.13),

interesting choices for O (and a fortiori, Õ) ought to be as small as possible. Indeed, the set
O = BK+L for instance is a good obstacle set (in particular, Definition 1.2 is not vacuous),
however it renders (1.13) moot. The obstacle sets we exhibit below do in fact have vanishing
asymptotic density in BK+2L as L→∞; see Corollary 1.4. These examples, which will be used
in applications below, underline the strength of the coupling exhibited in Theorem 1.3.

Before giving concrete examples let us first highlight one key point. The obstacles comprising
O have two defining properties, (1.9) and (1.10), which act in opposite ways with regards to
choosing scales and finding the right resolution for O: on the one hand, O needs to have good
trapping properties, see (1.9), i.e. be hard to avoid for the random walk started in the bulk, a
feature which naturally improves upon increasing `O, the radius of an individual obstacle. On
the other hand each box B ∈ O needs to be small enough as to retain a high ‘surface density’
of incoming trajectories, see (1.10), which intuitively favors mixing and facilitates the gluing.
This will later be quantified in terms of a mean free path

√
tO for the random walk among

the obstacles O, see Lemma 6.2 below, which has to be sufficiently large (much larger than the
typical obstacle separation; see Remark 6.3 below).

We now discuss some examples of good obstacle sets, including suitable periodic arrange-
ments of boxes, which constitute the simplest example. Eventually though, we will be interested
in the disordered case where obstacles are random, so we immediately formulate a suitable
relaxation of the periodicity condition.

We will let the obstacle set O consist of boxes B of radius `O ≥ 1, separated by a mesoscopic
scale L̃ with `O � L̃� L. Suppose that

(1.14) (logL)100γ ≤ `O ≤ L
1
3d .

We then introduce the scale L̃, which will govern the typical distance between obstacles, as

(1.15) L̃ = b(αL`(d−2)/2
O )1/dc, where α = (logL)10γ (cf. (1.11));

in fact, any positive exponent less than d− 2 for `O would do in (1.15), which is related to the
capacity of a box of radius `O, see (2.11) below. The mechanism behind the inverse propor-
tionality of L̃ as a function of the ‘ellipticity’ lower bound α−1 introduced in (1.11) is easy to
grasp intuitively. If α−1 decreases, satisfying the density condition (1.10) becomes harder, and
retaining a given ‘surface density’ MOL on an individual obstacle B will be eased by making
the obstacles sparser, i.e. increasing L̃, which indeed grows with α by (1.15).

Continuing with the constuction of O, under the assumption (1.14), it is plain to see that
`O � L̃ � L when L is large. Now, given the mesoscopic scale L̃ in (1.15), let C̃ denote the

collection of boxes B(z, L̃)
def.
= z + B

L̃
where, roughly speaking and as will be made precise

momentarily, see (1.16) below, z ranges over all points of L̃ def.
= 3L̃Zd ∩ BK+3L/2. For various

applications we have in mind, see e.g. the next paragraph §1.3, see also [19], we sometimes need
the enlarged obstacle set Õ to avoid the boundary ∂B (see Section 2 for notation) of a given
box B = B(x,N), for some x ∈ Zd and N ≥ 0. For the purposes of this exposition, the reader
may choose focus on the case B = ∅ (in which case ∂B = ∅ by convention in what follows).
Accordingly, we now set, for B ∈ {B(x,N) : x ∈ Zd, N ≥ 0} ∪ {∅},

(1.16) C̃ =
{
C̃ : C̃ = B(z, L̃) for some z ∈ L̃ s.t. B(z, 2L̃) ∩ ∂B = ∅

}
.

In the sequel, we usually employ the notation C̃ to denote a generic element of C̃, which we refer
to as a cell.
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A good obstacle set will in essence comprise one obstacle (a box of radius `O) per cell. Thus,
let {y

C̃
: C̃ ∈ C̃} denote an arbitrary collection with y

C̃
∈ C̃ for each C̃ ∈ C̃. Proposition 6.1

will imply that, under (1.14) and for all K ≥ 0, u ∈ (0,∞) and L ≥ C(γ),

(1.17)
the obstacle set O =

⋃
C̃∈C̃ B(y

C̃
, `O) ⊂ BK+2L is

(δO,MO)-good with δO = e−c(logL)γ , MO = c`
(d−2)/2
O .

Although this will be too limiting for our purposes, let us emphasize that (1.17) with B = ∅
in (1.16) yields instances of fully ‘periodic’ arrays of obstacles (inside BK+3L/2). Moreover,
by computing the volume occupied by O and combining (1.17) (see also Proposition 6.1) with
Theorem 1.3, one immediately arrives at the following result. As in the statement of Theorem 1.3
we assume implicitly that (1.5) holds (for some γ > 10) and that u ∈ (0,∞), K ≥ 0 and
f : Zd → [0, u] is such that f |BK+L

≥ (logL)−γ and f = 0 outside BK+L.

Corollary 1.4. For any `O satisfying (1.14) and ε ≥ c`−1/100
O , one can find a good obstacle set

O ⊂ BK+2L and a coupling Q of (I1, I2) with marginals as in (1.13) such that

(1.18) Q
[
(I1 \ Õ) ⊂ (I2 \ Õ)

]
≥ 1− e−c(logL)γ and |Õ|/|BK+2L| ≤ L−c.

Corollary 1.4 highlights the strength of Theorem 1.3. Indeed, the second part of (1.18)
implies in particular that the set Õ removed from the region of coupling has vanishing asymptotic
density in BK+2L as L→∞. It is an interesting open problem to determine how small |Õ| can
be chosen for the inclusion in (1.18) to continue to hold with high probability.

1.3. Disorder and coupling of clusters. To illustrate the usefulness of Theorem 1.3, we now
discuss a specific case where O is random with range among the obstacle sets of the form given
by (1.17). The additional randomness comes from an auxiliary configuration I = I(ω) ⊂ Zd
for ω ∈ Ω, defined on an auxiliary space (Ω,A,P). We think of P as generating a random
‘environment’ and write V = Zd \I with I = I(ω). The random ‘environment’ of hard obstacles
O = O(ω) will then consist of realizations of boxes fulfilling (1.17) around which disconnection
in V occurs. As asserted in the next theorem, this yields a coupling of boundary clusters (of a
box B) for the vacant sets corresponding to the superposition with I of the two configurations
to be coupled, cf. Fig. 2. In practice, I corresponds to a (significant) fraction of e.g. If,L, which
remains ‘frozen’ while applying our coupling results, Theorems 1.1 and 1.3; we describe this in
detail in §1.4. As will become clear in the course of proving Theorem 1.5 below, the reason for
discarding cells close to ∂B in (1.16) is that the presence of obstacles near the boundary could
otherwise spoil the configuration of boundary clusters which we aim to couple.

We now make precise the relevant notion of disconnection events for V. To this effect, we
introduce one additional scale ¯̀O with ˜̀O < ¯̀O ≤ L̃ (recall (1.12) regarding ˜̀O). For any y ∈ Zd
and S ⊂⊂ Zd, define (under P)

Disc(y) = Disc˜̀O,¯̀O
(y) =

{
B(y, ˜̀O)

V
6←→ ∂B(y, ¯̀O)

}
, and

Disc(S) = Disc˜̀O,¯̀O
(S) = {y ∈ S : Disc`O,¯̀O(y) occurs}.

(1.19)

Notice that while Disc(y) is an event, Disc(S) is a random subset of S (under P). Of interest
to us will be the disconnection event (under P)

(1.20) D = D(ω) =
{

Disc(C̃) 6= ∅ for all C̃ ∈ C̃
}
.
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where C̃ is as in (1.16) for an arbitrary box B = B(x,N), which will soon play the role of
the region in which we exhibit a coupling (cf. (1.21) below). In a nutshell, on the event D =
D(ω) appearing in (1.20), we can for each cell C̃ ∈ C̃ pick a box around which disconnection
occurs in V(ω) to form the obstacle set O = O(ω). Combining Theorem 1.3 with (1.17) (see
also Proposition 6.1), we then arrive at the following result, proved at the end of Section 6.
Hereinafter we use C ∂

S (V), for S,V ⊂ Zd, to denote the connected component of ∂S in V ∩ S.

Theorem 1.5. For all u ∈ (0,∞), ε ∈ (0, 1), integer K,N ≥ 0, B = B(x,N) for x ∈ Zd,
and f : Zd → [0, u] as in Theorem 1.3, the following holds. If (1.14) holds, ε ≥ C`

−1/100
O ∨

(`
−1/(d−2)
O (logL)γ/2) and ˜̀O < ¯̀O ≤ L̃, there exists a coupling Qω of I1, I2 such that, P-a.s.,

I1
law
= If1BK ,L ∪ I(ω), I2

law
= I(1+ε)PL

′
L (f),L′ ∪ I(ω); and for L ≥ L0(d, γ),

Qω

[
C ∂
B

(
V(I1)

)
⊃ C ∂

B

(
V(I2)

)]
1D(ω) ≥ 1− C(u ∨ 1)(K + L)de−c(L/L

′)1/4
,

(1.21)

where V(I)
def.
= Zd \ I for any I ⊂ Zd.

In fact, our arguments yield that one can couple not only all the boundary clusters C ∂
B(·) in (1.21)

but actually all the clusters intersecting the complement of the ¯̀O-thickening of the obstacle set
O = O(ω) used in the proof, which is of the form (1.17).

Theorem 1.5 also implies the following useful ‘annealed’ coupling. With Q[·] def.
=
∫
Qω[·]dP(ω),

we immediately obtain, under the assumptions of Theorem 1.5, that Q gives a coupling of three

configurations I (with law specified by P), I1
law
= If1BK ,L and I2

law
= I(1+ε)PL

′
L (f),L′ such that

I, Ik are independent under Q for any choice of k ∈ {1, 2} and L0(d, γ),

Q
[
C ∂
B

(
V(I1 ∪ I)

)
⊃ C ∂

B

(
V(I2 ∪ I)

)]
≥ P[D ]− C(u ∨ 1)(K + L)de−c(L/L

′)1/4
.(1.22)

In the next paragraph, we return to the question of coupling Iu,L and Iu, see around (1.4).
This provides a concrete and simple example of environment ω with I = I(ω) of interest, which
illuminates the use (1.21) and (1.22); see also §1.5 below for further applications.

1.4. Coupling the vacant sets of Iu,L and Iu. We now attend to the question of taming
correlations in Iu by comparison with Iu,L, which is 2L-dependent (in fact, the ‘effective’ range
of dependence is rather of order

√
L, the typical diameter of a random walk of length L). As

explained below, the following result can be obtained by means of Theorems 1.1 and 1.5.

Theorem 1.6. Let u ∈ (0,∞) and γ > 10 be such that, with D(`) = exp{`c1/γ},

(1.23) lim inf
`

exp
{
`c1d/γ

}
P[B`

Vu
6←→ ∂BD(`)] > 0.

Then for all v ≥ u(1 + (logL)−2), R ≥ 0 and (dyadic) integers L ≥ L0(d, γ, u, v), letting
v± = v(1± (logL)−3), there exists a coupling Q of (Vv+,L,Vv,Vv+,L) such that

Q
[
C ∂
BR

(Vv+,L) ⊂ C ∂
BR

(Vv) ⊂ C ∂
BR

(Vv−,L)
]
≥ 1− C(R+ L)de−c(logL)γ .(1.24)

In words, Theorem 1.6 asserts that, if (1.23) holds, one can localize Vv up to sprinkling
to scale L, with an error term that remains effective well below the barrier L ≈ R2; cf. also
(7.1) and Proposition 7.1, which imply a similar coupling as in (1.24) with Vv,2L in place of Vv
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under the sole assumption (1.23) for ` = (logL)C , which is very mild. This type of statement
can be viewed as complementary to the solidification mechanisms exhibited in [27]. Indeed,
the properties defining our obstacle sets O, see Definition 1.2, bear a loose resemblance to
those exhibited by ‘resonant sets’ in the language of [27], but the disconnection bounds (1.23)
or (7.1) defining the random set O (cf. Theorem 1.5, which is crucially used in the proof)
act in the opposite direction than the frequently used assumption u < ū (which implies upper
bounds on disconnection), see e.g. [27, 40, 14]. Thus our ‘resonances’ rather have a de-solidifying
effect: indeed (1.24) (along with its one-step version (7.2)) indicates that large clusters such as
those comprised in C ∂

BR
(Vv) can be built using random objects of well-defined ‘size’ (length-L

trajectories) over a large spectrum of scales L, which hints at an ‘amorphous’ structure rather
than a ‘solidified’ object.

Theorem 1.6 is a benchmark result. For instance, (1.24) immediately yields ‘localization

estimates’ for crossing probabilities of the form P[Br
Vv←→ ∂BR], for any 0 ≤ r < R, by which Vv

can be effectively replaced by Vv±,L at suitable values of v up to super-polynomial errors in R,
with ‘localization scale L’ as small as L = L(R) = exp{(logR)1.1/γ}, for any (large) γ > 1. As
mentioned at the beginning of this introduction, see below (1.4), this is completely outside the
scope of (adaptations of) existing techniques, which require L(R)� R2.

We now sketch how (1.24) is deduced from the previous results. Doing so will shed light on
a typical ‘random environment’ P (from which the disordered obstacle set is constructed; recall
the discussion following (1.20)) used in the context of Theorem 1.5.

In essence, one obtains (1.24) by concatenating over scales certain ‘recursive’ couplings of
similar form as (1.24) but relating V ·,L and V ·,2L instead. The statement corresponding to a
single ‘recursive’ step, see Proposition 7.1 below, is worth highlighting, because it can be made
fully quantitative in L (this regards in particular the scales ` at which a disconnection estimate
of the form (1.23) is needed); see Remark 7.2 for more on this. To deduce Proposition 7.1,
one applies Theorems 1.1 and 1.5 (the latter in its annealed version, which is sufficient for
this purpose) repeatedly together, each time replacing a small fraction of length-L by length-
2L trajectories, thus progressively transforming I ·,L into I ·,2L. At each step, the comparison
involves trajectories of intermediate length scale L′ � L as in (1.5), obtained by applying
Theorems 1.1 and Theorems 1.5 respectively to the (small fraction) of length-L and length-
2L trajectories to be exchanged, or vice versa (depending on which inclusion in (1.24) one is
proving). In doing so, an independent ‘bulk’ contribution, which generically consists of a mixture
of trajectories of both length scales, remains untouched. This bulk part plays the role of the
random environment I = I(ω) under P in the context of (1.22). The estimate (1.23) enters
naturally in supplying a lower bound for the quantity P[D ] in (1.22), which requires ‘abundance’
of disconnections in the underlying vacant set V = Zd \ I, cf. (1.20).

1.5. Outlook. We will in fact consider a larger class of interlacements, called ρ-interlacements,
enabling for both varying (time-)length and spatial intensity of the underlying Poisson point pro-
cess. This class will be useful not only for the proofs below, but also for subsequent applications.
In particular, the couplings we derive in Theorems 1.1 and 1.5 (see also their extensions, Theo-
rems 4.1 and 7.4 below), play an instrumental role in the upcoming proof [19, 20] of sharpness of
the phase transition of Vu. Moreover, if developed further, some of our quantitative statements,
see for instance Proposition 7.1 below (the one-step version of Theorem 1.6) will likely further
improve our understanding of the (near-)critical phase.

We now briefly discuss ρ-interlacements. Roughly speaking, ρ-interlacements and their asso-
ciated interlacement set Iρ, introduced in Section 3, are parametrized in terms of a (time-space)
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density ρ = ρ(`, x) ≥ 0 describing the average number of trajectories of (time-)length ` (possibly
infinite) starting in x ∈ Zd. This supplies a framework of processes that subsumes all the models
to be dealt with, including the full interlacement set Iu from (1.1), the length-L interlacements
If,L from (1.3) and, in particular, their homogenous version Iu,L, as well as various others en-
countered in practice (recall for instance the environment configuration relevant to the proof of
Theorem 1.6, which is more involved).

As we now briefly outline, a challenge is to accommodate the breadth of applications and the
resulting variety of ‘random environments’ I = I(ω) that may arise. To wit, for a complicated
configuration I = I(ω) involving trajectories of spatially inhomogenous intensity and varying
time length, the prospect of witnessing the event D(ω) in (1.20) with sufficient probability, which
entails exhibiting regions in which disconnection occurs in V = Zd \ I (see (1.19)) can seem
daunting; it is, however, pivotal since these regions precisely define the obstacle set O = O(ω),
as in the discussion leading up to Theorem 1.5 or in the application to Theorem 1.6.

As one of the benefits of ρ-interlacements, the mean occupation time density (¯̀ρ
x)x∈Zd asso-

ciated to ρ, see (3.11), yields verifiable conditions ensuring for instance that one can identify a
meaningful scalar intensity parameter u describing the (possibly complicated) configuration of
trajectories involved in I; cf. for instance Definition 7.3 and the proof of Lemma 7.7.

It is also instructive to draw comparisons between the couplings developed in this paper
and common approaches used for the analysis of other strongly correlated models, such as the
related Gaussian free field. In the latter context, stationary decompositions of the field over
scales (harnessing the underlying Gaussian structure) with distinct features have a long history,
see for instance [11, 9, 1, 3, 26, 17, 5, 33]. Such decompositions are appealing from the point of
view of renormalisation and very useful in a variety of contexts, see e.g. [10, 4, 17, 18, 25] and
refs. therein. Similarly powerful tools are at present inexistent for random walks/interlacements,
as Theorem 1.6 vividly illustrates, and the results of this paper can be regarded as a first step in
this direction. One distinctive feature is that Iu corresponds to a ‘degenerate’ limit for excursion
sets of occupation times {`u > α}, see [31], where the threshold α = 0, which ‘lacks ellipticity’.

1.6. Organization. We now describe the organization of this article. Section 2 collects some
notation and various useful facts about random walk and random interlacements, along with a
useful chaining result for couplings.

Section 3 introduces ρ-interlacements. After gathering a few generalities in §3.1, we prove
in §3.1 two complementary results, Propositions 3.3 and 3.4, which supply preliminary local
couplings relating Iρ and Iu under suitable conditions on ρ. Here, local is used in the same
sense as in the discussion following (1.4) ; see also Remark 3.7, which contrasts these couplings
with the main results of this paper. As an immediate application, we obtain the convergence in
law asserted in (1.4), see Proposition 3.6.

Sections 4 to 6 form the core of this article. Sections 4 and 5 are dedicated to the proofs of
Theorems 1.1 and 1.3, respectively, and have a similar structure. In each case, the proof starts
with a reduction step, which incorporates a notion of gaps (§4.1) or overlaps (§5.1) between
trajectories, leading to more malleable statements, see Propositions 4.3 and 5.1. The bulk of
each section is devoted to the proof of each proposition. Whereas the former relies on the ‘cutting
+ homogenization’ approach alluded to above Theorem 1.1, the (much) more difficult proof of
Proposition 5.1 requires implementing a gluing technique of short trajectories, which brings to
bear the obstacle set and the conditions for it to be good that constitute Definition 1.2.

The main result of Section 6 is Proposition 6.1, which supplies a large class of good obstacle
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sets, including in particular (1.17). This result can be fruitfully combined with Theorem 1.3,
applied with a suitable (random) choice of obstacle set O, thus leading to Theorem 1.5. The
proof of the latter appears at the end of Section 6.

Finally, Section 7 is devoted to the proof of Theorem 1.6, which illustrates Theorems 1.1
and 1.5. Theorem 1.6 is first reduced to its one-step version, Proposition 7.1, which yields
a similar coupling relating Vu,L and Vu,2L, interesting in its own right. Proposition 7.1 is
obtained by combining Theorem 4.1 (which extends Theorem 1.1) with Theorem 7.4. The latter
corresponds to a specialization of Theorem 1.5 to the case where the environment configuration
I is of the form Iρ introduced in Section 3. This yields very handy conditions, see (Cobst) in
Definition 7.3, which allow to control P[D ] in Theorem 1.5. The remainder of Section 7 contains
the proof of Theorem 7.4.

Our convention regarding constants is as follows. Throughout the article c, c′, C, C ′, . . .
denote generic positive constants (i.e. with values in (0,∞)) which are allowed to change from
place to place. All constants may implicitly depend on the dimension d ≥ 3. Their dependence
on other parameters will be made explicit. Numbered constants are fixed upon first appearance
within the text.

2 Notation and useful facts

In this section, we gather a few preliminary results. In §2.1 we review some facts about ran-
dom walk and gather some estimates about entrance and exit laws (possibly with finite time
horizon); see in particular Lemma 2.1. In §2.2 we introduce random interlacements, excursion
decompositions and supply a basic coupling for excursions, Lemma 2.3. Finally, §2.3 exhibits a
tool, Lemma 2.4, that allows to ‘concatenate’ couplings between random sets with a common
marginal, which is useful in order to preserve inclusions; see also Remark 2.5,2).

We start with some notation. We write N∗ = {1, 2, . . . }, N = N∗ ∪{0} and R+ = [0,∞). We
consider the lattice Zd, d ≥ 3, endowed with the usual (nearest-)neighbor graph structure, and
denote by | · | the `∞-norm on Zd. For a set K ⊂ Zd, we write Kc = Zd \K for its complement
in Zd, ∂K for its inner vertex boundary, i.e. ∂K = {x ∈ K : ∃y /∈ K s.t. y ∼ x}, where x ∼ y
denote neighbors in Zd, at Euclidean distance one. We also write ∂outK = ∂(Kc) for the outer
(vertex) boundary of K and K = K ∪ ∂outK. The set B(K, r) = Kr =

⋃
x∈U B(x, r) denotes

the r-neighborhood of K and K ⊂⊂ Zd means that K ⊂ Zd has finite cardinality. We use the
notations Br(z) = B(z, r) interchangeably to denote `∞-balls with radius r > 0 centered at
z ∈ Zd and abbreviate Br = Br(0). We use d(·, ·) to refer to the `∞-distance between sets.

2.1. Random walk. We endow Zd, d ≥ 3, with symmetric weights a : Zd×Zd → [0,∞), where
ax,y = ay,x = 1 if x ∼ y, ax,x = 2d and ax,y = 0 otherwise, and write ax =

∑
y∈Zd ax,y = 4d. We

consider the discrete-time Markov chain on Zd with generator Lf(x) = a−1
x

∑
y∼x ax,y(f(y) −

f(x)), for f : Zd → R, which has transition probabilities p(x, y) =
ax,y
ax

, x, y ∈ Zd. We denote

by Px the canonical law of this chain when started at x ∈ Zd, defined on its canonical space
(W+,W+), and by X = (Xn)n≥0 the corresponding canonical process. For µ : Zd → R+ we
write Pµ =

∑
x∈Zd µ(x)Px. With pn(x, y) = Px[Xn = y], x, y,∈ Zd, n ≥ 0, so that p1 = p, one

haspn(x, y) = pn(0, y − x) by translation invariance. We denote by Pn the transition operators,
i.e. for f : Zd → R,

(2.1) Pnf(x) =
∑
y

pn(x, y)f(y)
(

= Ex[f(Xn)]
)
, x ∈ Zd,
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which satisfies the semigroup property Pn+m = PnPm for n,m ≥ 0. The random walk X satisfies
the following local central limit theorem estimate, see for instance [23, Theorem 2.3.11]:∣∣∣∣ log

(
pn(0, x)

pn(x)

)∣∣∣∣ ≤ C( 1

n
+
|x|4

n3

)
for |x| < cn ,(2.2)

where

pn(x)
def.
=

(
d

πn

)d/2
exp

(
− d|x|2

n

)
.(2.3)

For U ⊂ Zd, we write HU = inf{n ≥ 0 : Xn ∈ K} for the entrance time in U , TU = HZd\U is

the exit time from U and H̃U = inf{n ≥ 1 : Xn ∈ U} the hitting time of U . We denote by gU
the Green’s density (with respect to a·) killed on U , i.e.

(2.4) gU (x, y) =
∑
n≥0

a−1
y Px[Xn = y, n < HU ], x, y ∈ Zd,

and write g(·, ·) = g∅(·, ·). By [22, Theorem 1.5.4], one has that

(2.5) c(|x− y| ∨ 1)2−d ≤ g(x, y) ≤ C(|x− y| ∨ 1)2−d, for all x, y ∈ Zd.

More is in fact true but (2.5) will be sufficient for our purposes. We further define, for U ⊂⊂ Zd,

(2.6) eU (x) = axPx[H̃U =∞]1{x ∈ U},

the equilibrium measure of U , which is supported on ∂U and denote by

(2.7) cap(U) =
∑
x

eU (x)

its total mass, the capacity of U , which is increasing in U . We write ēU = eU/cap(U) for the
normalized equilibrium measure. One has the last-exit decomposition, valid for all U ⊂⊂ Zd,

(2.8) Px[HU <∞] =
∑
y

g(x, y)eU (y), x ∈ Zd;

see, e.g., [22, Lemma 2.1.1] for a proof. Together, (2.8) and (2.5) readily imply that there exists
C1 = C1(d) > 0 such that for all L ≥ 1 and x ∈ Zd with |x| > L,

(2.9) Px[HBL <∞] ≤ C1

(
L
|x|
)d−2

.

Moreover, summing (2.8) over x ∈ U , one immediately sees that

(2.10)
(

max
x∈U

∑
y∈U

g(x, y)
)−1 ≤ cap(U)

|U |
≤
(
min
x∈K

∑
y∈U

g(x, y)
)−1

,

where |U | denotes the cardinality of U . Along with (2.5), (2.10) readily gives for all L > 0,

(2.11) cLd−2 ≤ cap(BL) ≤ CLd−2.
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For later reference, we also record the pointwise lower bound

(2.12) eBL(x) ≥ cL−1 for all x ∈ ∂BL and L > 0,

on the equilibrium measure of a box. One way to obtain (2.12) is to enforce the event {H̃BL =∞}
by first sending X to distance CL away from the box in a suitable coordinate direction and then
requiring that X never visits BL again. The first event has probability at least c

L by a standard
one-dimensional gambler’s ruin estimate. On the other hand, by (2.5) and (2.9), the second
event has probability at least c > 0 under Py for any y at a distance at least CL from BL
provided C is large enough. Applying the strong Markov property, (2.12) follows.

We now collect a few useful hitting probability estimates over the next lemmas. The following
result yields pointwise comparison estimates between the equilibrium measure of a ball and either
of i) the tail probability of its hitting time and ii) the normalized hitting probability measure

(2.13) h̄B(x, y)
def.
= Px[X

H̃B
= y | H̃B <∞], B ⊂ Zd, x, y ∈ Zd.

Lemma 2.1 (ξ > 0).

i) There exists C2 = C2(ξ) > 0 such that for any sequence `N ≥ N2+ξ, N ≥ 1 and for every
x ∈ ∂B with B = BN , one has

(2.14) eB(x) ≤ axPx[H̃B > `N ] ≤ (1 + C2N
−ξ/3)eB(x).

ii) There exists C3 = C3(ξ) > 0 such that for all N ≥ 1, y ∈ B = BN and z ∈ Zd \BN1+ξ ,

(2.15) (1− C3N
−ξ)ēB(y) ≤ h̄B(z, y) ≤ (1 + C3N

−ξ)ēB(y).

Proof. We first show i). The first inequality in (2.14) is immediate. For the second one, abbre-
viating ` = `N , one writes

(2.16) Px[H̃B > `] = a−1
x eB(x) + Px[` < H̃B <∞].

Defining B̃ = B(0, N1+ξ/3), one estimates the second term in (2.16) by

(2.17) Px[` ≤ H̃B <∞] ≤ Px[TB̃ > `] + q where q = Px[TB̃ ≤ H̃B <∞].

One knows that, for suitably small c (> 0),

(2.18) sup
x∈BL

Ex
[

exp
{ cTB(0,L)

L2

}]
≤ 2, L ≥ 1.

Applying (2.18) with L = N1+ξ/3 readily yields that

(2.19) axPx[TB̃ > `] ≤ ax exp{−cN ξ/3} ≤ exp{−c′N ξ/3}eB(x),

where the last bound follows as eB(x) ≥ c
N , see (2.12). All that is left is to estimate is q.

Applying the strong Markov property, one has

(2.20) q = Ex

[
TB̃ ≤ H̃B, PXT

B̃
[H̃B <∞]

]
≤ sup

y∈B̃c
Py[H̃B <∞]Px[TB̃ ≤ H̃B]

(2.9)

≤ C1N
− ξ(d−2)

3 Px[TB̃ ≤ H̃B].
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Moreover, q can also be written as q = Px[TB̃ ≤ H̃B] − Px[H̃B = ∞]. Substituting this on the
left-hand side of (2.20) and rearranging terms yields that

Px[TB̃ ≤ H̃B] ≤ (1− C1N
−(ξ/3)(d−2))−1Px[H̃B =∞] ≤ C(ξ)eB(x).

Plugging this into (2.20) readily gives

(2.21) q ≤ C ′(ξ)N−(ξ/3)(d−2)a−1
x eB(x).

Applying this bound along with (2.19) in (2.17) yields the second inequality in (2.14).
We now show ii). For U ⊃ B(= BN ), let eB,U (x) = axPx[H̃B > TU ]1{x ∈ B} denote the

equilibrium measure of B relative to U (so eB = eB,Zd , cf. (2.6)), and ēB,U (·) be its normalized

version, a probability measure on Zd. With U = B(0, N1+ξ), Theorem 2.1.3 in [22] gives

(2.22)
∣∣∣ h̄B(z, y)

ēB,U (y)
− 1
∣∣∣ ≤ CN−ξ,

for all y ∈ ∂B and z ∈ Zd \BN1+ξ . In order to show that ēB,U (y) is comparable to ēB(y), write

a−1
x eB,U (x) = Px[H̃B =∞] + Px[TU < H̃B <∞] = a−1

x eB(x) + q

where q is as in (2.17) but with U = B(0, N1+ξ) in place of B̃ = B(N1+ξ/3). Using the bound

on q from (2.21), one gets
∣∣ ēB,U (x)
ēB(x) − 1

∣∣ ≤ C(ξ)N−ξ uniformly in x ∈ ∂B. Combined with (2.22),

this yields (2.15), thus completing the proof.

The next result deals with regularity of exit distributions in the starting point.

Lemma 2.2. For all L ≥ 1, B = BL, and z ∈ ∂outB, letting πB(x, z) = Px[XTB = z], one has

(2.23)
∣∣∣πB(x, z)

πB(y, z)
− 1
∣∣∣ ≤ C|x− y|

L
, x, y ∈ BL/2.

Proof. Let B′ = BL/2. For fixed z, the function πB(·, z) : B′ → [0,∞) is harmonic in B′. Hence,
by repeated use of a gradient estimate, see Theorem 1.7.1 in [22], one obtains for any x, y ∈ B′,

(2.24)
∣∣πB(x, z)− πB(y, z)

∣∣ ≤ CL−1|x− y|‖πB(·, z)‖`∞(B′).

By the Harnack inequality applied in B′ one knows that

(2.25) ‖πB(·, z)‖`∞(B′) ≤ C ′πB(x, z).

Together, (2.24) and (2.25) readily yield (2.23).

2.2. Random interlacements. The interlacement point process η∗ is a Poisson point process
on the space W ∗×R+, W ∗ = W/ ∼, of labeled bi-infinite trajectories modulo time-shift (denoted
by ∼), see e.g. [41] for definitions in the present context of the weighted graph (Zd, a), cf. §2.1.
Let W ∗U ⊂ W ∗ denote the set of trajectories visiting U ⊂ Zd and π∗ : W → W ∗ denote the
canonical projection corresponding to ∼. The intensity measure of η∗ on W ∗ × R+ is given by
ν∞(dw∗)du, where du denotes the Lebesgue measure and the measure ν∞ on W ∗ is specified by
requiring that 1W ∗U ν∞ = π∗ ◦QU , for all U ⊂⊂ Zd, where QU is the finite measure on W with

(2.26) QU [(X−n)n≥0 ∈ A, X0 = x, (Xn)n≥0 ∈ A′] = Px[A | H̃U =∞ ]eU (x)Px[A′],
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for all x ∈ Zd and A,A′ ∈ W+, with eU as in (2.6). We write (Ω∗,A∗,P) for the canonical space
of the interlacement point process. Given a realization η∗ ∈ Ω∗, the interlacement set Iu(η∗)
at level u > 0 is defined as in (1.1), and Vu = Zd \ Iu is the corresponding vacant set. The
parameter u, which controls the number of trajectories entering the picture, can for instance
becharacterised in terms of the occupation time field `u = (`ux)x∈Zd , where for x ∈ Zd,

(2.27) `ux(η∗) = a−1
x

∑
i

∑
n∈Z

1{wi(n) = x, ui ≤ u},

if η∗ =
∑

i δ(w∗i ,ui)
, with wi such that π∗(wi) = w∗i . One then has that

(2.28) E[`ux] = u, for all x ∈ Zd;

i.e. u is the average number of visits at x by any of the trajectories with label at most u. The
perspective (2.28) will be useful later, in order to associate a meaningful scalar parameter u to
a (possibly complicated) model comprising trajectories of different types (e.g. varying length).

We now set up the framework to decompose trajectories into excursions. We then present a
straightforward coupling result for the excursions associated to Iu, which will be useful in the
next section. We assume henceforth that for any realization η∗ =

∑
i≥0 δ(w∗i ,ui)

∈ Ω∗, the labels
ui, i ≥ 0, are pairwise distinct, that η∗(W ∗A×[0, u]) <∞ for all u ≥ 0 and that η∗(W ∗A×R+) =∞,
which is no loss of generality since these sets have full P-measure.

Let A,U be finite subsets of Zd with ∅ 6= A ⊂ U . The infinite, resp. doubly infinite tran-
sient trajectories, elements of W+, resp. W , are split into excursions between A and ∂outU by
introducing the following successive return and departure times between these sets. Let D0 = 0
and Rk = Dk−1 + HA ◦ θDk−1

, Dk = Rk + TU ◦ θRk , for k ≥ 1, where all of Dk, Rj , Dj , j > k
are understood to be = ∞ whenever Rk = ∞ for some k ≥ 0. We denote by W+

A,∂outU
the set

of all excursions between A and ∂outU , i.e. all finite trajectories starting in A, ending in ∂outU
and not exiting U in between. Given η∗ =

∑
i≥0 δ(w∗i ,ui)

, we order all the excursions from A
to ∂outU , first by increasing value of {ui : w∗i ∈ W ∗A}, then by order of appearance within a
given trajectory w∗i ∈ W ∗A. This yields a sequence of W+

A,∂outU
-valued random variables under

P, encoding the successive excursions,

(2.29)
(
ZA,Un (η∗)

)
n≥1

=
(
w0[R1, D1], . . . , w0[RNA,U , DNA,U ], w1[R1, D1], . . .

)
,

whereNA,U = NA,U (w∗0) is the total number of excursions fromA to ∂outU in w∗0, i.e. NA,U (w∗0) =
sup{j : Dj(w0) <∞} and w0 is any point in the equivalence class w∗0. We will omit the super-
scripts A,U whenever no risk of confusion arises.

We now proceed to couple the excursions (2.29) induced by the interlacements with a suitable
family of i.i.d. excursions between A and ∂outU . The corresponding result appears in Lemma 2.3
below. For x ∈ Zd, let Qx be the joint law of two independent simple random walks X1, X2 on
Zd, respectively sampled from Px and from PēA , the normalized equilibrium measure on A, see
below (2.7) for notation. Define

(2.30) Y =

{
X1 ◦ θH1

A
, if H1

A
def.
= inf{n ≥ 0 : X1

n ∈ A} <∞
X2, otherwise,

and observe that by the Markov property for the simple random walk and the defining properties
of η∗, the law of (Zn(η∗))n≥1 is characterized as follows: P[Z1 = w] = PēA [X[0,TU ] = w] for all
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w ∈W+
A,∂outU

, and for all n ≥ 2,

(2.31) P[Zn = w |Z1, . . . , Zn−1] = QZend
n−1

[Y[0,TU ] = w], for all w ∈ ∂W+
A,∂outU

,

where Zend
n−1 ∈ ∂outU is the endpoint of Zn−1.

Let µ be a finite positive measure supported on A and write µ̄ for the normalized probability
measure µ/µ(A). The following simple result supplies a coupling between the (dependent)
sequence Z = (Zn)n≥1 (under P) given by (2.29) and an i.i.d. sequence of random variables

Z̃ = (Z̃n)n≥1 having common distribution Pµ̄[X[0,TU ] = · ] in a way that certain inclusions,
tailored to our later purposes, hold with high probability under suitable assumptions on µ. In
the sequel, we let Zv = Zbvc∨1 for v ∈ R+.

Lemma 2.3 (Coupling Z and Z̃). For all sets A,U with ∅ 6= A ⊂ U ⊂⊂ Zd, there exists a
probability measure Q = QA,U with the following property. If, for some δ ∈ (0, 1),

Qy[Y0 = x] ≤
(
1 + δ

4

)
ēA(x), for all y ∈ ∂outU and x ∈ ∂A(2.32)

and µ is some (finite) measure supported on A satisfying

µ(x) ≥
(
1− δ

4

)
eA(x), for all x ∈ A,(2.33)

then for every α ∈ (0,∞) there exists an event Uα with

(2.34) Q[Uc
α] ≤ Ce−cδαcap(A)

and Q carries a coupling of the sequences Z and Z̃ such that, on Uα, for all α′ ≥ α,

(2.35) {Z1, . . . Z(1−δ)α′cap(A)} ⊂ {Z̃1, . . . Z̃(1+δ)α′µ(A)}.

Proof. We use a version of the soft local time technique from [28]. We consider, under a suitable
probability Q, a Poisson point process η =

∑
λ δ(zλ,uλ) on W+

A,∂outU
×R+ with intensity measure

ν(D × [0, v]) = v
∑
x∈∂A

Px[X[0,TU ] ∈ D]

for v > 0 and measurable set D ⊂ W+
A,∂outU

, and introduce the random variables (functions of
η)

ξ1 = inf{s ≥ 0 : ∃λ s.t. s ēA(zλ(0)) ≥ uλ},
G1(x) = ēA(x)ξ1, for x ∈ ∂A.

(2.36)

Let (z1, u
′) denote the Q-a.s. unique pair among the points (zλ, uλ) in supp(η) such that

ξ1ēA(z1(0)) = u′. For n ≥ 2, one defines recursively (recall (2.30), (2.31))

ξn = inf
{
s ≥ 0 : ∃(zλ, uλ) /∈ {(zk, uk)}1≤k<n s.t. Gn−1(zλ(0)) + sQzend

n−1
[Y0 = zλ(0)] ≥ uλ

}
,

Gn(x) = Gn−1(x) + ξnQzend
n−1

[Y0 = x], for x ∈ ∂A.

(2.37)

Similarly, one defines sequences (ξ̃n)n≥1, (z̃n, ũn)n≥1 and (G̃n(·))n≥1, replacing all occurrences
of ēA(·) by µ̄(·) in (2.36) and Qzend

n−1
[Y0 = ·] by µ̄(·) in (2.37).
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In view of (2.31), it then follows by Propositions 4.1 and 4.3 in [28] that for all n ≥ 1, the
sequence (z1, . . . , zn) has the same law under Q as (Z1, . . . , Zn) under P and is independent of

(ξ1, . . . , ξn), which are i.i.d. mean one exponential random variables. Similarly, (z̃1, . . . , z̃n)
law
=

(Z̃1, . . . , Z̃n), which is independent of (ξ̃1, . . . , ξ̃n), another sequence of i.i.d. mean one exponential
variables. In particular Q provides a coupling between Z and Z̃ and by construction (see [28],
Corollary 4.4), for any 0 ≤ v1 ≤ v2,

(2.38)
{
Gv1(x) ≤ G̃v2(x) for all x ∈ ∂A

}
⊂
{
{Z1, . . . Zv1} ⊂ {Z̃1, . . . Z̃v2}

}
,

where Gv(·) = Gbvc∨1(·) for v ∈ R+.
For the remainder of the proof, let v1 = (1− δ)α′cap(A) and v2 = (1 + δ)α′µ(A). Note that

v1 and v2 depend implicitly on α′ > 0 and that v1 ≤ v2 by (2.33). We proceed to define an event
Uα satisfying (2.34) which will imply the event appearing on the left-hand side of (2.38) for any
α′ ≥ α, thus completing the proof. Let Pt = sup{k ≥ 0 :

∑k
n=1 ξn ≤ t} and define (P̃t)t≥0

similarly, with ξ̃n in place of ξn. Thus (Pt)t≥0 and (P̃t)t≥0 are each Poisson counting processes
with unit intensity, vanishing at time t = 0. Define

(2.39) Uα =
{
∀α′ ≥ α : P(1− δ

2
)α′cap(A) ≥ v1 and P̃(1+ δ

2
)α′µ(A) ≤ v2

}
.

By a union bound, standard large-deviation estimates for Poisson variables, and using that
µ(A) ≥ c cap(A), which follows from (2.33), one sees that the event Uα defined in (2.39) satisfies
(2.34). Moreover, when Uα occurs, using that (1 + δ

4)(1 − δ
2) ≤ (1 − δ

4)(1 + δ
2), which follows

since x ∈ R+ 7→ 1−x
1+x is decreasing, one obtains for all x ∈ ∂A

Gv1(x)
(2.36)

=
(2.37)

ēA(x)ξ1 +
∑

2≤n≤v1

∑
y∈∂outU

PZn−1 [XTU = y]Qy[Y = x]ξn

(2.32)

≤
(

1 +
δ

4

)
ēA(x)

∑
1≤n≤v1

ξn
(2.39)

≤
(

1 +
δ

4

)(
1− δ

2

)
α′eA(x)

(2.33)

≤
(

1 +
δ

2

)
α′µ(A)µ̄(x)

(2.39)

≤ µ̄(x)
∑

1≤n≤v2

ξ̃n
(2.37)

= G̃v2(x),

as claimed.

2.3. Chaining of couplings. We conclude this preliminary section with a simple result used
repeatedly throughout the text, see Lemma 2.4 below, to the effect of concatenating two (or
more) couplings having one marginal in common. The following setup will be more than sufficient
for our purposes. Let X and Y be two random variables defined on the same probability space
(Ω,A,Q), with X taking values in some Polish space EX , equipped with its Borel σ-algebra EX ,
and Y in the measure space (EY , EY ). Although this is not needed for what follows, in practice
all relevant random variables will be in L1.

We first briefly recall the following central aspects of regular conditional distributions when
conditioning on Y in the above setup. One knows (see, e.g. [21, Theorems 8.36 and 8.37] for a
proof) that there exists a map

(2.40) κX,Y : EY × EX → [0, 1],
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with the following properties: i) for each A ∈ EX , the map y 7→ κX,Y (y,A) is EY -measurable, ii)
for every y ∈ EY , A 7→ κX,Y (y,A) is a probability measure on (EX , EX and iii) κX,Y is a version
of the conditional distribution, that is, for all B ∈ EY ,∫

B
κX,Y (y,A)(Q ◦ Y −1)(dy) = Q[X ∈ A, Y ∈ B].(2.41)

In particular, (2.41) immediately yields that

if κ(·) ≡ κX,Y (y, ·) does not depend on y ∈ EY ,

then κ
law
= Q ◦X−1 and X and Y are independent.

(2.42)

We now proceed to concatenate two (coupling) measures Q1 and Q2 having a common marginal.
For simplicity, all the random variables appearing in the next lemma are tacitly assumed to take
values in (possibly different) Polish spaces equipped with their respective Borel σ-algebra.

Lemma 2.4 (Chaining of couplings). Let (X,Y ) and (Y ′, Z) be pairs of random variables defined

on (Ω1, A1,Q1) and (Ω2,A2,Q2) respectively such that Y
law
= Y ′. Then there exists a probability

space (Ω,A,Q) carrying a triplet of random variables (X ′′, Y ′′, Z ′′) such that

(2.43) (X ′′, Y ′′)
law
= (X,Y ) and (Y ′′, Z ′′)

law
= (Y ′, Z).

In particular, Q is a coupling of (the laws of) X, Y and Z.

We refer to the marginal of Q on (X ′′, Z ′′), which is a coupling between the laws of X and
Z, as a coupling obtained by concatenating Q1 and Q2 (but see Remark 2.5,1)).

Proof. Suppose that X,Y (hence Y ′) and Z take values in (EX , EX), (EY , EY ) and (EZ , EZ)
respectively. Define the measurable space (Ω,A) = (E1 × E2 × E3, E1 ⊗ E2 ⊗ E3), the random
variables X ′′, Y ′′, Z ′′ to be the projections on the first, second and third coordinate, respectively,
and the probability measure Q as follows. For any Ai ∈ Ei, i = 1, 2, 3,

(2.44) Q[X ′′ ∈ A1, Y
′′ ∈ A2, Z

′′ ∈ A3]
def.
=

∫
A1×A2

κZ,Y ′(y,A3) (Q1 ◦ (X,Y )−1)(dx, dy)

where κZ,Y ′ refers to the regular conditional distribution of Z given Y ′ under Q2, cf. (2.40).
It follows directly from (2.44) and (2.41) by integrating over various subsets of the coordinates
that Q is a probability measure satisfying (2.43).

Remark 2.5. 1) The conclusions of Lemma 2.4 do not uniquely characterize Q. Another
measure (on the same space (Ω,A)) with the same properties is given by replacing the
right-hand side of (2.44) by

∫
A2×A3

κX,Y (y,A1) (Q2 ◦ (Y,Z)−1)(dy, dz).

2) A typical application of Lemma 2.4 is as follows. Suppose X,Y, Z are random sets (subsets
of Zd, say). If for some ε1, ε2 ≥ 0 (possibly = 0),

(2.45) Q1[X ⊂ Y ] ≥ 1− ε1, Q2[Y ′ ⊂ Z] ≥ 1− ε2,

then for Q as supplied by Lemma 2.4, by (2.43) and a union bound, one obtains that

(2.46) Q[X ′′ ⊂ Z ′′] ≥ 1− ε1 − ε2.

Loosely speaking, in view of (2.45)-(2.46), the concatenation Q preserves inclusions with
high probability.
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3 Random ρ−interlacements and local couplings

We now introduce a framework of interlacement processes with trajectories of varying spatial
intensity and (time-)length, parametrized by an intensity measure ρ, see (3.1) below. We call
these ρ-interlacements. The corresponding interlacement set Iρ, see (3.3), allows in principle for
(forward) trajectories of any length started anywhere in space. In particular, it can be used to
describe both the usual interlacement set Iu, see (1.1), as well as the finite range models If,L
from (1.3), but the measure ρ allows for more flexibility, which will be needed in due time; recall
for instance the discussion below Theorem 1.6, which involves a choice of random environment
I that can be quite involved (e.g. non-homogenous).

After introducing ρ-interlacements in §3.1 and gathering a few generalities, including a sim-
ple but important re-rooting property, see Lemma 3.1, we develop in §3.2 two couplings, see
Propositions 3.3 and 3.4, which provide conditions on ρ under which the induced interlacement
set Iρ can be locally compared to a full interlacement Iu at suitable intensity u > 0. Each
proposition yields one of two possible inclusions. In particular, the mean occupation time den-
sity ¯̀ρ = (¯̀ρ

x)x∈Zd corresponding to Iρ, introduced in (3.11) below, plays a key role in associating
a scalar parameter u > 0 to Iρ and facilitating a comparison with Iu, see (3.13) and (3.23). The
mean occupation time density ¯̀= ¯̀ρ will also figure prominently later on and allow to formulate
within more complicated setups stringent conditions on the ‘environment’ (recall §1.3) that can
nonetheless be verified with bounded effort, see for instance (7.4) and (the proof of) Lemma 7.7.

Returning to matters in the present section, similarly as in the discussion following (1.4),
the attribute ‘local’ in the context of Propositions 3.3 and 3.4 below refers to the fact that
the smallest length scale ` in the support of ρ satisfies ` � N2, where N denotes the linear
size of the box in which the coupling is constructed; we refer to Remark 3.7 for more on this.
Roughly speaking, Propositions 3.3 and 3.4 are the best one can hope for when adapting available
techniques to the present framework and pushing them to their limits, which already requires
some efforts owing to the generality of our setup.

With Propositions 3.3 and 3.4 at our disposal, we focus in §3.3 on a case in point, the finite
range models Iu,L mentioned in the introduction, see (1.3), and use these results to prove that
their local limits as L→∞ is indeed Iu, as asserted in (1.4); see Proposition 3.6.

3.1. Generalities. Consider a (density) function

(3.1) ρ : (N∗ ∪ {∞})× Zd → R+

(recall that N∗ = {1, 2 . . . }). Intuitively, ρ(`, x) gives the intensity of trajectories that have
length ` and start at x. We often think of ρ as a measure on (N∗ ∪ {∞}) × Zd, or on any of
its factors rather than as a function, and not distinguish between the two. For instance, we
routinely write ρ(A, x) =

∑
`∈A ρ(`, x), for A ⊂ N∗ etc. in the sequel.

Recall the measurable space (W+,W+) from §2.1 on which Px, x ∈ Zd is defined. For ρ as
in (3.1), we introduce a Poisson point process η on the space (N∗ ∪ {∞})×W+ with intensity
measure νρ given by

(3.2) νρ(`, A) =
∑
x∈Zd

ρ(`, x)Px[X ∈ A], for A ∈ W+

and define

(3.3) Iρ =
⋃

(`,w)∈η

w[0, `− 1].
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In view of (3.3), the label ` indeed corresponds to the (time-)length of a trajectory in Iρ, as
indicated above. We denote by Pρ the canonical law of η. Notice that, for any finite K ⊂ Zd,
as follows immediately by comparing (3.2) with (2.26), one has that

Iu ∩K law
= Iρu ∩K, for ρu(`, x) = u1∞(`) eK(x).(3.4)

Similarly, the set If,L from (1.3) is in the realm of (3.1), see (3.40) below. We now give an
alternative description of the law of Iρ when restricted to a finite set K ⊂ Zd, which will make
comparison to Iu ∩K as in (3.4) easier. The following lemma roughly asserts that, to describe
Iρ ∩K, one can replace the intensity ρ with ρK which fasts forwards the walk until time HK .

Lemma 3.1 (Re-rooting). For a measure ρ supported on N∗ × Zd and finite K ⊂ Zd, defining

(3.5) ρK(`, x) =
∑
`′≥0

Ex
[
ρ(`+ `′, X`′)1{H̃K>`′}

]
1x∈K ,

one has, with ≥st. denoting stochastic domination,

(3.6) Iρ ∩K law
= IρK ∩K and Iρ ≥st. IρK .

Proof. For x ∈ K and ` ∈ N∗, let A`,x ⊂ (N∗×W+) consist of all pairs (t, w) such that ` ≤ t <∞,
HK(w) = t− ` and XHK (w) = x. Then by definition of Iρ in (3.3), one has

(3.7) Iρ ∩K =
⋃
x∈K

⋃
`∈N

⋃
(t,w)∈(supp(η)∩A`,x)

w[t− `, t− 1] ∩K.

The unions over x and ` in (3.7) are over independent processes. We make this decomposition
more explicit by introducing Φ`,x, which acts on η by mapping every pair (t, w) ∈ supp(η)∩A`,x
to the trajectory (`, w̃), where w̃(·) = θt−`w(·), where (θnw)(·) = w(n + ·) for w ∈ W+ and
n ≥ 0 denote the canonical shifts. With this, (3.7) can be recast as

(3.8) Iρ ∩K =
⋃
x∈K

⋃
`∈N

⋃
(`,w̃)∈(supp(Φ`,x(η)))

w̃[0, `− 1] ∩K.

Observe now that
(
Φ`,x(η)

)
`,x

are independent Poisson point processes since the sets A`,x are

disjoint, and Iρ depends on η only through Φ`,x(η), ` ∈ N∗, x ∈ K. On the other hand, omitting
the intersection with K on both sides of (3.8) clearly yields the inclusion ‘⊃’ in place of an
equality.

To conclude the proof, we compute the intensity measure ν`,x of each Φ`,x(η). Since Φ`,x(η)
is concentrated on points (`, w) with w(0) = x ∈ K, it follows that ν`,x(t,W+) = 0 if t 6= ` or
x 6∈ K. On the other hand, for x ∈ K and D ∈ W+, applying the Markov property,

ν`,x(`,D) = νρ
(
{(t, w) ∈ A`,x : w(t− `+ ·) ∈ D}

)
=

∑
`≤t<∞

∑
y∈Zd

ρ(t, y)Py[HK = t− `,XHK = x,Xt−`+ · ∈ D]

= Px[X· ∈ D]
∑

`≤t<∞

∑
y∈Zd

ρ(t, y)Py[HK = t− `,XHK = x].

(3.9)
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Using reversibility of the simple random walk one rewrites∑
`≤t<∞

∑
y∈Zd

ρ(t, y)Py[HK = t− `,XHK = x]

=
∑

`≤t<∞

∑
y∈Zd

ρ(t, y)
ax
ay
Px[H̃K > t− `,Xt−` = y],

(3.10)

which equals
∑

`′≥0 axEx
[
a−1
X`′
ρ(`+`′, X`′)1{H̃K>`′}

]
after the substitution `′ = t−`, thus finishing

the proof on account of (3.5).

Remark 3.2. Albeit notationally simpler, the formula (3.5) for the re-rooted density ρK could be
replaced by the wordier, but more transparent (and equivalent in the present setup) definition

(3.5’)
ρK(`, x)

ax
=
∑
`′≥0

Ex

[ρ(`+ `′, X`′)

aX`′
1{H̃K>`′}

]
1x∈K .

The uniformity of ax(= 4d) allows us to effectively work with a ‘flat’ density ρ in (3.1)-(3.2),
i.e. with reference measure in the second argument of (3.1) given by counting measure on Zd
rather than one with density a·. Although slightly less stringent, this choice, reflected in our
formula (3.5), cf. also (3.11) below, somewhat simplifies the exposition in the sequel.

3.2. Local couplings between Iρ and Iu. We now exhibit sufficient conditions on the
intensity ρ in (3.1) ensuring that Iρ locally resembles Iu for a given u > 0. The main results
appear in Proposition 3.3 and 3.4 and yield (local) couplings between the two objects. The
proximity between the two sets involves an ’average occupation time density’ field ¯̀ρ

x = ¯̀
x,

x ∈ Zd, for Iρ, which acts as a surrogate for the scalar parameter u in view of (2.28). It is
defined as

(3.11) ¯̀
x = ¯̀ρ

x = a−1
x

∑
k>0

∫
dνρ(k, ·)

∑
0≤`<k

1{X`=x}

(3.2),(2.1)
= a−1

x

∑
y

∑
k>0

ρ(k, y)
∑

0≤`<k
p`(y, x) =

∑
`≥0

Ex
[ρ(`+N∗,X`)

aX`

]
=

1

4d

∑
`≥0

Ex
[
ρ(`+ N∗, X`)

]
.

The next two propositions yield the desired local couplings relating Iρ ∩B to Iu ∩B for a box
B = BN under certain assumptions on ρ and ¯̀. The simplest instances to keep in mind are the
‘pure length-L’ models Iu,L, see in particular (3.41) below. The first (and easier) of the two
results yields a coupling by which Iρ comprising short (i.e. finite) walks, is covered by the long
(infinite) walks of the full interlacement Iu.

Proposition 3.3 (Local coupling I). If, for some N ≥ 1, a > 6d and ρ supported on N∗ × Zd,

ρ(N∗, · ) ≤ N−a(3.12)

and moreover, for some u > 0 and δ ∈ (0, 1),

(3.13) ¯̀
x ≤ u(1− δ) for all x ∈ Zd,

then there exists a coupling of Iρ ∩B and Iu ∩B with B = BN such that, for all N ≥ Cδ−3,

(3.14)
(
Iρ ∩B

)
⊂
(
Iu ∩B

)
with probability at least 1−N−

a
2 .
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Proposition 3.3 is sufficient for our purposes, but the coupling constructed is far from optimal;
see Remark 3.7 at the end of this section for more on this.

Proof. The coupling will be defined under a probability P carrying two independent Poisson
point processes (η1, η2), each of them defined on the space R+ ×W+ with intensity measure

(3.15) ν̄([0, v]×A)
def.
= v

∑
x∈Zd

Px[X ∈ A], v ≥ 0.

For w ∈W+ with ρ(N∗×{w(0)}) > 0 and 0 < u ≤ ρ(N∗×{w(0)}), let `(u,w) denote the unique
element ` ∈ N∗ such that ρ({0, . . . , `− 1} × {w(0)}) < u ≤ ρ({0, . . . , `} × {w(0)}). Then define,
for η =

∑
i δ(ui,wi) any point measure on R+ ×W+,

(3.16) Iρ(η) =
⋃

i:ui≤ρ(N∗×{wi(0)})

wi[0, `(ui, wi)− 1].

It follows readily from (3.15)-(3.16) that Iρ(ηi), i = 1, 2, has the same law under P as Iρ defined
in (3.3) (under Pρ), for any measure ρ supported on N∗ × Zd.

Let B̃ = B2N3 and ρ̃ : N×Zd → R+ be defined as ρ̃(`, x) = ρ(`, x)1Zd\B̃(x). With W̃+ ⊂W+

denoting the subset of trajectories with starting point outside B̃, we write η̃ for the restriction
of η (a point measure on R+ ×W+) to points (u,w) with w ∈ W̃+, and introduce two random
sets (under P)

Iρ(η1, η2)
def.
= I ρ̃B (η1) ∪ Iρ(η2 − η̃2) (with ρ̃B as defined in (3.5)),

Iu(η1)
def.
=

⋃
i: 0≤ui≤ueB(wi(0))

wi[0,∞), if η1 =
∑
i

δ(ui,wi).
(3.17)

One readily verifies using (2.26) that Iu(η1) ∩B has the same law under P as Iu ∩B under P.
As we now briefly explain, Iρ(η1, η2)∩B has the same law under P as Iρ ∩B under Pρ. Indeed,
it suffices to argue that

(3.18) (I ρ̃B (η1) ∩B, Iρ(η2 − η̃2) ∩B)
law
= (Iρ(η̃2) ∩B, Iρ(η2 − η̃2) ∩B).

To see this, first note that Iρ(η̃2) = I ρ̃(η2) has the same law as I ρ̃ in (3.3) by the discussion

following (3.16). Thus, Lemma 3.1 applies and yields that (Iρ(η̃2)∩B)
law
= (I ρ̃B (η2)∩B). Since

the sets Iρ(η̃2) and Iρ(η2 − η̃2) are independent and η1 and η2 are i.i.d., (3.18) directly follows.
We will now show that under the assumption (3.12), for all N ≥ Cδ−3,

sup
x

¯̀
x ≤ u(1− δ) ⇒ ρ̃B(N∗, x) ≤ ueB(x) for all x ∈ Zd,(3.19)

Before proving (3.19), we first explain how to deduce (3.14). Using (3.12) and the fact that
1− e−x ≤ x for x > 0, we see that

(3.20) P[ Iρ(η2 − η̃2) 6= ∅ ] = 1− e−
∑
`≥0,x∈B̃ ρ(`,x) ≤ CN3d−a,

which is less than N−a/2 as a > 6d. Due to (3.19), we infer immediately from (3.16) and (3.17)

that Iu(η1) ⊃ I ρ̃B (η̃1) whenever ¯̀
x ≤ u(1− δ) for all x ∈ Zd (and (3.12) holds). Together with
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(3.20), this implies that Iρ(η1, η2) ⊂ Iu(η1) with P-probability at least 1−N−a/2, which yields
(3.14) since the sets Iρ(η1, η2) ∩B and Iu(η1) ∩B have the required marginal distributions.

It remains to show (3.19). Since ρ̃(`, · ) vanishes in B for any ` ≥ 0, ρ̃B(`, · ) is supported
on ∂B, see (3.5), hence the conclusions of (3.19) hold trivially except for x ∈ ∂B. For such x,
using that ρ̃(·, X`) = 0 under Px unless ` ≥ 2N3−N (≥ N3), we find, with the hopefully obvious
notation N∗ + n = {n+ 1, n+ 2, . . . },

ρ̃B(N∗, x)
(3.5)
=

∑
`≥N3

Ex
[
1{H̃B>`} ρ̃(N∗ + `,X`)

]
≤ Ex

[
1{H̃B>N3}

∑
`≥0

EXN3

[
ρ̃(N∗ +N3 + `,X`)

]]
(3.11)

≤ axEx
[
1{H̃B>N3}

¯̀
XN3

] (3.19)

≤ u(1− δ)axPx[H̃B > N3].

(3.21)

The desired bound in (3.19) then follows from (3.21), using Lemma 2.1 with ξ = 1 to obtain
that Px[H̃B > N3] ≤ 1

1−δeB(x) uniformly in x ∈ ∂B whenever N ≥ C(d)δ−3.

We now state a companion result to Proposition 3.3 with opposite inclusions. It will be
important that this inclusion occurs with sufficiently high probability, see (3.24) below. The
proof involves the excursion decomposition of interlacement trajectories introduced in §2.2 and
relies on the basic coupling from Lemma 2.3.

Proposition 3.4 (Local coupling II). For all a > 2 and ε > 0 such that a(1 − 3ε) > 2, the
following holds. Suppose that for some N ≥ 1 and u > 0, the measure ρ in (3.1) satisfies:

for some set S ⊂
(
N∗ ∩ [Na(1−ε), Na(1+ε)]

)
with |S| ≤ N ε,

ρ(`, x) = ρ(`, x)1`∈S and ρ(S, x) ≤ uN−a for all x ∈ Zd
(3.22)

and (recall (3.11) for notation)

(3.23) ¯̀
x ≥ u(1 + δ) for all x ∈ BN1+ε as well as ¯̀

x ≤ uD for all x ∈ Zd,

for some δ ∈ (0, 1) and D > 1. Then with B = BN , there exists a coupling of Iρ∩B and Iu∩B
such that for some c = c(a, ε,D) and C = C(ε),

(3.24)
(
Iu ∩B

)
⊂
(
Iρ ∩B

)
with probability at least 1− e−c(u∧1)δCNc

.

Proof. In the notation of §2.2, we choose A = B and U = BN1+ξ for some ξ > 0 whose precise
value will be chosen as a function of ε below in Lemma 3.5. Consider the measures µ̃ on N∗×B
and µ on B defined as

(3.25) µ̃(`, x) = ρ̃B(`, x)1`≥tN , µ(·) = µ̃(N∗, ·),

where ρ̃(`, x) = ρ(`, x)1x/∈U , ρ̃B is obtained from ρ̃ according to (3.5) and tN = bN2+3ξc. In
plain words, µ̃(`, x) represents the intensity of walks comprising Iρ that (a) start outside U ,
i.e. sufficiently far from B, (b) enter B for the first time through x and (c) have at least time
tN left after doing so.

We now apply Lemma 2.3 to construct the desired coupling. Exploiting property (b) as well
as (3.22) and (3.23), we will prove in Lemma 3.5 below that with the choice ξ = cε for suitable
c ∈ (0, 1), the measure µ satisfies

(3.26) µ(x) ≥ u
(
1 + δ

2

)
eB(x), for all x ∈ B and N ≥ C(a, ε,D) δ−C(ε)
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(cf. (2.33)). On the other hand, it follows from (2.15) that condition (2.32) holds for the
pair (B,U) whenever N ≥ C(ξ)δ−C(ξ). Recall to this end the definition of Qx from above
(2.30). Thus, Lemma 2.3 applies and yields a coupling Q = QB,U between the excursions

Z = (Zn(ω))n≥1 introduced in (2.29) and an i.i.d. sequence Z̃ = (Z̃n)n≥1 of excursions between
B and ∂outU under Pµ̄, where µ̄ = µ/µ(B).

We will now generate a subset of Iρ that will cover Iu ∩ B using the excursions Z̃. This
requires truncating the latter to their actual deterministic length, which could be shorter than
the hitting time of ∂outU . In order to do this, we first apply a thinning procedure that re-
covers the length of individual trajectories. By suitable extension of the probability space, we
suppose that Q carries a Poisson variable Nµ

B with intensity µ(B) and a family {U1, U2, . . . }
of i.i.d. uniform random variables on [0, 1]. All of the previous random variables are indepen-
dent from each other as well as independent from Z and Z̃. To each Z̃i, we assign a length
label `i = `i(Ui) which is the unique element ` ∈ N∗ satisfying ai,`−1 < Ui ≤ ai,`, where

ai,` = µ̃({0, . . . , `}, Z̃i(0))/µ(Z̃i(0)). Note that ` ≥ tN on account of (3.25). It then follows from
the thinning property of Poisson processes that ω̂ =

∑
i≤Nµ

B
δ

(Z̃i(0),`i,Z̃i)
is a Poisson process on

Zd×N∗×W+
f , where W+

f denotes the space of all finite-length, nearest-neighbor trajectories in

Zd, having intensity µ̂, where

µ̂(S × I ×A) =
∑
x∈S

µ̃(I, x)Px[X[0,TU ] ∈ A].

Consequently,

(3.27) Ĩµ = Ĩµ(ω̂)
def.
=

⋃
i≤Nµ

B

Z̃i[0, (tN − 1) ∧ T iU ] ≤st. I µ̃ ∩B ≤st. Iρ ∩B,

where T iU is the exit time of the excursion Z̃i and the second stochastic domination follows
immediately on account of (3.25) and Lemma 3.1.

We now generate a copy of Iu ∩ B using the excursions Z (under Q = QB,U ). By suitable

extension of Q, conditionally on (Z, Z̃), we sample an integer-valued random variable Nu
B accord-

ing the conditional distribution under P of the number of excursions coming from trajectories
with label at most u given σ((Zn(ω))n≥1), cf. (2.29). Although not necessary, we assume for

definiteness that Nu
B and Nµ

B are independent conditionally on (Z, Z̃). With these definitions,
it follows that

(3.28) Ĩu def.
=

⋃
i≤Nu

B

range(Zi) is distributed as Iu ∩B under P.

Together (3.27) and (3.28) immediately give (3.24), provided one argues that

(3.29) Q[Ĩu ⊂ Ĩµ] ≥ 1− e−c(u∧1)δCNc
,

for c = c(ξ), C = C(ξ). However, combining (2.35) in Lemma 2.3, (3.27) and (3.28), we see that

(3.30) {Ĩu ⊂ Ĩµ}c

⊂ { max
i≤Nu

B

Li ≥ tN} ∪ {Nµ
B ≤ u(1 + δ

4)cap(B)} ∪ {Nu
B ≥ u(1 + δ

8)cap(B)} ∪ Uc
u
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where Li is the length of Zi. We now bound the probabilities of each of these events sepa-
rately. The last event on the right is handled using (2.34). Consider now the third event. By
construction, the quantity Nu

B has the same law under Q of the number of excursions (under
P) stemming from trajectories visiting B with label at most u. For each such trajectory, the
number of excursions between B and ∂outU it generates is stochastically dominated using (2.9)
by G, a geometric random variable with parameter 1− C1N

−ξ(d−2) (with values starting at 1).
Hence, Nu

B is stochastically dominated by
∑

1≤j≤Mu
B
Gj , where Mu

B is a Poisson random variable

with mean u cap(B) and the Gj ’s are i.i.d. copies of G, independent of Mu
B. By standard large

deviation bounds for tail probabilities of Poisson and geometric random variables as well along
with the bound cap(B) ≥ cNd−2 (which follows from (2.10) and (2.5)), one deduces that

(3.31) Q
[
Nu
B ≥ u(1 + δ

8)cap(B)
]

≤ Q
[
Mu
B ≥ m

]
+ Q

[ ∑
1≤j≤m

Gj ≥ u(1 + δ
8)cap(B)

]
≤ e−δCuNd−2

,

where C = C(ξ, d) and the last bound follows with the choice m = u(1 + δ
4)cap(B). The second

event on the right of (3.30) is bounded similarly. As for the first term, one just combines (3.31)
with the estimate (2.19) and applies a union bound.

All that remains is to verify is (3.26). To this effect, one writes for all x ∈ ∂B

(3.32) ρ̃B(N + tN , x)
(3.5)
=
∑
`≥0

Ex
[
1{H̃B>`}ρ̃(N + `+ tN , X`)

]
≥ a1 − a2 − a3 − a4 − a5

(the lower bound in (3.32) will be explained momentarily), where one defines

a1 = 4dEx
[
1{H̃B>tN}

¯̀
X2tN

]
, (with ¯̀· = ¯̀ρ

· , cf. (3.11))

and, abbreviating ρ̃(I, ·) = ρ̃(I ∩ N∗, ·) for I ⊂ R,

a2 =
∑
`≥0

Ex
[
1{H̃B>tN}ρ̃

(
(`, `+ 2tN ], X`+2tN

)]
,

a3 =
∑
`≥0

Ex
[
1{H̃B>tN}EX2tN

[(ρ− ρ̃)(`+ N∗, X`)]
]
,

a4 =
∑
`≥2tN

Ex
[
1{H̃B>tN}ρ̃([`, `+ tN ), X`)

]
,

a5 =
∑
`≥2tN

Ex
[
1{tN<H̃B≤`}ρ̃(N + `+ tN , X`)

]
.

To see the lower bound in (3.32), one first applies the Markov property at time 2tN and combines
with (3.11) to find that

a′1
def.
=

∑
`≥2tN

Ex
[
1{H̃B>tN}ρ̃(N + `,X`)

]
= a1 − a2 − a3.

Next, one writes 1{H̃B>`} as 1{H̃B>tN} − 1{tN<H̃B≤`} for ` ≥ tN whence

ρ̃B(N + tN , x)
(3.5)

≥
∑
`≥2tN

Ex
[
1{H̃B>tN}ρ̃(N + `+ tN , X`)

]
− a5.
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Now the first term on the right-hand side is easily seen to equal a′1 − a4 in view of the identity

ρ̃(N + `+ tN , X`) = ρ̃(N + `,X`)−
∑

0≤`′<tN

ρ̃(`′ + `,X`).

We will consider each ai separately. The results are summarized in the following lemma. Recall
that the hypothesis (3.22) depends on two parameters a > 2 and ε > 0 satisfying a(1− 3ε) > 2.

Lemma 3.5. Under the hypotheses of Proposition 3.4, there exists ξ = ξ(ε) > 0 such that,
uniformly in x ∈ ∂B and whenever N ≥ C(a, ε,D) δ−C(ε),

a1 ≥ u
(
1 + 9

10δ
)
eB(x) and(3.33)

ai ≤ uδ
10 · eB(x) for i = 2, . . . , 5.(3.34)

The proof of Lemma 3.5 is given below. Once (3.33) and (3.34) are proved, (3.26) follows
and the proof of Proposition 3.4 is complete.

Proof of Lemma 3.5. Unless otherwise specified, all subsequent estimates are uniform in x ∈
∂B(= supp(eB)). By assumption in (3.23) and monotonicity, cf. (2.6) (also recall that ax = 4d),
the quantity a1 is larger than

(3.35) u(1 + δ)eB(x)− 4dEx
[
1{X2tN

/∈BN1+ε}
¯̀
X2tN

]
.

To deal with the second term in (3.35) one uses that ¯̀
x ≤ uD for all x ∈ Zd as implied by (3.23)

and combines this for ξ ≤ ε/2 with the bound (recall that tN = bN2+3ξc, see below (3.25))

(3.36) Px[X2tN /∈ BN1+ε ] ≤ Px[X2tN /∈ BN1+2ξ ] ≤ C
∑

r>N1+2ξ

rd−1e−c
′r2/tN ≤ Ce−c′Nξ

which follows by standard heat kernel estimates. Using that eB(x) ≥ c
N uniformly in x ∈

supp(eB), see (2.12), one readily bounds the expectation in (3.35) to deduce overall that a1

satisfies (3.33) whenever N ≥ C(ε, ξ,D) and ξ ≤ ε/2.
Next we bound a2. First recall from (3.22) that for any x ∈ Zd and interval I ⊂ N∗,

ρ̃(I, x) (≤ ρ(I, x)) is bounded by uN−a and vanishes when S ∩ I = ∅. Therefore,

(3.37) a2 ≤ Px[H̃B > tN ] ·
∑
`

sup
x∈Zd

ρ̃
(
(`, `+ 2tN ], x

)
≤ Px[H̃B > tN ] · uN−a · |S| · 2tN

(3.22)

≤ uPx[H̃B > tN ] · 2N2+3ξ+ε−a
(2.14)

≤ ueB(x)(1 + o(1)) · 2N2+3ξ+ε−a as N →∞

where the rate o(1) is subject to the choice of ξ. Hence a2 = uδeB(x) · o(1) as soon as (2 + 3ξ +
ε− a) < 0 which holds for all ξ ≤ ε since a(1− 3ε) > 2.

The term a3 is the most delicate. Recalling that (ρ− ρ̃)(`, x) = ρ(`, x)1{x∈B
N1+ξ}, cf. below

(3.25), it follows using (2.14) that a3 is bounded by

(3.38) CeB(x) sup
y∈B

N1+2ξ

Ey
[∑

`≥0 ρ(`+ N∗, X`)1{X`∈BN1+ξ}
]

+ CuNaεe−c
′Nξ

;

in deducing (3.38), we have also used (3.36), along with the fact that
∑

`≥0 ρ(`+N∗, ·) ≤ uNaε,
itself a consequence of (3.22), to deal with the case that X2tN /∈ BN1+2ξ . In view of (3.38), in
order to obtain (3.34) for a3, it is more than sufficient to argue that

(3.39) sup
y∈B

N1+2ξ

Ey
[∑

`≥0 ρ(`+ N∗, X`)1{X`∈BN1+ξ}
]
≤ uN−c(a,ε,D)
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(intuitively, this will be because ρ is supported at scales ` ≈ Na � N2, which renders the condi-
tion X` ∈ BN1+ξ costly if ξ is chosen small enough). To get (3.39), first note that contributions
to (3.39) from ` ≤ Na(1−ε) are easily dispensed with: using (3.22),

Ey
[ ∑

0≤`≤Na(1−ε)

ρ(`+ N∗, X`)1{X`∈BN1+ξ}
]
≤ Na(1−ε) sup

z
ρ(S, z) ≤ uN−aε.

Now, observing that no contributions to (3.39) arise from terms ` ≥ Na(1+ε), using again the
deterministic bound ρ(` + N∗, X`) ≤ supz ρ(S, z) ≤ uN−a implied by (3.22) and applying the
on-diagonal estimate Px[X` = y] ≤ C`−d/2, it follows that for all y ∈ BN1+2ξ ,

Ey
[ ∑
`>Na(1−ε)

ρ(`+ N∗, X`)1{X`∈BN1+ξ}
]
≤ uNaε sup

`>Na(1−ε)
Py[X` ∈ BN1+ξ ]

≤ uNaε+(1+ξ)d−a
2

(1−ε)d.

Since d ≥ 3, the last exponent is negative (i.e. the previous line is uN−c) if the condition
a
2 (1− 2ε) > 1 + ξ is satisfied. As a(1− 3ε) > 2 by assumption, this condition is met by choosing

ξ = cε with c ∈ (0, 1/2) small enough so that 1 + ξ ≤ (1−2ε)
(1−3ε) , which we now fix (recall that we

just need ξ ≤ ε/2 in view of previous requirements). Overall, (3.39) thus follows and with it
(3.34) for a3.

The bound on a4 follows from (3.37) in exactly similar manner as that on a2. As for a5,
applying the Markov property at time tN (say), one obtains that

a5 ≤ Ex
[
1{tN<H̃B<∞}

( ∑
`≥tN

ρ̃(N + `+ 2tN , X`)
)
◦ θtN

]
(3.11)

≤ CPx[tN < H̃B <∞] sup
z∈Zd

¯̀
z

(2.17)ff.

≤ uDC(ε)N−cεeB(x),

where we also used (3.22)-(3.23) in the last step.

3.3. Local convergence of Iu,L to Iu. We now focus on the case of the homogenous length-

L models If,L introduced in (1.3), which are of class Iρ. Indeed, in view of (1.3) and (3.2)-(3.3),
for any positive functgion f on Zd, one has

(3.40) If,L law
= Iρ, with ρ(`, x) = axf(x)

L 1L(`) = 4df(x)
L 1L(`), x ∈ Zd,

which specialises to Iu,L with f(x) = u, x ∈ Zd. In the latter case, in which we denote ρ = ρu,L
the measure appearing in (3.40), it is instructive to observe that for all x ∈ Zd,

(3.41) ¯̀
x

(3.11)
=

1

4d

∑
`≥0

Ex[ρ(`+ N∗, X`)] =
∑
`≥0

u

L
1{` < L} = u.

With a view towards (2.28) and the conditions entering Propositions 3.3 and 3.4, (3.41) suggests
that Iu,L is a good local approximation for Iu. Indeed, one has the following result. We tacitly
endow {0, 1}Zd with the product topology and convergence in distribution, as stated below,
corresponds to convergence in law of all finite dimensional marginals.

Proposition 3.6 (u ≥ 0). The set Iu,L under Pρu,L converges in distribution to Iu as L→∞.
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Proof. It is enough to show that for all finite K ⊂ Zd,

(3.42) limL Pρu,L [Iu,L ∩K = ∅] = exp{−ucap(K)}.

Let a = 3, N = bL1/ac and δ ∈ (0, 1). The condition (3.12) of Proposition 3.3 is thus in force
for ρ = ρu,L on account of (3.40) and (3.13) holds with u′ = u

1−δ in place of u by (3.41). Hence,
Proposition 3.3 applies with these choices and one readily finds applying (3.14) that

lim infL Pρu,L [Iu,L ∩K = ∅] ≥ P[Iu′ ∩K = ∅] = exp{−u′cap(K)}.

A corresponding upper bound is obtained by using Proposition 3.4 instead, which applies with
the same choices for a and N and S = {L}, D = 1. The result (3.42) follows by letting δ ↓ 0.

Remark 3.7. 1) In the upcoming sections, we will face the challenging task of deriving cou-
plings which operate between walks having comparable lengths ` ≈ L, for a given L ≥ 1,
with coupling errors decaying super-polynomially in L and within boxes whose linear size
N is unrestricted (and may well be e.g. comparable to the typical spatial extension of
the walks, or even much larger). This is essentially disjoint from the regime covered by
the above results (which will still be used, see the discussion below). Indeed, in the no-
tation of Propositions 3.3 and 3.4, this means replacing Iu by Iρ′ where the typical side
length L ∈ supp(ρ) is comparable to that of supp(ρ′), and possibly N � L

1
2 . In con-

trast, with a view to (3.40) (a case in point), the conditions (3.12) and (3.22) require that

N ≈ L
1
a � L

1
2 , with an error at best polynomial in L in Proposition 3.3 (cf. (3.14)). We

also refer to the results of [7, Lemma 5.3] in this context, which yield an exact comparison
between models of length L and 2L, with a polynomial error term in L (or equivalently,

N) similarly as in (3.14), which becomes effective when N � L
1
7d .

2) We briefly indicate in how far the above couplings will be used below. Our choice to
include Proposition 3.3, which causes little effort but could be dispensed with, stems from
the fact that, together with Proposition 3.4, it already yields in a self-contained fashion
the proof of the convergence in law asserted in Proposition 3.6. Whereas Proposition 3.3
will soon be improved for a suitable class of models of the form Iρ (including Iu,L),
essentially by iterating Theorem 4.1 below, which has a stand-alone proof, Proposition 3.4
is non-negotiable: it will be used as a crucial input in §7.2, in order to exhibit the desired
disconnection events defining the obstacle set O = O(ω) for the random environments ω
of interest.

4 Covering length-L′ by length-L interlacements

In this section we prove Theorem 1.1. In fact, we will prove a slightly more general statement,
Theorem 4.1 below, which is often easier to use in practice; see also Remark 4.2,1). The proof
starts with a reduction step, stated in §4.1, see Proposition 4.3, which introduces gaps between
(pieces of) trajectories that will later favor mixing and drive the coupling. The ‘ungapped’
theorem is then deduced from its ‘gapped’ version, Proposition 4.3, in §4.1. The proof of
Proposition 4.3 appears in §4.2. We now state the main result of this section.
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Theorem 4.1. For all u ∈ (0,∞), integers K ≥ 0 and L,L′ ≥ 1 such that L′ divides L/2 and
L′ ≥ L1−c, the following holds. Given any two functions f1, f2 : Zd → R+ such that f = f1 + f2

satisfies u ≥ f ≥ CL−c′ on BK+L, there exists a coupling Q of (I1, I2) such that

I1
law
= I

1
2

(1+PL/2)f1,
L
2 ∪ If2,L,

I2
law
= I(1−C4(L/L′)−1/2)PL

′
L (f1BK ),L′ , and

Q [I1 ⊃ I2] ≥ 1− C(u ∨ 1)(K + L)d e−c (L/L′)1/4
,

(4.1)

where I
1
2

(1+PL/2)f1,
L
2 and If2,L are sampled independently in the law defining I1.

Remark 4.2. 1) One immediately deduces Theorem 1.1 by setting f1 = 0 and f2 = f , at least
when L′|L2 . The only loss of generality that we incur here is the requirement L′|L2 instead
of just L′|L. However, our proof makes clear that the assumption L′|L2 is unnecessary
when f1 = 0, i.e. when we are in the set-up of Theorem 1.1.

2) Profiles like the one defining I1 in (4.1) naturally arise e.g. while transitioning from the
configuration Iu,2L to Iu,L through sequential couplings, as we will see in the proof of
Theorem 1.6 in Section 7. It also appears for a similar reason in our companion paper [19].

We now give a brief overview of the proof of Theorem 4.1, which occupies the remainder of
this section. Throughout, we often abbreviate

(4.2) l = L/L′

the (integer) ratio of the two spatial scales of concern. Recalling the definition of PL
′

L (f) from
(1.6), one immediately sees that the law of If ′, L′ with f ′ = PL

′
L (f) is the same as that of the

union over k of l-many independent configurations If ′k,L′ for 0 ≤ k < l, where f ′k = l−1PkL′(f).
On the other hand, if one cuts each of the length-L/2 and length-L trajectories underlying
I(1+PL/2)(f1/2),L/2 and If2,L at times kL′, where 0 ≤ k < l

2 in the former and l
2 ≤ k < l in the

latter case, and collects the resulting length-L′ trajectories, one can similarly view the law of I1

in (4.1) as that of the union of l-many configurations whose marginal laws are readily seen to
coincide with If ′k,L′ , for 0 ≤ k < l. However, their joint law is nowhere near independent.

We deal with this problem by introducing a gap time tg � L′ between any two successive
segments, designed to be just long enough so as to allow the different sets of endpoints to ‘mix’.
As will be seen in §4.1, the statement of Theorem 4.1 is actually amenable to the introduction
of gaps between segments, essentially due to the sprinkling inherent to I2 in (4.1). This leads
to Proposition 4.3 below.

We then prove Proposition 4.3 in §4.2 by coupling the collections of starting points from these
new segments using the soft local time technique which was already at play in §2.2 (see the proof
of Lemma 2.3). The strength of the resulting coupling depends on two factors which are actually
entwined in the present context. Firstly, we need the mixing rate of the walk segments to be
good enough which is only true when the segments start ‘nearby’. To this effect, we subdivide
the domain into boxes of intermediate scale L̃ and couple the walk segments starting from each
such box separately (see Lemma 4.5 below). To help convey an adequate picture, we stress that
mixing happens at much larger scales, i.e. L̃� √tg in the end; cf. for instance (4.35). Secondly,
the coupling error also depends on the number and concentration of the difference in the number
of starting points of the two configurations to be coupled, which is where the ‘ellipticity’ lower
bound on f and the multiplicative sprinkling term (1− l−1/2) in the definition of I2 (see (4.1))
enter. These features will play a role when determining the mean λD (defined below (4.28)) and
typical fluctuations for the number of relevant trajectories starting inside a box D of radius L̃.
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4.1. Gaps and the timescale tg. Theorem 4.1 will be obtained from the following result.

Proposition 4.3. For all u ∈ (0,∞), κ ∈ (0, 1), any (integer) K ≥ 0, f1, f2 : Zd → R+ such
that u ≥ f = f1 + f2 ≥ κ pointwise on BK+L, any L,L′ ≥ 1 such that L′′ = L′ + tg ≤ L

2 , where

tg = bL7/8c, and all ε ∈ (0, 1), there exists a coupling Q̃ of (I1, I2) such that

I1
law
= I

1
2

(1+PL/2)f1,
L
2 ∪ If2,L, I2

law
= I(1−ε)f ′′,L′ and

Q̃ [I1 ⊃ I2] ≥ 1− C(u ∨ 1)(K + L)de−cκε
2Lc ,

(4.3)

where I
1
2

(1+PL/2)f1,
L
2 and If2,L are independent in the law defining I1, and

(4.4) f ′′
def.
= l−1

∑
0≤k<b L

2L′′ c
[
PkL′′(f1BK ) + PL/2+kL′′+tg(f1BK )

]
.

Assuming Proposition 4.3 to hold we now present the:

Proof of Theorem 4.1 (assuming Proposition 4.3). First observe that we can always assume L′ ≤
cL and L ≥ C (often implicit in the sequel); for, in all other cases choosing Q any coupling be-
tween (I1, I2), the conclusion (4.1) trivially holds. By choosing the constant c small enough in
the condition L′ ≥ L1−c and L ≥ C, we may assume that

(4.5) (L′)2 > Ltg/2.

In particular, (4.5) implies that L′ > tg when L ≥ C. Deducing Theorem 4.1 involves replacing
I2 in (4.3) by the corresponding quantity in (4.1), with underlying intensities f ′′ and f ′ = PL

′
L (f)

given by (4.4) and (1.6), respectively. We will take care of the discrepancy in the definition of f ′

and f ′′ in two steps: first, adjusting the times in (4.4) at which the heat kernels are evaluated
to be suitable multiples of L′, and second adjusting the summation over k.

In view of (1.6) and (4.4), we first compare PkL′′ to PkL′ and PL/2+kL′′+tg to PL/2+kL′ .

Using (2.2)-(2.3), one obtains, for any integer n ≥ 1, ∆ ∈ (n−2/3, 1) and |x| ≤
√
n∆−1/4, whence

|x|4
n3 = O(n1/3) = O(∆−1/2) as n→∞, that∣∣∣ pn(0,x)

pbn(1+∆)c(0,x) − 1
∣∣∣ ≤ C∆1/2.(4.6)

We apply (4.6) with the choice ∆ =
ktg
kL′ =

tg
L′ and n = kL′ for 1 ≤ k < b L

2L′′ c to compare

PkL′′ to PkL′ . Notice that ∆ ∈ (n−2/3, 1) with these choices when L ≥ C, as follows from the
fact that L′ > tg noted below (4.5). Similarly, we compare PL/2+kL′′+tg to PL/2+kL′ with the

choice ∆ =
(k+1)tg
L/2+kL′ ≤

tg
L′ for 0 ≤ k < b L

2L′′ c. Since f ≤ u on BK , we then have for any

1 ≤ k < bL/2L′′c, pointwise on BK+L,

(4.7)
(
1− C

( tg
L′

)1/2)
PkL′(f1BK )

≤ PkL′′(f1BK ) + uP0

[
|XkL′ | > c

√
kL′
(
L′

tg

)1/4 ] ≤ PkL′′(f1BK ) + u e−c(L
′/tg)1/2

,

and the same bound holds true with PL/2+kL′ and PL/2+kL′′+tg in place of PkL′ and PkL′′ . From

(4.7), one immediately infers the existence for every ε ∈ (0,
√
tg/L′) of a coupling between three

29



random sets distributed as I(1−ε)f ′′,L′ , Iu11BK+L
,L′ and I(1−C

√
tg/L′)f̃ ′,L′ respectively, with f ′′

as in (4.4), u1
def.
= ule−c(L

′/tg)1/2
and

(4.8) f̃ ′
def.
= l−1 ∑

0≤k<b L
2L′′ c

(
PkL′(f1BK ) + PL/2+kL′(f1BK )

)
,

such that, in accordance with the resulting bound in (4.7), the former two are independent and
their union contains the latter a.s. Applying Lemma 2.4, one then concatenates this coupling

with the one from Proposition 4.3 (their common marginal being (I(1−ε)f ′′,L′ , Iu
′1BK+L

,L′), the
latter being sampled independently by suitable extension of Q̃ in the context of Proposition 4.3)
with the choice ε = L−c

′
, κ = L−c

′′
for suitable c′, c′′ > 0, to find a coupling Q1 of three random

variables I1, Ĩ2 and I1
3 such that

I1
law
= I

1
2

(1+PL/2)f1,
L
2 ∪ If2,L, Ĩ2

law
= I(1−C

√
tg/L′)f̃ ′,L′ and I1

3
law
= Iu11BK+L

,L′ with

Q1

[
I1 ∪ I1

3 ⊃ Ĩ2

]
≥ 1− C(u ∨ 1)(K + L)de−cuL

c
.

(4.9)

In words, (4.9) asserts that, at the cost of adding I1
3 , which has intensity u1(� u), one can

replace the intensity f̃ by f̃ ′ in Proposition 4.3. Now, comparing (1.6) and (4.8), observe that,

PL
′

L (f1BK ) = f̃ ′ + l−1
∑
b L

2L′′ c≤k<
L

2L′

(
PkL′(f1BK ) + PL/2+kL′(f1BK )

)
(4.10)

But since L′′ = L′+tg, and due to (4.5), one has 0 < L
2L′ −b

L
2L′′ c ≤

L
2L′ −

L
2L′′ +1 ≤ Ltg

2(L′)2 +1 < 2.

Consequently (4.10) can be recast as

PL
′

L (f1BK ) = f̃ ′ + l−1(PL/2−L′(f1BK ) + PL−L′(f1BK )).(4.11)

One then applies (4.6) with the choice ∆ = (k − 1)L′/(L − kL′) and n = L − kL′, for 2 ≤ k ≤√
L/L′ =

√
l, which as above can be seen to satisfy the condition ∆ ∈ (n−2/3, 1) as soon as

L1−c′ ≤ L′ ≤ c′L for small enough c′. Arguing similarly as in (4.7), one obtains for all such k,

(4.12)
(
1− Cl−

1
2
)
PL−L′(f1BK )

≤ PL−kL′(f1BK ) + uP0

[
|XL−L′ | > c

√
Ll1/8

]
≤ PL−kL′(f1BK ) + u e−cl

1/4

pointwise onBK+L. The same holds with PL/2−L′(f1BK ) on the left-hand side and PL/2−kL′(f1BK )
on the right. One then averages over k on the right-hand side of (4.12) noting with a view to-
wards (4.8) that {L − kL′ : 2 ≤ k ≤

√
l} ⊂ {L/2 + kL′ : 0 ≤ k < b L

2L′′ c}, and similarly that

{L2 − kL
′ : 2 ≤ k ≤

√
l} ⊂ {kL′ : 0 ≤ k < b L

2L′′ c}. Together with (4.11) and (4.8), this gives

PL
′

L (f1BK ) ≤ f̃ ′ +
(
Cl−

1
2 f̃ ′ + Cue−cl

1/4)
= (1 + Cl−

1
2 )f̃ ′ + C e−cl

1/4
.(4.13)

Since l1/4 = (L/L′)1/4 ≤ (2L′/tg)
1/2 in view of (4.5), proceeding analogously as in the argument

leading from (4.7) to (4.9), with (4.13) and (4.9) now playing similar roles as (4.7) and the
coupling (4.3) from Proposition 4.3, respectively, one finds a coupling Q2 of three random
variables I1, I2 and I3 such that

I1
law
= I

1
2

(1+PL/2)f1,
L
2 ∪ If2,L, I2

law
= I(1−Cl−1/2)PL

′
L (f1BK ),L′ and I3

law
= Iu21BK+L

,L′ with

Q2 [I1 ∪ I3 ⊃ I2] ≥ 1− C(u ∨ 1)(K + L)de−cκL
c
,

where u2
def.
= Cule−cl

1/4
. However, since Q[I3 = ∅] ≥ 1 − C(K + L)du2 by standard properties

of Poisson variables, we immediately obtain (4.1) with Q = Q2, thus yielding Theorem 4.1.
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4.2. Proof of Proposition 4.3. We will in fact prove a slightly stronger statement, namely
that the bound in the second line of (4.3) holds with I1 replaced by a (smaller) configuration
Î1 ≤st. I1 to be defined in the course of the proof, see (4.21) and (4.19). By chaining (cf. §2.3)
the original statement in (4.3) then quickly follows. Roughly speaking, the set Î1 comprises
fragments of length L′ from the length-L2 and length-L trajectories making up I1, cf. (4.3),
which are merged with corresponding pieces of I2 indexed by k in (4.4). The merging happens
recursively in k in terms of a sequence of couplings supplied by Lemma 4.4 below. Taking
advantage of Proposition 4.3 over Theorem 4.1, the fragments of longer trajectories alluded to
above can now be separated by a time roughly of order tg. This allows for good mixing at

an intermediate scale L̃, chosen suitably in Lemma 4.5, which is ultimately responsible for the
good control on the error term, as outlined in the discussion following (4.2). We forewarn the
perceptive reader that the somewhat intricate definition of I1 in (4.3) or (4.1) (required for
later purposes, see Remark 4.2,2)) makes the proof slightly more involved. An option is to set
f1 ≡ 0, which already yields an interesting special case of Proposition 4.3 and effectively makes
all matters relating to ω1 and ω3 disappear from the proof below, thus leading to a streamlined
argument.

Proof of Proposition 4.3. The measure Q̃ under which the desired coupling will be constructed
is assumed to carry independent Poisson processes ωj , 1 ≤ j ≤ 3 and ωk, 1 ≤ k < 2kL, where

kL
def.
= bL/2L′′c. All processes have state space [0, 1]×Zd×W+, and the processes ωj , 1 ≤ j ≤ 3,

have respective intensity measure

νj([0, u]× S ×A)
def.
= u · 4d

L

∑
x∈S

fj(x)Px[X ∈ A],(4.14)

for u ∈ (0, 1], S ⊂ Zd and A ∈ W+, with f1, f2 as appearing in the statement of Proposition 4.3
and f3 = PL/2f1; compare with the definition of I1 in (4.3). The process ωk has intensity

(4.15) νk([0, u]× S ×A)
def.
= u · 4d

L

∑
x∈S

(Ptkf)(x)Px[Y ∈ A],

with Y = X ◦ θtg+1 = (Xtg+1+n)n≥0 and (recall that tg = L′′ − L′)

(4.16) tk
def.
=

{
kL′′ − (tg + 1); for 1 ≤ k < kL,
L
2 + (k − kL)L′′ − 1; for kL ≤ k < 2kL.

In the sequel, with π : [0, 1] × Zd ×W+ → [0, 1] ×W+ denoting the canonical projection map
onto the first and third coordinates, we write ηj = π◦ωj , ηk = π◦ωk for the corresponding push-

forward processes on [0, 1] ×W+. To understand the relevance of ωk, notice that, substituting
S = Zd in (4.15) and using reversibility and the semigroup property, by which, for k < kL,∑

x

(Ptkf)(x)Px[Y ∈ A] =
∑
y

f(y)Py[X ◦ θtg+1+tk ∈ A]
(4.16)

=
∑
x

(PkL′′f)(x)Px[X ∈ A]

(all sums ranging over Zd), along with a similar computation when k ≥ kL, observing in the
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latter case that tg + 1 + tk = tg + L
2 + (k − kL)L′′, it follows that ηk intensity

ν̂k([0, u]×A) = u · 4d

L

∑
x

(Πkf)(x)Px[X ∈ A], where

Πkf =

{
PkL′′f, if 0 < k < kL,

PL
2

+k′L′′+tg
f ; if k = k′ + kL for 0 ≤ k′ < kL

(4.17)

(compare with (4.4)). The sets Î1 (smaller than I1) and I2 that we aim to couple under Q̃ will
be defined as unions over several parts Îk1 and Ik2 indexed by k, where 0 ≤ k < 2kL. Using ωj ,
j = 1, 2, the first of these contributions (corresponding to k = 0) is simply defined as follows:

Î0
1 = Î0

1 (ω1 ∪ ω2)
def.
=

⋃
(v,w)∈η1∪η2

w[0, L′ − 1], and

I0
2 = I0

2 (ω1 ∪ ω2)
def.
=

⋃
(v,x,w)∈ω1 ∪ω2:
v≤1−ε, x∈BK

w[0, L′ − 1].
(4.18)

Recalling (1.3), the fact that f = f1+f2 and using (4.14), it follows that Î0
1 and I0

2 are distributed

as I
L′
L
f,L′ and I(1−ε)f ′′0 ,L′ respectively, with f ′′0

def.
= L′

L f1BK . To understand what the former has

to do with I1 in (4.3), observe that both I
L′
L
f,L′ and I

1
2
f1,

L
2 ∪ If2,L (sampled independently)

can be obtained by retaining a certain number of steps from each trajectory in the support of
a Poisson process on W+ of intensity 4d

L

∑
x f(x)Px. In particular, the laws of their starting

points coincide.
In the sequel it will be convenient to let ζ0

v,w = w(∈ W+) for (v, w) ∈ η1 ∪ η2 and define

W0 = {ζ0
v,w : (v, w) ∈ η1 ∪ η2}, by which Î0

1 can be viewed as a function of W0.

The next lemma constructs recursively a sequence (Wk, Ik2 )0≤k<2kL under Q̃, where Wk is
a certain family of random paths ζkv,w (i.e. having values in W+) indexed by points (v, w) ∈
ηj(k) ∪ η2, where j(k) = 1 if 0 ≤ k < kL and j(k) = 3 if kL ≤ k < 2kL. In terms of Wk, the set

Îk1 is obtained by setting

(4.19) Îk1 =
⋃

(v,w)∈ηj(k)∪η2

ζkv,w[0, L′ − 1],

which is consistent (4.18) when k = 0. The requirements on (Wk, Ik2 ) vary depending on the
value of k below, which reflects (4.16)-(4.17) and is owed to the specific form of I1 in (4.3).

Lemma 4.4. There exists a sequence (Wk, Ik2 )0≤k<2kL under Q̃ with the following properties:

(i) For all 0 < k < 2kL, conditionally on (W0,J 0
2 ), . . . , (Wk−1, Ik−1

2 ), Wk def.
= {ζkv,w ∈ W+ :

(v, w) ∈ ηj(k) ∪ η2} is a family of independent random variables and

ζkv,w
law
= Pζk−1

v,w (L′−1)[Y ∈ ·], if k 6= kL;

ζkLv,w
law
=

{
Pw(0)[X ◦ θtg ∈ ·], if (v, w) ∈ η3,

Pζk−1
v,w (∆)[Y ∈ ·], if (v, w) ∈ η2, where ∆ = tkL − tkL−1 − (tg + 1).

(4.20)
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(ii) For all 0 < k < 2kL, conditionally on (W0, I0
2 ), . . . , (Wk−1, Ik−1

2 ), the set Ik2 is distributed

as I(1−ε)f ′′k ,L
′
, with f ′′k = L′

L Πk(f1BK ) (cf. (4.17)).

(iii) The bound Q̃[Îk1 6⊃ Ik2 ] ≤ C|BK+L|e−cκε
2Lc holds for all 0 < k < 2kL.

We defer the proof of Lemma 4.4 for a few lines and first complete the proof of Proposition 4.3
assuming it to hold. With Wk = {ζkv,w ∈W+ : (v, w) ∈ ηj(k) ∪ η2} defined by Lemma 4.4 for all

0 < k < 2kL, the set Îk1 in (4.19) is declared and one sets

Î1 =
⋃

0≤k<2kL

Îk1(4.21)

(recall that Î0
1 is supplied by (4.18)). Similarly, using the sets Ik2 , 0 < k < 2kL, furnished by

Lemma 4.4 and I2
0 from (4.18), one defines

I2 =
⋃

0≤k<2kL

Ik2(4.22)

It then immediately follows by combining the fact that Î0
1 ⊃ I0

2 , which is plain from (4.18),
with item (iii) above and a union bound over k, noting that 2kL ≤ 2 L

L′ = 2l (see above (4.14)

regarding kL), that Q̃[Î1 ⊃ I2] is bounded from below by the right-hand side of (4.3). To
conclude the proof, it is thus enough to argue that I2 defined by (4.22) is equal to I(1−ε)f ′′,L′

in law, as prescribed by (4.3), and that Î1 ≤st. I1. From this, the original statement in (4.3) is
readily obtained by chaining the coupling Q̃ and the one inherent to the stochastic domination
using Lemma 2.4; see also Remark 2.5,2).

The fact that I2 in (4.22) satisfies I2
law
= I(1−ε)f ′′,L′ is an immediate consequence of (ii),

recalling Πk from (4.17), by which f ′′k = L′

L PkL′′(f1BK ) if k < kL (see also below (4.18) regarding

f ′′0 ) and f ′′k = L′

L PL+k′L′′+tg(f1BK ) if k = k′ + kL for k′ ≥ 0, which implies in turn that∑
0≤k<2kL

f ′′k = f ′′ as defined by (4.4).

We now argue that Î1 ≤st. I1. To see this, it is simplest to think of I1 in (4.3) as the union

of the three independent sets I
1
2
f1,

L
2 , I

1
2
PL/2f1,

L
2 and If2,L. We first consider the contributions

to each Îk1 in (4.19) stemming from points (v, w) ∈ η3. As we now explain, these generate an

independent set which is dominated by I
1
2
PL/2f1,

L
2 . Since j(k) = 3 only when k ≥ kL, contribu-

tions of this kind only arise for these values of k. For a given (v, w) ∈ η3 then, concatenating
the pieces ζkv,w[0, L′− 1] in (4.19) for kL ≤ k < 2kL while making repeated use of (i) yields a set
having the same law as ⋃

0≤k<kL

X[kL′′ + tg, (k + 1)L′′ − 1]
(
⊂ X

[
0, L2 − 1

])
under Pw(0). As these fragments of random walk trajectories are independent as w varies, the
claim readily follows upon recalling that η3 has intensity π ◦ ν3 with ν3 given by (4.14). In
the same vein, one verifies that the contributions to all Îk1 stemming from points (v, w) ∈ η1

yield an independent set dominated by I
1
2
f1,

L
2 , and similarly those in η2 account for If2,L. This

completes the proof of Proposition 4.3, assuming Lemma 4.4.

Proof of Lemma 4.4. We define the sets (Wk, Ik2 ), 0 ≤ k < 2kL inductively such that (i)-(iii)
above hold. In addition, the induction will also carry the property that

(4.23) the pair (Wk, Ik2 ) is measurable relative to Fk = σ
(
ω1, ω2, ω3, ω

1, . . . , ωk
)
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(understood as σ((ωj)1≤j≤3) when k = 0). The pair (W0, I0
2 ) defined around (4.18) plainly

satisfies (4.23) and properties (i)-(iii) are trivially satisfied for k = 0.
For arbitrary k ≥ 1, we now describe how to sample (Wk, Ik2 ) conditionally on (W0, I0

2 ),. . . ,
(Wk−1, Ik−1

2 ). In doing so, Properties (i) and (ii), which are the relevant requirements on the
(conditional) laws of Wk and Ik2 , respectively, along with (4.23), will immediately follow. The
construction is such that the (key) property (iii) holds, which is verified separately.

The construction of (Wk, Ik2 ) involves ωk, which we now recall from (4.15)-(4.16). For any
S ⊂ Zd, let ωkS denote the restriction of ωk to points lying in the slab {(v, x, w) : x ∈ S}. It
follows by (4.15) that the projection ηkS = π◦ωkS is a Poisson process on [0, 1]×W+ with intensity

(4.24) ν̂kS([0, u]×A) = uµkS(A), with µkS(A)
def.
=

4d

L

∑
x∈S

(Ptkf)(x)Px[Y ∈ A],

for A ∈ W+. Similarly let µ̃kS denote the measure on (W+,W+) defined by

(4.25) µ̃kS(·) =
4d

L

∑
x∈S

Ptk(f1BK )(x)Px[Y ∈ ·].

We now first describe how to sample I2
k , which only involves ωk. For any S ⊂⊂ Zd, let

Ik2,S
def.
=

⋃
(v,w)∈ηkS : v≤(1−ε)

dµ̃k
S

dµk
S

(w)

w[0, L′ − 1].(4.26)

For an intermediate scale L̃ with 1 ≤ L̃ ≤ L
2 to be determined, we consider the partition of Zd

into disjoint boxes D = B(x, L̃) as x ranges over (2L̃ + 1)Zd. Let D denote the set of all such
boxes and D′ the subset of all D with D ⊂ BK+L. This leaves a (possibly empty) boundary
region V = BK+L \

⋃
D∈D′ D, which satisfies d(V,BK) ≥ L

2 whenever L ≥ C irrespectively of
the value of K. Now set

(4.27) Ik2 = Ik2 (ωk)
def.
=

⋃
D∈D
Ik2,D =

( ⋃
D∈D′

Ik2,D
)
∪ Ik2,V .

The last equality follows due to the indicator function present in (4.25) and the fact that tk ≤ L
for any k, see (4.16), which together imply that µ̃kS = 0 whenever S∩BK+L = ∅. It immediately
follows on account of (4.26) and the computation leading from (4.15) to (4.17) that (ii) holds
for k, i.e. Ik2 has the required law.

In order to sample the walks in Wk, on the other hand, we use a similar method as in the
proof of Lemma 2.3. For any D ∈ D, let (cf. (4.20))

ΛkD = {(v, w) ∈ ηj(k) ∪ η2 : ζk−1
v,w (L′ − 1) ∈ D}, k 6= kL,

ΛkLD = {(v, w) ∈ η2 : ζkL−1
v,w (∆) ∈ D} ∪ {(v, w) ∈ η3 : w(0) ∈ D}.

(4.28)

By (4.23) and induction hypothesis, ΛkD is clearly Fk−1-measurable for all k ≥ 1. Moreover, due
to items (i) and (iii) (valid up to k − 1 by assumption) and the Markov property, the quantity
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|ΛkD| is seen to be a Poisson variable with mean λD, where

λD =
(
1{k<kL}ν1 + ν2

)(
[0, 1]× Zd × {w(tk) ∈ D}

)
+

1{k≥kL}ν3

(
[0, 1]× Zd ×

{
w
(
(k − kL)L′′ − 1

)
∈ D

}) (4.14)
= 4d

L

∑
x∈Zd

[
1{k<kL}f1(x)Px[Xtk ∈ D]

+ f2(x)Px[Xtk ∈ D] + 1{k≥kL}(PL
2
f1)(x)× Px[X(k−kL)L′′−1 ∈ D]

]
= 4d

L

∑
x∈D

(Ptkf)(x),

where in the last step one uses reversibility and the semigroup property, noting for the third
term that L

2 + (k − kL)L′′ − 1 = tk when k ≥ kL by (4.16). Now, conditionally on Fk−1 and
for any (v, w) ∈ ΛkD, let gv,w : W+ → R+ denote the Radon-Nikodym density of the law of ζkv,w
prescribed by (4.20) with respect to µkD in (4.24). That is, for any (v, w) ∈ ΛkD and w′ ∈W+,

(4.29) gv,w(w′)
def.
=

ptg+1(ζk−1
v,w (L′ − 1), w′(0))

4d
L

∑
x∈D(Ptkf)(x)ptg+1(x,w′(0))

, for k 6= kL,

where we adopt the convention 0/0 = 1, and in view of (4.20) and (4.28), the numerator in
(4.29) is replaced when k = kL by ptg+1(ζk−1

v,w (∆), w′(0)) if (v, w) ∈ η2 and by ptg(w(0), w′(0))

if (v, w) ∈ η3. Still conditionally on Fk−1 and on the event {|ΛkD| = m}, which is Fk−1-
measurable as argued below (4.28), fix an enumeration (v1, w1), . . . , (vm, wm) of the points in
ΛkD with corresponding densities gi = gvi,wi , and define a sequence of (random) functions G0 = 0,
G1, . . . , Gm ≡ GD on W+ inductively as follows. For all 1 ≤ n ≤ m,

ξn
def.
= inf

{
t ≥ 0 : ∃ (v, w) ∈ ηkD \ {(uj , zj) : 1 ≤ j < n} s.t. Gn−1(w) + tgn(w) ≥ v

}
,

Gn(·) def.
= Gn−1(·) + ξngn(·).

(4.30)

By [28, Proposition 4.3], one obtains (conditionally on Fk−1 and on the event {|ΛkD| = m}) that
ξ1, . . . , ξm are distributed as independent exponential random variables with mean 1. Moreover,
denoting by (uDn , z

D
n ) the unique pair (v, w) ∈ ηkD\{(uj , wj) : 1 ≤ j < n} satisfying Gn(zDn ) = uDn ,

it follows that (zD1 , . . . , z
D
m) are independent and zi has the law of ξkvi,wi prescribed by (4.20).

Hence, letting

(4.31) Wk =Wk
(
(ωj)1≤j≤3, (ω

j)1≤j≤k
)

=
⋃
D∈D
{zDi : 1 ≤ i ≤ |ΛkD|},

item (i) readily follows. Moreover, by (4.27) and (4.31), (4.23) is immediately verified.
It remains to argue that (iii) holds. In view of (4.19) and by definition ofWk, one can recast

Îk1 as
⋃
ζ∈Wk ζ[0, L′ − 1]. Using (4.27), it then follows that

Q̃
[
Îk1 6⊃ Ik2

]
≤ Q̃

[
Ik2,V 6= ∅

]
+
∑
D∈D′

Q̃
[
ηkD(OD) > 0

]
,(4.32)

where (cf. (4.26))

OD
def.
=
{

(v, w) ∈ [0, 1]×W+ : GD(w) < v ≤ (1− ε)dµ̃
k
D

dµkD
(w)
}
.(4.33)
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We bound each term on the right-hand side of (4.32) separately. By definition, see (4.26), the
set Ik2,V is obtained by retaining the first L′ − 1 steps of independent random walk trajectories
attached to a Poisson number of starting points with mean

(1−ε)µ̃kV (W+)
(4.25)

≤ 4d

L

∑
x∈V

Ex
[
(f1BK )(Xtk)

]
≤ C

u

L
|V | sup

t<L
P0

[
|Xt| > L

2

]
≤ Cu|BK+L|e−cL,

where the second bound is obtained by combining the facts that tk < L for all k and that
d(V,BK) ≥ L

2 , see (4.16) and above (4.27), and using the assumption f ≤ u, while the last
bound is readily implied by a standard Gaussian upper bound on the heat kernel (also recalling
that V ⊂ BK+L). Since for X a Poisson variable with mean λ, one has P [X > 0] = 1−e−λ ≤ λ,
it follows that Q̃

[
Ik2,V 6= ∅

]
is also bounded from above by Cu|BK+L|e−cL. To estimate the

remaining terms in (4.32), one uses the following:

Lemma 4.5. For L̃ = L
1
d

+α with α = 1
200 , all D = B(x, L̃) ⊂ BK+L and 1 ≤ k < 2kL,

(4.34) Q̃
[
ηkD(OD) > 0

]
≤ C(u ∨ 1)e−cκε

2Lc .

Choosing L̃ as in Lemma 4.5 (see also below (4.26), where the parameter L̃ is introduced),
item (iii) follows upon combining the estimate for Q̃

[
Ik2,V 6= ∅

]
, the bound (4.34) while noting

that |D′| ≤ |BK+L|, thus completing the proof of Lemma 4.4.

Proof of Lemma 4.5. Let β = 1
5 and recall that tg = bL

7
8 c. By choice of L̃, this implies that

(4.35) (tg)
1
2
−β ≥ L

1
d

+2α
(

= L̃ · Lα
)

for all L ≥ C; indeed, (1
d + 2α)/(1

2 − β) = 5
2d + 5α ≤ 5

6 + 1
40 < 7

8 for d ≥ 3. The inequality
(4.35) should be read as the condition that a slightly sub-diffusive length scale corresponding to
the gap time tg is still polynomially larger (in L) than the side length L̃ of the box D. We first
estimate the density gn entering GD, cf. (4.33) and (4.30). In view of (4.29) and the display
preceding it, one has

gn(w) ≥ λ−1
D ρ(w),(4.36)

where ρ : W+ → R+ is defined as

ρ(w) = min
z,z′∈D

min
t∈{tg , tg+1}

pt(z, w(0))

ptg+1(z′, w(0))
;

in obtaining (4.36), we also used that gn = gvn,un corresponds to points (vn, un) ∈ ΛkD, which
belong to D by definition, see (4.28), hence the minimum over z and z′ in the definition of ρ. An
estimate of the ratio ρ can be obtained via (2.2) and (2.3), using (4.35). Doing so, one deduces

for any w ∈W+ such that |w(0)− x| < (tg)
1
2

+β, where x denotes the center of D, that

ρ(w) ≥ 1− C
( t4(1/2+β)
g

t3g
− L̃t

1/2+β
g

tg

) (4.35)

≥ 1− CL−c;(4.37)

here, the first term in the parenthesis corresponds to the dominating error in (2.2), whereas the
second term accounts for the comparison of (continuous) heat kernels in (2.3), and we also used
that for any z, z′ ∈ D = B(x, L̃),

|w(0)− z|2 − |w(0)− z′|2 ≤
(
|w(0)− x|+ L̃

)2 − (|w(0)− x| − L̃
)2 ≤ C|w(0)− x|L̃.
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Denoting the set of walks w ∈W+ with |w(0)−x| < t
1/2+β
g by F , observe that the cardinality of

the set S =
{

(v, w) ∈ ηkD : w /∈ F
}

follows, under Q̃, a Poisson distribution with mean µkD(F c);
see (4.24). Recalling that Y = X ◦ θtg+1 and using (4.35), it follows that Px[Y ∈ F c] ≤ Ce−L

c

uniformly in x ∈ D, which, together with the bound f ≤ u valid on BK+L and in view of (4.24),
readily implies that

(4.38) Q̃[S 6= ∅] ≤ Cue−Lc .

On the other hand, since the lower bound (4.37) on ρ(ω) is in force for all w such that (v, w) ∈ ηkD
whenever S = ∅, it follows, recalling OD from (4.33) and GD from above (4.30), that

(4.39) Q̃
[
(ηkD(OD) > 0, S = ∅

]
(4.36)

≤ sup
w∈F

Q̃
[ ∑

1≤n≤|ΛkD|

λ−1
D ρ(w)ξn ≤ (1− ε)dµ̃

k

dµk
(w)
] (4.37)

≤ Q̃
[ ∑

1≤n≤|ΛkD|

ξn ≤ (1 + CL−c − ε)λD
]
,

where we used that dµ̃k

dµk
≤ 1, as readily implied by the definitions of µ̃k and µk in (4.25) and

(4.24). The upper bound on the sum of ξn’s in the last bound of (4.39) can further be replaced
by (1− ε

2)λD whenever ε ≥ 2CL−c, which is no loss of generality in view of the desired estimate
in (4.5). Now recalling that |ΛkD| is a Poisson variable with parameter λD (see below (4.28)) and
that the ξn’s are i.i.d. exponential variables with mean 1 (see below (4.30)), applying standard
large deviation estimates yields that

(4.40) Q̃
[
(ηkD(OD) > 0, S = ∅

]
≤ Q̃

[ ∑
1≤n≤(1− ε

4
)λD

ξn ≤ (1− ε
2)λD

]
+ Q̃

[
|ΛkD| ≤ (1− ε

4)λD
]
≤ Ce−cε2λD .

To conclude, one recalls that f ≥ κ pointwise on BK+L and that tk < L which together readily
yield that Ptkf(x) = Ex[f(Xtk)] ≥ 2−dκ for any x ∈ BK+L, whence

λD =
1

L

∑
x∈D

(Ptkf)(x) ≥ L−1|D|2−dκ ≥ cκLdα,

for any D ⊂ BK+L. This last bound also accounts for the necessity that L̃ � L
1
d implicit in

the choice of L̃. Substituting the lower bound on λD into (4.40) and combining with (4.38)
completes the proof.

5 Covering length-L by length-L′ interlacements outside a good obstacle set

In this section we prove Theorem 1.3. The coarse architecture is similar to that of Section 4. In
§5.1, we first deduce Theorem 1.3 from a more malleable version, Proposition 5.1, which allows
for overlaps between successive length-L′ trajectories; here, overlaps rather than gaps (cf. §4.1)
are relevant due to the opposition direction of inclusion in which the coupling operates, cf. (1.7)
and (1.13). The coupling postulated by Proposition 5.1, which barring technical simplifications
due to the presence of overlaps, is similar to that of Theorem 1.3, is built inductively over k
(much like in §4.2) but now by gluing shorter length-L′ trajectories progressively into longer
ones, until reaching the desired length L > L′.
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The proof of Proposition 5.1 is presented in full in §5.2 assuming its one-step version,
Lemma 5.2, which encapsulates the properties needed to pass from k to (k + 1), which roughly
amounts to ‘attaching’ a piece of length L′. Although reminiscent of Lemma 4.4, which plays a
similar role in the context of Theorem 4.1, Lemma 5.2 and its proof, which appears in §5.3, are
much more involved. Indeed, the underlying arguments entail the precise gluing mechanism for
trajectories inside the (enlarged) good obstacle set Õ. In particular, the conditions appearing
as part of Definition 1.2 crucially enter in order to witness this gluing occur with high enough
probability, by exhibiting a high ‘surface density’ of trajectories on each of the obstacles com-
prising O. Informally speaking, the proof exploits a property of exchangeability between the
trajectories near a given obstacle. We now flesh out these ideas.

5.1. Overlaps and the timescale to. As with Proposition 4.3, following is a version of
Theorem 1.3 with overlaps. Throughout this section, we are always (often implicitly) working
under the assumptions of Theorem 1.3; in particular, (1.5) is in force. We omit in the sequel
any reference to the parameters f,K,L, L′, γ, `O, δO,MO as well as u and ε, whose ranges are
all specified by Theorem 1.3.

Proposition 5.1. Under the assumptions of Theorem 1.3, with

(5.1) L′′
def.
= L′ − to, where to

def.
= 3bL(logL)−10γc (≤ L′ when L ≥ C; see (1.5))

there exists a coupling Q̃ of two {0, 1}Zd-valued random variables I1 and I2 such that,

I1
law
= If1BK ,L, I2

law
= I(1+ε)f ′′,L′ ; and, for L ≥ L0(d, γ, u),

Q̃
[
I1 \ Õ ⊂ I2 \ Õ

]
≥ 1− C(u ∨ 1)(K + L)d

(
e−c(εMO∧(logL)γ) ∨ δO

)
,

(5.2)

where (recall that l = L
L′ , see (4.2))

(5.3) f ′′ = l−1
∑

0≤k<d L
L′′ e

PkL′′(f).

In analogy with (4.4), (5.3) presents the advantage over PL
′

L (f) of inducing overlaps (of time
to) in the intensity profile of the (bigger) process I2 comprising length-L′ trajectories, which will
facilitate the proof of (5.2).

Assuming Proposition 5.1 to hold, we first give the proof of Theorem 1.3.

Proof of Theorem 1.3 (assuming Proposition 5.1). The proof is similar to that of Theorem 4.1
using Proposition 4.3. We highlight the main changes. While stating the inequalities, we will
often imply that L is large enough in a manner depending only on γ and d, as allowed in the
statement of Theorem 1.3. By choice of to in (5.1) and assumption on L′ in (1.5), one has

(5.4) (L′)2 > 2Lto

(cf. (4.5)). In view of f ′′ in (5.3) and PL
′

L (f) in (1.6), one compares PkL′′ to PkL′ using (4.6)
with the choice ∆ = kto/kL

′′ = to/L
′′ and n = kL′′ for 1 ≤ k < d LL′′ e, for which the condition

∆ ∈ (n−2/3, 1) is met. Now, as in (4.7) this yields, pointwise on Zd and for any 1 ≤ k < d LL′′ e,

PkL′′(f) ≤
(
1 + C

(
to
L′

)1/2)
PkL′(f) + u′11BK+L

,(5.5)
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where u′1 = u e−c(L
′/to)1/2

(recall that f is supported on BK+L). From (5.5), one immedi-

ately obtains a coupling of three random sets distributed as I(1+Cl−1/2)f̃ ′,L′ , Iu
′
11BK+L

,L′ and
I(1+Cl−1/2)f ′′,L′ , with f ′′ as in (5.3) and

f̃ ′
def.
= l−1

∑
0≤k<d L

L′′ e
PkL′(f),

such that the former two are independent and their union contains the latter a.s. Concatenating
this coupling with the one from (5.2) using Lemma 2.4 yields a coupling Q′1 of three random

variables I1
law
= If1BK ,L, Ĩ2

law
= I(1+Cl−1/2)f̃ ′,L′ and Ĩ3

law
= Iu

′
11BK+L

,L′ such that

(5.6) Q′1
[
I1 \ Õ ⊂ (Ĩ2 ∪ Ĩ3) \ Õ

]
≥ 1− C(u ∨ 1)(K + L)d

(
e−c(εMO∧(logL)γ) ∨ δO

)
where Ĩ2 and Ĩ3) are sampled independently. Now since L′′ = L′ − to and L′ > 2to on account
of (5.4), one finds that d LL′′ e − l ∈ (0, 2) and hence that

PL
′

L (f) = f̃ ′ − l−1
∑

l≤k<d L
L′′ e

PkL′(f) = f̃ ′ − l−1PL(f).(5.7)

Then, proceeding as in (4.12)–(4.13), one applies (4.6) again with the choice ∆ = kL′/(L− kL′)
and n = L− kL′, for 1 ≤ k ≤

√
l to replace PL by PL−kL′ on the right-hand side of (5.7) and to

deduce after averaging over k,

PL
′

L (f) ≤ (1 + Cl−
1
2 )f̃ ′ + Cue−cl

1/4
1BK+L

Combining the natural coupling induced by the previous estimate with that of (5.6) via chaining,

one obtains a coupling Q′2 of three random variables I1
law
= If1BK ,L, I2

law
= I(1+Cl−1/2)PL

′
L (f),L′

and I3
law
= Iu

′
21BK+L

,L′ with u′2 = Cue−cl
1/4

, such that

Q′2
[
I1 \ Õ ⊂ (I2 ∪ I3) \ Õ

]
≥ 1− C(u ∨ 1)(K + L)d

(
e−c(εMO∧(logL)γ) ∨ δO

)
,

where I2 and I3 are sampled independently. Theorem 1.3 now readily follows with Q′ = Q′2
since Q[I3 = ∅] ≥ 1− C(K + L)du′2 and l = L

L′ ≤ (logL)γ by (1.5) .

5.2. Coupling outside enlarged obstacle set Õ. This subsection contains the proof of
Proposition 5.1, save for one result, Lemma 5.2 below, which represents one inductive step in a
sequence of couplings to be constructed. A loose analogue of Lemma 5.2 in the context of the
(simpler) Proposition 4.3 is Lemma 4.4, see in particular item (iii) therein. As opposed to the
setup of Section 4, the reverse inclusion, cf. (5.8) below, effectively requires recombining shorter
trajectories into longer ones, for which the region Õ acts as a buffer zone, in which the gluing
occurs but control over the coupled interlacement sets is lost.

Proof of Proposition 5.1. Recall from Definition 1.2 (see below (1.10)) that UO = BK+
√
L(logL)γ .

The measure Q̃ that will be constructed in the course of this proof will couple two random sets
denoted by I± with the properties that

I− law
= If1BK ,L ∩ (Zd \ Õ), I+ law

= J (1+ε)f ′′1UO ,L
′
,

Q[I− ⊂ I+] ≥ 1− C(u ∨ 1)(K + L)d
(
e−c(εMO∧(logL)γ) ∨ δO

)
,

(5.8)
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for L ≥ C(d, γ, u), which will tacitly be understood to hold from here onwards. From (5.8),
the claim of Proposition 5.1 immediately follows since If ′′,L′ is readily obtained from I+ upon
adding by extending Q̃, an independent process with law If ′′(1−1UO ),L′ so I+ ⊂ If ′′,L′ Q̃-a.s.

The restriction to UO in the definition of I+ in (5.8) is convenient and motivated by the
fact that any trajectory in the support of I− (with starting point in BK) will hit O before long,
as implied by (1.9), and that the resulting sequence of ‘k-th return points’ (in a sense defined
precisely below, see (5.24)) to the obstacle set O belonging to any box B ∈ O∩UO will be both
large and vastly outnumbered by the ‘first’ hitting points produced by trajectories in the k-th
‘layer’ of I+ (where f ′′ =

∑
k f
′′
k , cf. (5.9)) with starting point in UO. Boxes lying outside UO

will typically be insignificant for I−, i.e. the obstacle set will be hit long before exiting UO.
We now prepare the ground to produce the desired coupling. Recall f ′′ from (5.3) and

introduce, for k ∈ {0, . . . , kL} with kL = d LL′′ e − 1 the function f ′′k : Zd → R+ given by

(5.9) f ′′k (x) = L′

L (PkL′′f)(x),

so that f ′′ =
∑

k f
′′
k . Here and throughout the remainder of this proof, k will always be tacitly

assumed to range over all integers with 0 ≤ k ≤ kL. Under an auxiliary probability measure
Q̃+, we introduce independent Poisson processes ω+

k (one for each k) on R+ × Zd ×W+ each
having intensity ν+ given by

(5.10) ν+([0, u]× {x} ×A) = uPx[X ∈ A].

We now define certain quantities induced by the processes ω+
k . Given a stopping time τ for the

random walk under P· and a cemetery state ∆, define the random variable

(5.11) Y : W+ → Zd ∪ {∆}, w 7→ Y (w)
def.
=

{
w(τ), if τ <∞
∆, else.

For suitable X, denote by ΩX the space of σ-finite point measures on X in the sequel, with its
associated canonical σ-algebra. Recall O ⊂ Zd, a finite set by Definition 1.2, and let g : Zd →
[0,∞) have finite support. Attached to Y in (5.11) is the map Φτ

g : ΩR+×Zd×W+ → ΩO with

(5.12) Φτ
g(ω) =

∑
i

δY (wi)1
{
τ(wi) <∞, Y (wi) ∈ O, ui ≤ 1

L′ g(xi)
}
, if ω =

∑
i δ(ui,xi,wi).

The point measure Φτ
g(ω) is increasing in both O and g and under Q̃+ and for any k,

(5.13) Φτ
g(ω+

k ) is a Poisson process on O of intensity 1
L′Pg[Xτ = ·, Xτ ∈ O, τ <∞],

where, following our usual notation, Pg =
∑

x g(x)Px. Now, with f ′′k as in (5.9), define

g+
k : Zd → R+, g+

k = (1 + ε)f ′′k 1UO , k ≥ 0,(5.14)

let

(5.15) τk =

{
L′′ +HO ◦ θL′′ if k = 0

HO if k ≥ 1

and

(5.16) Φ+
k = Φτk

g+
k

(ω+
k ) =

∑
1≤i≤N+

k

δY +
k,i
, k ≥ 0,
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where, with a slight abuse of notation Y +
k,i = Y +

k,i(ω
+
k ), 1 ≤ k ≤ N+

k , refer to the random

variables Y (wi) appearing in (5.12) (with the choices τ = τk and g = g+
k ), ordered for sake of

definiteness according to increasing label ui. In words, Φ+
k is the Poisson process obtained by

taking each point (wi, xi, ui) in the support of ω+
k with appropriate label ui, and retaining for

every trajectory wi for which Xτk(wi) belongs to O the corresponding hitting point at time τk.
The discrepancy in (5.15) between k = 0 and k ≥ 1 is due to the special role played by k = 0
below. For later reference, note that due to (5.13),

(5.17) N+
k is a Poisson variable with parameter 1

L′Pg+
k

[τk <∞].

Let us briefly pause to give an overview over the remainder of the proof. We next define a
sequence of couplings Qk inductively in k. For each value of k with 0 ≤ k ≤ kL, the coupling Qk
extends Qk−1 (in case k ≥ 1) and gives rise to two random sets I±k sharing similar properties as
I± in (5.8). The sets I± will be generated at the terminal value k = kL, i.e. after kL+1(= d LL′′ e)
iterations. Roughly speaking, I+

k will correspond to the contribution to I+ stemming from g+
n ,

0 ≤ n ≤ k, cf. (5.14) and (5.9), whereas the trajectories comprising I−k will correspond to the
first k+1 pieces of length L′′ destined to form the length-L walks constituting I−, which will be
reconstructed in the process. The reconstruction is facilitated by the presence of the enlarged
obstacle set Õ, see (1.12), inside of which the walks need not being tracked and which will serve
as a ‘gluing zone’. The time loss needed to perform the gluing inside Õ will turn out to be
negligible thanks to the conditions listed in Definition 1.2.

We now proceed to make the above strategy precise.

Lemma 5.2 (0 ≤ k ≤ kL). There exists a probability measure Qk governing I±k with

I−k
law
= If1BK , (k+1)L′′ ,(5.18)

I+
k

law
= I

∑
0≤`≤k g

+
k ,L
′
,(5.19)

Qk
[(
I−k ∩ (Zd \ Õ)

)
⊂ I+

k

]
≥ 1− C(u ∨ 1)(K + L)d

(
e−c(εMO∧(logL)γ) ∨ δO

)
.(5.20)

Assuming Lemma 5.2 to hold for the time being, we first conclude the proof of Proposi-
tion 5.1, which entails verifying that (5.8) holds. Choosing Q = QkL , it follows on account of

(5.19) and (5.9) that I+ def.
= I+

kL
has the law prescribed in (5.8). Moreover, in view of (5.18),

as the length of the trajectories in the support of I−kL is (kL + 1)L′′ ≥ L, one straightforwardly

extends Q by suitable thinning to a coupling carrying a random set I− with the same law as
If1BK ,L in such a way that the inclusion I− ⊂ I−kL holds almost surely. Then, the inclusion with
high probability asserted in (5.8) is a direct consequence of (5.20). Thus, (5.8) holds, which
completes the proof of Proposition 5.1 (conditionally on Lemma 5.2).

5.3. Gluing trajectories. We now give the proof of Lemma 5.2.

Proof of Lemma 5.2. For each 0 ≤ k ≤ kL define

(5.21) Uk = B
K+ 1

2

√
(k+1)L′′(logL)γ

(⊂ UO),

where the latter inclusion follows on account of the definitions UO = BK+
√
L(logL)γ , kL = d LL′′ e−1

as well as the displays (1.5) and (5.1). We proceed inductively in k and show the following
stronger statement, which is convenient to carry out the inductive step: for every k, there exists
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a coupling Qk, extension of Qk−1 for all k ≥ 1, satisfying (5.18)-(5.19) and carrying one further
random set Kk and its associated endpoints Y −k = {Y −k,i : 1 ≤ i ≤ N−0 } with the property that,
for some event Gk decreasing in k with

Q0[G0] ≥ 1− u|UO|(δO ∨ e−c(logL)γ ),

Qk[Gk−1 \Gk] ≤ (u ∨ 1)|UO|
(
δO ∨ e−c(εMO∧(logL)γ)

)
, 1 ≤ k ≤ kL,

(5.22)

one has the inclusions

(5.23)
(
I−k ∩ (Zd \ Õ)

)
⊂
(
Kk ∩ (Zd \ Õ)

)
⊂ I+

k and Y −k ⊂ Uk : on Gk.

The set Kk represents the precise proportion of the set I− in (5.8) that is covered by the coupling
until step k, that is, by using the first k + 1 pieces of length-L′ trajectories only. Intuitively,
it comprises the length-L trajectories that will eventually form I−, run until a time which is
slightly larger than the target time (k + 1)L′′ needed for I−k . Specifically, the set Kk has the
following prescribed law. Consider the sequence of ‘return’ times (see (5.15) for notation)

(5.24) R0 = τ0, Rk = (k + 1)L′′ + τk ◦ θ(k+1)L′′ , k ≥ 1.

Note that the sequence of times Rk is a-priori unordered, but, as will turn out, the event
Gk (cf. (5.22)) to be constructed in the course of the proof will guarantee that the map ` ∈
{0, . . . k} 7→ R`, is in fact increasing when Gk occurs. With Rk given by (5.24), the distribution
of Kk = Kk(ω+

0 ) is specified as

(5.25) Kk
law
=

⋃
1≤i≤N−0

wi[0, Rk(wi)] (under Q+),

with associated endpoints Y −k defined as {wi(Rk(wi)) : 1 ≤ i ≤ N−0 } (note that these tacitly
require {Rk(wi) < ∞} to occur) and where, recalling that ω+

0 =
∑

i δ(ui,xi,wi) has intensity ν+

given by (5.10), we have set

N−0 = ω+
0

(
{u ≤ 1

L′ g
−
0 (X0), τ0 <∞}

)
,(5.26)

a Poisson variable with intensity 1
L′Pg−0

[τ0 <∞] and

(5.27) g−0 = f ′′0 1BK , so that 1
L′ g
−
0 = 1

Lf1BK .

In (5.25), wi refers to the (ordered) trajectory in the support of ω+
0 containing the point Y +

0,i for

every i ≤ N+
0 and (5.25) is well-defined because N−0 ≤ N+

0 holds Q+-a.s. on account of (5.17)
and (5.14), (5.27), which together imply that g−0 ≤ g

+
0 .

We now proceed to show the existence of Qk with the above properties, i.e., satisfying (5.22)
and (5.23) with Kk, Y −k as in (5.25).

The case k = 0. We simply define Q0 = Q+ (see above (5.10)) and set, with ω+
0 having

intensity ν+ given by (5.10),

(5.28) K0 = K0(ω+
0 ) =

⋃
1≤i≤N−0

wi[0, τ0(wi)]
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with N−0 as in (5.26) and where wi refers to the trajectory in the support of ω+
0 containing the

point Y +
0,i for every i(≤ N+

0 ), as above. We now introduce the ‘good’ event (under Q0)

G0 =

{
ω+

0

(
{u ≤ 1

L′ g
+
0 (X0), τ0 − L′′ > to

3 }
)

= 0,

ω+
0

(
{u ≤ 1

L′ g
−
0 (X0), Xτ0 /∈ U0, τ0 <∞}

)
= 0

}
(5.29)

(observe that the first line includes the possibility that τ0 = ∞). In view of (5.15), when G0

occurs, any trajectory wi involved in the construction of K0 in (5.28) satisfies (L′′ ≤)τ0(wi) ≤
L′′ + to

3 < L′(= L′′ + to). Hence, as we now explain, on the event G0, one obtains the chain of
inclusions (recall (1.3) for notation)

(5.30) If1BK ,L
′′ law

= Ig
−
0 ,L

′′
(ω+

0 ) ⊂ K0(ω+
0 ) ⊂ Ig

+
0 ,L
′
(ω+

0 )
law
= I(1+ε)f ′′0 1UO ,L

′
;

here, the first inclusion follows from the fact that all trajectories w in the support of Ig
−
0 ,L

′′
have

τ(w) <∞ on G0, hence by definition of K0 in (5.28), they also appear in its support and run for
a longer time. The second inclusion (5.30) is due to the combined facts that N−0 ≤ N

+
0 and the

upper bound τ0 < L′ noted above, which is valid on the event G0 for all the relevant trajectories.
All in all, setting I±0 = Ig

±
0 ,L

′′
(ω+

0 ), it follows on account of (5.30) that the inclusion (5.23) holds

(in fact the intersection with (Zd \ Õ) can be omitted here) and that the sets I±0 and K0 have
the required laws prescribed by (5.18), (5.19) and (5.25), respectively (in the latter case, this
follows plainly from (5.28) and the definition of R0 in (5.24)).

Finally, it remains to argue that the event G0 given by (5.29) satisfies the required bound in
(5.22). This is due to the fact that the random variable entering the first line in the definition
of G0 is Poisson with parameter

ν+(u ≤ g+
0 (X0)
L′ , τ0 − L′′ > to

3 )
(5.10)

= 1
L′
∑

x g
+
0 (x)Px[PXL′′ [HO >

to
3 ]] ≤ (δO ∨ e−cL

c
)
∑

x g
+
0 (x),

where the last step follows by means of the visibility condition (1.9) upon observing that
supp(g+

0 ) ⊂ UO, whence XL′′ ∈ BK+L holds with Px-probability 1− e−cLc for x ∈ supp(g+
0 ). A

similar bound can be derived for relevant intensity of the event appearing in the second line of
(5.29). From this (5.22) follows using the elementary inequality 1 − e−x ≤ x valid for x ≥ 0.
Upon setting

Y −0,i = Y +
0,i(= wi(τ0)), 1 ≤ i ≤ N−0 ,

by which Y −0,i, 1 ≤ i ≤ N−0 , correspond on the event G0 to the endpoints of all the trajectories

involved in the construction of K0, cf. (5.28), this concludes the proof in the case k = 0.

The case (k − 1) → k. We now inductively assume Qk−1, extension of Q0 = Q+ for some
1 ≤ k ≤ kL, to be a coupling of I±k−1, Kk−1 with the desired laws, such that (5.23) holds on a

suitable event Gk−1. We further suppose the random variables Y −` = (Y −`,i : 1 ≤ i ≤ N−0 ), for
1 ≤ ` ≤ k− 1 to be defined under Qk−1, corresponding to the endpoints of all trajectories in the
support of K` on the event G`(⊃ Gk−1). In law, these are precisely the points R`(wi) appearing
in (5.25). By construction, see (5.24) and (5.15), these random variables have values in O.

Recall the random variables Y +
` = (Y +

`,i : 1 ≤ i ≤ N+
` ) from (5.16), which are measurable

functions of ω+
` for each `. Our aim is to merge the trajectories stemming from Kk−1 (their
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endpoints are Y −k−1,i, 1 ≤ i ≤ N+
0 ) with trajectories from the support of ω+

k (entering O through

the points Y +
k,i, 1 ≤ i ≤ N+

k ) after letting them mix, which will take (homogenization) time

(5.31) th
def.
= H

∂Õ

and take place inside Õ (⊃ O, cf. (1.12)). The following lemma is key to this.
The variables Z± below represent the locations of the walk after this homogenisation has

taken place. In writing {Z− ⊂ Z+}, see e.g. (5.33), we include multiplicities, i.e. we view Z± as
multi-sets. Let Fk denote the σ-algebra generated by ω+

0 , I±` , K` and Y −` for 0 ≤ ` < k and ω+
`

for 0 ≤ ` ≤ k (under Qk−1).

Lemma 5.3 (1 ≤ k ≤ kL). Conditionally on Fk, there exists q = qFk coupling of

Z− = {Z−i : 1 ≤ i ≤ N+
0 }, Z+ = {Z+

i : 1 ≤ i ≤ N+
k }

with the property that, abbreviating µz[ · ] = Pz[Xth = · ], z ∈ O,

Z−i
law
= µY −k−1,i

, Z+
i

law
= µY +

k,i
(5.32)

Qk−1

[
qFk [Z− ⊂ Z+]1Gk−1

]
≥ 1− e−cε2MO ,(5.33)

whenever C`
−1/100
O ≤ ε (recall from the discussion before Definition 1.2 that `O is radius of any

box comprising the obstacle set O) and (1.10) holds.

We defer the proof of Lemma 5.3 and first complete the induction step. We start by defining
Qk. By suitable extension, we assume that Qk−1 further carries two independent families {βx,yi :
x, y ∈ Zd, i ≥ 1} and {Xx

i : x ∈ Zd, i ≥ 1} of i.i.d. random variables, independent of the all the
remaining randomness governed by Qk−1, such that βx,yi has the law of the bridge X·∧th under
Px[ · |Xth = y] and Xx

i has the same law as (Xt)t≥0 under Px for every i ≥ 1. For a bridge β we
write th(β) = H

∂Õ(β) for its (time-)length. Let

Qk[ · ]
def.
= Qk−1[qFk [ · ]].

In order to construct (I−k ,Kk, I
+
k ) out of (I−k−1,Kk−1, I+

k−1), we will use

(5.34) β−i
def.
= β

Y −k−1,i, Z
−
i

i , β+
i

def.
= β

Y +
k,i, Z

+
i

i , X±i
def.
= X

Z±i
i for 1 ≤ i ≤ N±k

where for convenience we have set N−k = N−0 . Now write ω+
k for the restriction of the projection

of ω+
k onto its first and third marginal to points (u,w) satisfying ui ≤ 1

L′ g
+
k (x), wi(0) = x and

decompose, for k ≥ 1,

(5.35) ω+
k = ω1 + ω2, ω1 = ω+

k 1{(u,w) : τk(w) <∞}

(observe that the number of points in the support of ω1 is exactly N+
k given by (5.17)) and

consider for 1 ≤ i ≤ N+
k the concatenated process

(5.36) W+
k,i(t) =


wi(t), 0 ≤ t ≤ τk,
β+
i (t− τk), τk < t < τk + th,

Z+
i , t = τk + th,

X+
i (t− τk − th), t > τk + th,
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where th = th(β+
i ), the point measure

∑
1≤i≤N+

k
δ(wi,ui) refers to an (ordered) realization of

the projection of ω1 and τk = τk(wi) = HO(wi), cf. (5.15) (recall that k ≥ 1). As we now
explain, conditionally on Fk as defined above Lemma 5.3, (W+

k,i(t))t≥0 has the law of Pwi(0) for

all 1 ≤ i ≤ N+
k ; indeed, the intensity measure (5.10) of ω+

k and (5.35) imply that (conditionally
on N+

k ), wi(t), 0 ≤ t ≤ τk, follows the law of a random walk path until time τk = HO, at which
time the walk is at position wi(τk) = Y +

k,i = β+
i (0), cf. (5.16) and (5.34). Using (5.32) and

applying the strong Markov property at times τk and τk + th, the claim then readily follows.
In a similar vein, for 1 ≤ i ≤ N−k (= N−0 ), define

(5.37) Wk,i(t) =


β−i (t), 0 ≤ t < th,

Z−i , t = th,

X−i (t− th), t > th

with th = th(β−i ). In view of (5.32) and (5.34), it follows that under Qk and conditionally on
Fk, the process (Wk,i(t))t≥0 has law PY −k−1,i

for all 1 ≤ i ≤ N−k .

With {W+
k,i : 1 ≤ i ≤ N+

k } and {Wk,i : 1 ≤ i ≤ N−k } given by (5.36) and (5.37), respectively,

we now specify the sets (I−k ,Kk, I
+
k ) and proceed to verify that they have the desired marginal

laws. Recalling N−k = N−0 from (5.26) and abbreviating W [0, t] = {W (s) : 0 ≤ s ≤ t}, let

Kk = Kk−1 ∪ K̃, K̃ =
⋃

1≤i≤N−0

Wk,i[0, th + L′′ +HO ◦ θth+L′′ ](5.38)

I+
k = I+

k−1 ∪ Ĩ, Ĩ =
( ⋃

1≤i≤N+
k

W+
k,i[0, L

′]
)
∪ Ig

+
k ,L
′
(ω2)(5.39)

(see (5.35) regarding ω2).

Then define

(5.40) Y −k,i = Wk,i(th + L′′ +HO ◦ θth+L′′), 1 ≤ i ≤ N−0 ,

which, in view of (5.38) correspond to the endpoints of the trajectories in Kk.
Before specifying I−k , we first argue that the sets Kk, I+

k obtained in this way have the
required marginal laws prescribed by (5.19) and (5.25). In the case of I+

k , this is a direct
consequence of the fact that, conditionally on Fk as defined above Lemma 5.3, and writing
ω1 =

∑
1≤i≤N+

k
δ(wi,xi,ui) for a realization of ω+

k , the process W+
i (t) has law Pwi(0) for all 1 ≤

i ≤ N+
k . Indeed, since I+

k−1 is Fk-measurable, this implies that, conditionally on I+
k−1, the set⋃

1≤i≤N+
k
W+
i [0, L′] has the same law as Ig

+
k ,L
′
(ω1) and is independent of Ig

+
k ,L
′
(ω2), and thus

that Ĩ in (5.39) has the same law as Ig
+
k ,L
′
(ω+
k ) in view of (5.35). Thus, (5.25) holds for I+

k

defined by (5.19).
The case of Kk is simpler. As (Wi(t))t≥0 has law PY −k−1,i

conditionally on Fk, it readily follows

that Kk given by (5.38) has the same law as (5.25): the set Wi[0, HO ◦ θth+L′′ ] contributing to K̃
plays the same role (in law) as the increment wi[Rk−1(wi), Rk(wi)])(ω

+
0 ), part of (5.25), as can be

seen immediately from (5.38) upon recalling Rk from (5.24) and observing that Wi(0) = Y −k−1,i

and the points Y −k−1,i, 1 ≤ i ≤ N−0 represent the endpoints of trajectories comprising Kk−1 by

45



induction assumption. All in all, this shows that Kk has the same law under Qk as the set in
(5.25).

It remains to define I−k and an event Gk of suitably large probability on which (5.23) holds.
We first define I−k . For 1 ≤ i ≤ N−0 , recall Wk,i from (5.37). By induction assumption we have
analogues W`,i, 1 ≤ ` < k entering the definition of Kk−1. Similarly as in (5.35) let

ω+
0 = (π ◦ ω+

0 )1
{

(w, u) : u ≤ 1
L′ g
−
0 (w(0))

}
where π denotes the projection onto the first and third marginal, and decompose

(5.41) ω+
0 = µ1 + µ2, µ1 = ω+

0 1{(w, u) : τ0(w) <∞}

Thus, cf. (5.26), the point measure µ1 has exactly N−0 elements in its support. Writing µ1 =∑
1≤i≤N−0

δ(wi,ui) for a generic realization, and with

t0 = τ0(wi), t` = th + L′′ + (HO ◦ θth+L′′)(W`,i), 1 ≤ ` < k

it follows with s` =
∑

0≤n<` tn that for all 1 ≤ i ≤ N−0 , the process (W−k,i(t))t≥0 defined as

(5.42) W−k,i(t) =


wi(t), 0 ≤ t < s1,

W`,i(t− s`), s` ≤ t < s`+1, 1 ≤ ` < k

Wk,i(t− sk) sk ≤ t

has the same law conditionally on N−0 as (Xt)t≥0 under Pḡ−0
[ · , τ0 < ∞], where ḡ−0 (·) =

g−0 (·)/Pg−0 [τ0 <∞], with τ0 as in (5.15). Hence, the set

(5.43) I−k
def.
=
( ⋃

1≤i≤N+
0

W−k,i[0, (k + 1)L′′]
)
∪ Ig

−
0 ,(k+1)L′′(µ2)

has the law prescribed by (5.18) in view of (5.27) and (5.41). Finally, let

Gk = Gk−1 ∩G−k ∩G
+
k ∩ {Y

−
k ⊂ Uk},(5.44)

where

G−k = {µ2(ΩR+×W+) = 0},

G+
k =

{
Z− ⊂ Z+, for all 1 ≤ i ≤ N−k : (HO ◦ θL′′)(X−i ) ≤ to

3 ,

for all 1 ≤ i ≤ N+
k : τk(wi) ∨ th(β+

i ) ≤ to
3

}
,

and τk(wi) refer to the τk stopping times attached to trajectories in the support of ω1 as below
(5.36). Each of G±k will separately account for one of the two inclusions in (5.23). We first argue

that Gk−1∩G−k implies I−k ⊂ Kk (the removal of Õ is unnecessary for this inclusion). The event

G−k ensures that Ig
−
0 ,(k+1)L′′(µ2) = ∅ in (5.43). The induction assumption and the occurrence

of Gk−1 imply that I−k−1 ⊂ Kk−1. In view of (5.37), we may thus assume that

(5.45) W−k−1,i[0, kL
′′] ⊂ Kk−1 for each 1 ≤ i ≤ N+

0
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as part of the induction hypothesis. But by construction, s`+1 − s` = t` > L′′ for all 1 ≤ ` ≤ k
hence (5.43) implies that W−k−1,i[0, kL

′′] = W−k,i[0, kL
′′]. Inserting this into (5.45), and then going

back to (5.43) we deduce that the inclusion I−k ⊂ Kk follows at once if we argue that

(5.46) W−k,i[kL
′′ + 1, (k + 1)L′′] ⊂ Kk.

Any contribution to W−k,i[kL
′′ + 1, (k+ 1)L′′] falling onto W`,i for some ` < k in (5.42) is in fact

included in Kk−1, as {W`,i(t− s`) : s` ≤ t < s`+1} appears as part of K̃ on the right-hand side of

(5.38) for k = `. Thus, to deduce (5.46), it suffices to show that Wk,i[0, 0∨ ((k+1)L′′−sk)] ⊂ K̃,
which is automatic as kL′′ ≤ sk by induction assumption and L′′ < tk, whence Wk,i[0, 0 ∨ ((k +
1)L′′ − sk)] ⊂Wk,i[0, tk].

We now show that Gk−1∩G+
k implies the inclusion (Kk∩(Zd \Õ)) ⊂ I+

k , thereby completing
the verification of (5.23). Combining the induction assumption, (5.38) and (5.39), we see that
it is sufficient to argue that

(5.47) (K̃ ∩ (Zd \ Õ)) ⊂
⋃

1≤i≤N+
k

W+
k,i[0, L

′] (
(5.39)
⊂ Ĩ).

By condition on the range of β−i , 1 ≤ i ≤ N−k inherent to the definition of th and due to

(5.37)-(5.38), the set K̃ ∩ (Zd \ Õ) is contained in⋃
1≤i≤N−0

Wk,i[th, th + L′′ +HO ◦ θth+L′′ ] =
⋃

1≤i≤N−0

X−i [0, L′′ +HO ◦ θL′′ ].

On the other hand, the set on the right-hand side of (5.47) contains⋃
1≤i≤N+

k

X+
i [0, (L′ − τk − th)+]

as a subset on account of (5.36). Moreover, on the event {Z− ⊂ Z+} implied byG+
k , by definition

of X±i in (5.34), each of the trajectories X−i , 1 ≤ i ≤ N−0 is equal to one of the trajectories
among X+

i , 1 ≤ i ≤ N+
k . From this, (5.47) follows upon observing that, on the event G+

k ,

L′′+(HO◦θL′′)(X−i ) ≤ L′′+ to
3 for any 1 ≤ i ≤ N−k = N−0 whereas L′−τk−th ≥ L′− 2g

3 = L′′+ to
3

(recall that th = th(β+
i ) ≤ to

3 by definition of G+
k ) for any 1 ≤ i ≤ N+

k .
To complete the proof of the induction step, it remains to argue that the event Gk−1 \ Gk

satisfies the estimate set forth in (5.22). The event {Y −k ⊂ Uk} appearing in (5.44) is readily
seen to have sufficiently high probability upon observing that, on the event Gk−1 and for each
q ≤ i ≤ N+

0 , the starting point Wk,i(0) = Y −k−1,i (cf. (5.37) and recall that β−i (0) = Y −k−1,i by
(5.34)) of Wk,i lies in Uk−1. Since conditionally on Fk−1, Wk,i(·) performs a random walk, it then
readily follows that Yk,i defined by (5.40) lies outside Uk with probability at most e−c(logL)γ ,
cf. (5.21). Overall this yields

Qk[Gk−1\{Y −k ⊂ Uk}] ≤
1
L′Pg−0

[
Rk <∞, XRk−1

∈ Uk−1, XRk /∈ Uk, Rk <∞
]
≤ u|UO|e−c(logL)γ .

The remaining events G±k are handled much like in the k = 0 case, using (1.9), (5.33) and an
estimate akin to (6.13) to deal with the (unlikely) event that th(β+

i ) > to
3 .

It remains to give the proof of Lemma 5.3.
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Proof of Lemma 5.3. Set

(5.48) µk = PkL′′(f)1UO

i.e., µk(x) = Ex[f(XkL′′)]1UO(x) for x ∈ Zd, and similarly

(5.49) µ−k = PkL′′(f1BK )1Uk−1

(5.48)

≤ µk, µ+
k = (1 + ε)µk.

Conditionally on Fk, if Gk−1(∈ Fk) does not occur, we simply sample Z− and Z+ independently
with the right conditional law under q. Henceforth, we assume that Gk−1 occurs. Consider a box
B ∈ O. Referring to Y− = (Y −k−1,i : 1 ≤ i ≤ N+

0 ) and Y+ = (Y +
k,i : 1 ≤ i ≤ N+

k ) as the relevant

collections of starting points (both Fk-measurable), let N±(B) = |{Y ∈ Y± : Y ∈ B}| and let
Y ±i (B), 1 ≤ i ≤ N±(B) be an arbitrary deterministic (when conditioning on Fk) enumeration
of the points of Y± lying in B. By construction, as further detailed below, for B ∩ Uk−1 6= ∅,

under Qk−1, N+(B) is a Poisson variable with parameter λ+(B), where

λ+(B) = 1
LPµ+

k
[XHO ∈ B, HO <∞], and on Gk−1, N−(B) is a.s. equal

to the Poisson variable |{Y ∈ Y− : Y ∈ B ∩ Uk−1}|.
(5.50)

Let λ−(B) denote the mean of the latter random variable. In view of (5.25), (5.27) and recalling
that the points in Y− represent the endpoints of Kk−1, one finds, due to (5.24) and (5.23),
applying the simple Markov property at time kL′′ and reversibility, that

λ−(B) =
1

L′
Pg−0

[Rk−1 <∞, XRk−1
∈ (B∩Uk−1)]

(5.27)
=

1

L
Pf1BK

[Rk−1 <∞, XRk−1
∈ (B∩Uk−1)]

=
1

L

∑
x,y

(f1BK )(x)pkL′′(x, y)1Uk−1
(y)Py[XHO ∈ B, HO <∞]

(5.49)
=

1

L
Pµ−k

[XHO ∈ B, HO <∞].

Let ηB, for B ∈ O with B ∩ Uk−1 6= ∅, denote a family of independent Poisson processes on
[0,∞)× Zd, independent of Fk, with respective intensity measure

νB([0, u]×K) = uPxB [Xth ∈ K], u ≥ 0, K ⊂ Zd,

where xB denotes the center of the box B and th is the homogenization time (5.31). The
processes {ηB : B ∈ O, B ∩ Uk−1 6= ∅} will be used to construct the desired coupling. For a
given realization ηB =

∑
λ δ(uλ,zλ), let

ξ±B,1 = inf
{
t ≥ 0 : ∃λ s.t. tPY ±1 (B)[Xth = zλ] ≥ uλ

}
,

and, referring to (u±1 , z
±
1 ) as the unique (see [28], Prop. 4.1(i)) point achieving the infimum

above, define recursively for 2 ≤ n ≤ N±(B),

ξ±B,n = inf
{
t ≥ 0 : ∃(uλ, zλ) /∈ (u±k , z

±
k )1≤k<n s.t. G±B,n−1(zλ) + tPY ±n (B)[Xth = zλ] ≥ uλ

}
,

where

(5.51) G±B,n(z) =
∑

1≤k≤n
ξ±B,kPY ±k (B)[Xth = z], 1 ≤ n ≤ N±(B).
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Then, on account of [28], Prop. 4.3 (see in particular (4.12)), conditionally on Fk, for each B and
1 ≤ n ≤ N±(B) the random variable z±n ≡ z±n (B) above has law µY ±n (B). Hence the collection

Z±
def.
= {z±n (B) : 1 ≤ n ≤ N±(B), B ∈ O, B ∩ Uk−1 6= ∅} satisfies (5.32). Moreover, due to [28],

Cor. 4.4, on Gk−1, the inclusion in (5.33) holds unless the event

(5.52)
{
G−B(z) > G+

B(z) for some z ∈ Zd and B ∩ Uk−1 6= ∅
}

occurs, where G±B(z) is short for G±
B,N±(B)

(z); the restriction to B intersecting Uk−1 rather than

B ∈ O in (5.52) is owed to the fact that, on the event Gk−1, one has Y −i (B) = Y −k−1,i(B) ∈ Uk−1

for all i due to (5.23), which implies that B ∩ Uk−1 6= ∅. Thus, the proof is complete once
we argue that the intersection of Gk−1 and the event in (5.52) have probability bounded by
e−cε

2MO , yielding (5.33). In view of (5.51) and the definition of Õ, and owing to (2.23), for any
B, n and σ ∈ {±},

(5.53)

∣∣∣∣ GσB,n(z)

PxB [Xth = z]
∑n

k=1 ξ
σ
B,k

− 1

∣∣∣∣ ≤ C`−1/100
O (≤ ε

100),

where the bound in parenthesis follows by imposing a suitable assumption on `O, as appearing
below (5.33). As we now explain, from (5.51)-(5.53), one sees that the event in (5.52) is included
in the union E =

⋃
B E1∪E2∪E3∪E4, where B ranges over all boxes in O satisfying B∩Uk−1 6= ∅

and with Ei = Ei(B) given by

E1 = {N+(B) < (1− ε
100)λ+(B)},

E2 = {N−(B) > (1 + ε
100)(1 + ε)−1λ+(B)},

E3 =
{∑

1≤k≤b(1− ε
100

)λ+(B)c ξ
+
B,k < (1− ε

50)λ+(B)
}
,

E4 =
{∑

1≤k≤d(1+ ε
100

)(1+ε)−1λ+(B)e ξ
−
B,k > (1 + ε

50)(1 + ε)−1λ+(B)
}

;

indeed, whenever the complements of E1 and E3 jointly occur, one obtains for any z ∈ B that

G+
B(z)

PxB [Xth = z]
≥ (1− C`−1/100

O )
∑

1≤k≤b(1− ε
100

)λ+(B)c

ξ+
B,k > (1− ε

50)λ+(B).

A corresponding upper bound for
G−B(z)

PxB [Xth=z] holds uniformly in z ∈ B on the complement of

E2 ∪ E4 yielding overall that the bound

sup
z,B

G−B(z)

G+
B(z)

≤
1 + ε

50

1− ε
50

· (1 + ε)−1 ≤ 1 : on the event Ec.

Thus, (5.33) follows at once if Qk[E] is bounded by the exponential term on the right-hand
side of (5.33), which follows readily using standard large deviation bounds for Poisson and
exponential random variables in combination with the following two facts. First, one observes

that λ−(B)
λ+(B)

≤ (1 + ε)−1, as follows plainly from (5.49) and (5.50). In particular this implies that

E2 and E4 are indeed deviant events. Second, one uses that

(5.54) λ+(B) ≥MO,

which we explain momentarily. The ensuing large-deviation estimates imply that P[Ei] ≤
e−cε

2λ+(B) for all 1 ≤ i ≤ 4. In particular, in the case of E2 for instance, one observes
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that P[E2] ≤ P[N−(B) > λ−(B) + ε
100(1 + ε)−1λ+(B)] and applies the standard estimate

P[X ≥ λ+ x] ≤ exp{− x2

2(λ+x)} valid for a Poisson variable X with mean λ and all x > 0.

To see (5.54), one first recalls λ+(B) from (5.50) with µ+
k as in (5.49) and applies the density

condition (1.10), observing that µ+
k ≥ µ with µ as given by (1.11). The latter follows because

µ+
k ≥ µk, see (5.48), and for every x ∈ UO, one has that Ex[f(XkL′′)] ≥ α−1 for L ≥ C(γ) and

0 ≤ k ≤ kL using that Px[Xt ∈ BK+L] ≥ c for all x ∈ UO and 0 ≤ t ≤ L and the assumption
that f ≥ (logL)−γ on BK+L.

6 Good obstacle sets

We now construct examples of good obstacle sets O. Recall from Definition 1.2 that O ⊂ BK+2L

for given positive integers K,L is (δO,MO)-good if the random walk satisfies the visibility and
density conditions (1.9)-(1.10). Proposition 6.1 below, which formalizes and extends (1.17),
yields a large class of such sets that will cover all applications we have in mind. In particular,
as will be seen in the proof of Theorem 1.5, presented at the end of this section, this includes
relevant situations where the obstacle set is disordered.

Throughout this section, let B ∈ {B(x,N) : x ∈ Zd, N ≥ 0} ∪ {∅} (in the latter case we set
∂B = ∅) and K ≥ 0, L ≥ 1 be integers. For a length scale L̃ ≥ 1 recall that L̃ = 3L̃Zd∩BK+3L/2

(see above (1.16)) and from (1.16) that C̃, the set of cells, consists of all sets of the form
C̃ = B(z, L̃) such that z ∈ L̃ and B(z, 2L̃) ∩ ∂B = ∅.

Proposition 6.1 (L ≥ 1,K ≥ 0, γ > 10). If (logL)100γ ≤ ` = `O ≤ L
1
3d (as in (1.14)) and

L̃ = b(αL`(d−2)/2)
1
d c (as in (1.15)), for each choice {y

C̃
∈ C̃ : C̃ ∈ C̃}, the set

(6.1) O =
⋃
C̃∈C̃

B(y
C̃
, `) (⊂ BK+2L)

is a (e−c(logL)γ , c`(d−2)/2)-good obstacle set whenever L ≥ L0(γ, d).

The bulk of this section is devoted to proving Proposition 6.1. To ease notations, we will
routinely assume that L is large enough in a manner possibly depending on γ (and d) as might
be required for various bounds to hold. We first isolate the following estimate, which is key. It
exhibits a ‘mean free path’ for the random walk among the (obstacle) set O in (6.1). In the
sequel we set BO = {B(y

C̃
, `) : C̃ ∈ C̃} so that (6.1) is of the form (1.8).

Lemma 6.2. Under the assumptions of Proposition 6.1, there exists λ such that, defining

(6.2) tO = tO(λ) = λ`2
(
L̃
`

)d
,

the following holds. For all B ∈ BO, all x ∈ Zd such that both d(x,O) ≥ 1
10 L̃ and 1

2

√
tO ≤

d(x,B) ≤
√
tO hold, and all y ∈ Zd such that d(y,O) ≥ 1

10 L̃ and d(y,B) ≤ 10L̃, one has

(6.3) gO(x, y) ≥ c2g(x, y),

where gO denotes the Green’s function killed upon entering O (cf. (2.4)).

Remark 6.3. It is worth highlighting that L̃�
√
tO by our choice of scales in Proposition 6.1, so√

tO gives a (large) scale for which, despite their presence, the effect of the obstacles comprising
O is not too strongly felt, as indicated by (6.3).
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Proof. For all B ∈ BO and a parameter M ≥ 1 to be chosen momentarily, introduce the set
V = VB = {z ∈ Zd : d(z,B) ≤M

√
tO}. Using the strong Markov property at time HO, one sees

that for all x, y ∈ Zd,

(6.4) gO(x, y) = g(x, y)− Ex
[
g(XHO , y)1{HO <∞}

]
.

Applying the bound (2.5) repeatedly and choosing M ≥ 1 large enough (depending only on d)
yields that for all y satisfying d(y,B) ≤ 10L̃ and x such that d(x,B) ≤

√
tO,

(6.5) Ex
[
g(XHO , y)1{HO <∞, XHO /∈ V }

]
≤ sup

z∈Zd\V
g(z, y) ≤ C

Md−2

1

(tO ∨ 1)
d−2

2

≤ C ′

Md−2
g(x, y) ≤ 1

3
g(x, y),

where in the second bound we use that L̃/
√
tO → 0 as L→∞ (see Remark 6.3 above) while the

last bound requires M to be sufficiently large, which is henceforth fixed. In what follows, let yO
range over all centers of balls B(yO, `) ≡ ByO in the obstacle set O having non-empty intersection
with V . For a set U we also introduce the handy notation g(z, U) = supw∈U g(z, w) = g(U, z).
It follows that for all x, y ∈ Zd,

(6.6) Ex
[
g(XHO , y)1{HO <∞, XHO ∈ V }

]
≤
∑
yO

∑
z

Px
[
HByO

<∞, XHByO
= z
]
g(z, y)

(2.8),(2.11)

≤ C`d−2
∑
yO

g(x,ByO)g(ByO , y).

The next estimate is key in handling (6.6). For all z ∈ Zd satisfying d(z,O) ≥ L̃
10 and with the

sum ranging over all centers yO of balls in O satisfying the given constraint below (recall that
M is fixed), one finds that for all λ > 0,

(6.7)
∑

|yO−z|≤3M
√
tO

g(z,ByO)
(1.16)

≤ C
∑

1≤k≤C′
√
tO
L̃

kd−1

(L̃k)d−2
≤ CtO

L̃d

(6.2)

≤ Cλ`2−d;

here, in obtaining the first estimate, we crucially used the fact that, by construction of O, in
each annulus B(z, c(k + 1)L̃) \ B(z, ckL̃) with c = 20−1, there are at most Ckd−1 obstacles
ByO , each contributing an amount g(z,ByO) ≤ C ′(kL̃)2−d, and that d(z,O) ≥ 1

10 L̃, whence the
sum over k starts at k = 1. Returning to (6.6), one then considers separately the contributions

to the sum according to whether i) d(ByO , y) >
√
tO

10 , or ii) d(ByO , y) ≤
√
tO

10 . Recall that the
centers yO appearing in (6.6) all have the property that ByO ∩ V 6= ∅. From here on we tacitly
assume that x, y in (6.6) satisfy all assumptions above (6.3). In case i), using the fact that

g(ByO , y) ≤ Ct
−(d−2)/2
O ≤ C ′g(x, y), one applies (6.7) with z = x to control the resulting sum

over g(x,ByO). In case ii), one uses instead that d(x,ByO) ≥ c
√
tO (which follows because

|x − y| ≥ 1
5

√
tO when L ≥ C), whence g(x,ByO) ≤ Cg(x, y) and one applies (6.7) with z = y

instead, yielding overall that

(6.8) Ex
[
g(XHO , y)1{HO <∞, XHO ∈ V }

]
≤ Cλg(x, y),

for all λ > 0 and x, y as above (6.3). Choosing λ small enough so the last expression in (6.8) is
at most 1

3g(x, y) and inserting the resulting estimate along with (6.5) into (6.4) yields (6.3).
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With Lemma 6.2 at our disposal, we supply the proof of Proposition 6.1.

Proof of Proposition 6.1. We need to verify the two conditions (1.9) and (1.10) with

(6.9) δO = e−c(logL)γ and MO = c`(d−2)/2.

We first show (1.9). Recalling L̃ from (6.15), let

(6.10) T̃ = L̃2(logL)γ .

With n0 = bto/3T̃ c and to as in (5.1), applying the Markov property successively at times nT̃ ,
1 ≤ n ≤ n0, one obtains for all x ∈ BK+L, with R = K + L+

√
to(logL)γ , that

Px[HO >
to
3 ] ≤ Px

[
X

[(n−1)T̃ ,nT̃ ]
∩ O = ∅, 1 ≤ n ≤ n0,

to
3 < TBR

]
+ Px

[
TBR ≤ to

3

]
≤ sup

y∈BR
Py[HO > T̃ ]n0 +

∑
0≤n≤ to

3

P0

[
|Xn| >

√
to(logL)γ

]
.(6.11)

Recalling to from (5.1) and applying a standard upper bound on the heat kernel, one finds that
the last term in the second line of (6.11) is bounded by e−c(logL)γ , which is affordable with a
view towards showing (1.9) with δO as in (6.9). To bound Py[HO > T̃ ] uniformly in y ∈ BR,
one observes that, by construction of O, see (6.1) and (1.16), for any such y, there exists a box
B = B(yC̃ , `) ∈ BO with the property that

(6.12) d(y,B) ≤ C5L̃

in particular, one notes to this effect that the proximity of a box B asserted in (6.12) is not
spoiled by the removal of the boxes near the boundary of B(x,N) which is happening in (1.16).
Let U = B(y, 2C5L̃) and TU denote the exit time from U . Classically Ey[TU ] ≤ CL̃2 and by a
Khas’minskii-type argument, see e.g. [32, (2.22) and (2.24)] in this setup, one has that

(6.13) Py[TU ≥ T̃ ] ≤ exp
{
− T̃

2Ey [TU ]

} (6.10)

≤ e−c(logL)γ .

On the other hand,

(6.14) Py[HO > TU ]
(6.12)

≤ Py[HB > TU ] = 1−
∑
z∈B

gU (y, z)eB,U (z) ≤ 1− c
(
`/L̃

)d−2
,

where the last inequality follows by using that for all y, z ∈ B(y, C5L̃) ⊂ U , one has gU (y, z) ≥
cg(y, z) and similarly capU (B) =

∫
deB,U ≥ c`d−2. Since Py[HO > T̃ ] is bounded by the sum of

the two probabilities on the left of (6.13) and (6.14), feeding the bounds into (6.11) yields that
Px[HO >

to
3 ] is bounded up to a term of order e−c(logL)γ by

(
1− c

(
`/L̃

)d−2)n0 ≤ e−c
′n0( `

L̃
)d−2

≤ e−c
′`d−2 L

L̃d(logL)21γ ≤ exp
{
− c′ `d−2

MO(logL)11γ

}
,

where we used that n0 ≥ cL[(logL)11γL̃2]−1 and substituted L̃ as chosen in the statement of
Proposition 6.1; see also (1.11) regarding α. But the last term in the previous display is bounded
by exp{−`c′} on account of (6.9) and the fact that ` ≥ (logL)100γ , and (1.9) follows.
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It remains to argue that (1.10) holds (with MO as in (6.9)) in order to complete the proof.
In the sequel it is always tacitly assumed that B = B(yB, `) ∈ BO satisfies B ∩ UO 6= ∅. All
subsequent estimates are uniform in B unless explicitly said otherwise. For such B(= B(yB, `)),
define the sets (depending on B, with B(K, r) =

⋃
x∈K B(x, r) for K ⊂ Zd)

U = B
(
yB,

L̃
10

)
,

A =
(
Zd \B(O, L̃10)

)
∩
{
z :
√
tO ≤ d(z,B) ≤ 2

√
tO
}
∩ UO

(6.15)

with tO as in (6.2) and λ inherent to the definition of tO fixed in such a way that the conclusions
of Lemma 6.2 hold. Let

(6.16) hB(x) = Px[XHO ∈ B, HO <∞], x ∈ Zd.

By construction, see (6.1) and the discussion leading up to it, U ∩O = B and Zd \ (O ∪U) is a
connected set. Hence, for x ∈ Zd \ U , by a last-exit type decomposition on ∂U , one gets that

hB(x) =
∑
z∈∂U

∑
n≥0

Px
[
X1 /∈ O, . . . , Xn−1 /∈ O, Xn = z, {HB < H̃∂U} ◦ θn

]
=
∑
z∈∂U

gO(x, z)Pz[HB < H̃∂U ].
(6.17)

To produce a meaningful lower bound on the second line of (6.17), first note that, applying [22,
Proposition 1.5.10], one has uniformly in z ∈ ∂U ,

(6.18) Pz[HB < H̃∂U ] ≥ c cap(B)|∂U |−1.

Feeding (6.18) into (6.17), and noting that Lemma 6.2, which yields a lower bound on the killed
Green’s function gO(x, z) appearing in the second line of (6.17), is in force whenever x ∈ A,
cf. (6.15), it follows that

(6.19)

∫
hBdµ

(1.11)

≥ α−1
∑
x∈A

∑
z∈∂U

gO(x, z)Pz[HB < H̃∂U ]
(6.3),(6.18)

≥ c α−1cap(B)×

inf
z

∑
x∈A

g(x, z)
(∗)
≥ c′α−1`d−2

∑
√
tO≤k≤2

√
tO

k = cα−1`d−2tO
(6.2)
= cα−1L̃d

(1.15),(6.9)

≥ MOL;

in deducing the lower bound (∗) in the previous chain of estimates, we have also crucially used
that when summing over A, the distribution of the obstacles, manifest through the condition

that x /∈ B(O, L̃10) present in (6.15), is sufficiently sparse to make this sum comparable to one
over the full annulus

√
tO ≤ k = d(x,B) ≤ 2

√
tO. The bound (6.19) is precisely (1.10).

We conclude this section by presenting the proof of Theorem 1.5, which will follow by combin-
ing Theorem 1.3 and Proposition 6.1 for a well-chosen (random) obstacle set O = O(ω) governed
by the probability P, which allows to couple the boundary clusters appearing in (1.21).

Proof of Theorem 1.5. Recall the event D from (1.20) defined under P. For definiteness, we
set Qω to be an independent coupling of I1 and I2 (or any coupling for that matter) whenever
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ω /∈ D . From here onwards, we always assume that D occurs. Since this entails that Disc(C̃) is
non-empty for any C̃ ∈ C̃, we can pick in view of (1.19) a point y

C̃
∈ C̃ such that

(6.20) Disc(y
C̃

) occurs for each C̃ ∈ C̃.

For any choice of ` = `O satisfying (1.14), the collection {y
C̃

: C̃ ∈ C̃} thereby obtained defines
an obstacle set O = O(ω) by (6.1), which is (δO,MO)-good with δO,MO as in (6.9) by virtue of
Proposition 6.1. In particular, Theorem 1.3 applies with this choice of obstacle set and yields
a coupling Q = Qω satisfying (1.13). In view of the values for δO,MO given by (6.9) and using
one of the assumptions on ε inherent to Theorem 1.5 (the other one is needed for Theorem 1.3
to apply), one readily sees that the error term appearing on the right-hand side of (1.13) can
be replaced by that of (1.21).

To finish the proof, it thus remains to argue that the specific choice of obstacle set O = O(ω)
above implies that the inclusion (I1 \ Õ) ⊂ (I2 \ Õ) in (1.13) can be lifted to boundary clusters.
More precisely, since the previous inclusion is preserved by taking a union with I(ω) on either
side, it is sufficient to argue that P[·,D ]-a.s., under Qω,

(6.21)
{

(J1 \ Õ(ω)) ⊂ (J2 \ Õ(ω))
}
⊂
{
C ∂
B

(
V(J1)

)
⊃ C ∂

B

(
V(J2)

)}
,

where Ji = Ii ∪ I(ω), i = 1, 2, with I1, I2 having the laws specified in (1.13) and (coupled
through Qω). If it weren’t for the removal of the set Õ from the region of inclusion on the left of
(6.21), the asserted inclusion would be trivial. Thus, to deduce (6.21), it suffices to argue that

(6.22) C ∂
B

(
V(Ji)

)
∩ Õ(ω) = ∅, i = 1, 2;

for, recalling that C ∂
B

(
V(Ji)

)
refers to the connected component of ∂B in V(Ji)∩B, the inclusion

(J1 ∩B) ⊂ (J2 ∩B) implies in particular C ∂
B

(
V(J2)

)
⊂ C ∂

B

(
V(J1)

)
, and (6.22) ensures that the

latter inclusion remains unaffected when altering the configuration of J1 or J2 inside Õ = Õ(ω).
We proceed to show (6.22). By (6.1) and (1.12), the enlarged obstacle set Õ consists of boxes

B̃′ of the form B̃′ = B(yC̃ ,
˜̀), where yC̃ satisfies (6.20). Fix such a box B̃′. By construction of

Õ and since V(Ji) ⊂ V(I(ω)) ≡ V, it suffices to show that

(6.23) C ∂
B(V) ∩ B̃′ = ∅, i = 1, 2;

cf. Fig. 2. Let CB(V) denote the cluster of ∂B (in Zd) for V, of which C ∂
B(V) is a part. That

is, CB(V) is the union of all clusters (i.e. maximal connected components) in V intersecting ∂B.
Now, omitting subscripts ‘O,’ if B̃′ = B(yC̃ ,

˜̀), for some C̃ = B(z, L̃) ∈ C̃, is the box in question

in (6.23), then B(yC̃ ,
¯̀) ⊂ B(z, 2L̃) as ¯̀≤ L̃ by assumption. But by definition of C̃, the last

inclusion implies that

(6.24) B(yC̃ ,
¯̀) ∩ ∂B (1.16)

= ∅.

Moreover, owing to (6.20) one has that B̃′ = B(yC̃ ,
˜̀) is not connected to B(yC̃ ,

¯̀) in V. Together

with (6.24), this implies that B̃ is not part of CB(V) and (6.23) follows since C ∂
B(V) ⊂ CB(V).

Remark 6.4. By inspection of the above proof, one finds that C ∂
B in (1.21) can be replaced by C ∂

S

for any S ∈ {B′ a box : B′ = B or B′ ⊃ BK+2L}. Indeed the proof (in particular, the coupling)
remains unchanged, one simply observes that the arguments used to deduce (6.21) continue to
hold with C ∂

S in place of C ∂
B. In particular, (6.24) holds more generally in that B(yC̃ ,

¯̀)∩∂S = ∅
for any S as above. For an example where this flexibility in the choice of S is used, see [19].
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B

I

¯̀O

˜̀O

Figure 2 – ‘Shielding’ an obstacle B (orange) by enforcing its disconnection in the
environment configuration I (blue). Any vacant cluster in the configuration obtained
as the union of Ii (green) with I that intersects the complement of the large box of

radius ¯̀O does not ‘see’ B̃.

7 Coupling between Vu,L and Vu

This section is devoted to proving Theorem 1.6, which will follow readily by iterating its ‘one-
step’ version, Proposition 7.1 below, over dyadic scales and concatenating the ensuing ‘one-step’
couplings. The proof of Proposition 7.1, which relates Vu,L and Vu,2L appears in §7.1 and
combines Theorems 1.1 (actually, its enhanced version, Theorem 4.1) and Theorem 1.5 (but
see next paragraph), applied multiple times and for a well-chosen environment configuration
I = I(ω), as delineated below Theorem 1.6.

As it turns out, all relevant environment configurations are of the form I law
= Iρ with ρ as in

(3.1), i.e. they are in fact ρ-interlacements as introduced in Section 3.1 for suitable choices of ρ.
In light of this, we derive in Theorem 7.4 a refinement of Theorem 1.5 specific to this type of
environment (i.e. with P = Pρ, cf. below (3.3)), which includes a very practical (i.e. verifiable)
condition (Cobst), see Definition 7.3 below, expressed solely in terms of ρ, which effectively allows
to control the term P[D ] appearing in (1.22). Together with Theorem 4.1, Theorem 7.4 drives
the proof of Proposition 7.1. The proof of Theorem 7.4 is given at the end of §7.1. A key input is
the control on Pρ[D ] implied by the condition (Cobst), stated in Proposition 7.8, which is proved
separately in §7.2.

The main task of this section is to derive the following ‘one-step’ version of Theorem 1.6,
which is quantitative, see Remark 7.2 below.

Proposition 7.1. For any γ > 10, u ∈ (0,∞) and dyadic integer L ≥ 1, if

(7.1) P[B(logL)200γ

Vu
6←→ ∂BL1/10d ] ≥ L−

1
10 ,
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then for all v ≥ u(1 + (logL)−3), there exists a coupling Q of I1, I+
2 , I−2 satisfying

Q
[
C ∂
BR

(V(I+
2 )) ⊂ C ∂

BR
(V(I1)) ⊂ C ∂

BR
(V(I−2 ))

]
≥ 1− C6(R+ L)de−c(logL)γ ,(7.2)

for all R ≥ 1, where C6 = C6(γ, u), I1
law
= Iv,2L, I±2

law
= IvL±, L and vL± = v(1± (logL)−4).

Remark 7.2. In comparison with Theorem 1.6, the scale ` at which disconnection is used (cf. (7.1)
and (1.23)) in Proposition 7.1 is quantitative (in L). By means of Proposition 3.3 one could
further replace Vu by Vu,L in (7.1).

Assuming Proposition 7.1 to hold, we first complete the proof of Theorem 1.6.

Proof of Theorem 1.6. In view of (1.23), we see that (7.1) is in force for any L ≥ C(γ, u), upon
choosing c, c′ ∈ (0, 1

200) in the definition of D(`) and (1.23) suitably small. We may further
assume with Ln = 2nL when L ≥ C(γ, u), that

∑
n(logLn)−k−1 ≤ (logL)−k for k = 2, 3 and

that
∑

n(R + Ln)d ≤ C(R + L)d, for all R ≥ 0. It then follows by applying Proposition 7.1
with L = Ln and combining with a straightforward induction argument involving Lemma 2.4
to concatenate the resulting couplings that for all n ≥ 0, L ≥ C(γ, u) and v ≥ u(1 + (logL)−2),

there exists a coupling Qn of I1
law
= Iv,Ln , I+

2
law
= Iv+, L and I−2

law
= Iv−, L such that

Q[C ∂
BR

(V(I+
2 )) ⊂ C ∂

BR
(V(I1)) ⊂ C ∂

BR
(V(I−2 ))] ≥ 1− C(R+ L)de−c(logL)γ .(7.3)

From (7.3), (1.24) follows immediately upon choosing n large enough in a manner depending on
R,L, γ and v and applying Propositions 3.3 and 3.4 with ρ = ρv,Ln (see below (3.40)).

7.1. Coupling between Vu,L and Vu,2L. We proceed to prove Proposition 7.1. In order to
show the inclusion (7.2), we will soon apply Theorem 1.5 to environment configurations I = Iρ
attached to certain ρ-interlacement sets, as introduced in (3.3), with ρ guaranteeing a very high
probability of the event D in (1.22). The next result, Theorem 7.4, is key to this. It hinges
on the following definition. To provide some intuition, a simple (but for our later purposes
insufficient) example of admissible profile ρ to keep in mind for the next definition is that of
uniform trajectories of length L̂ = L (i.e. ρ(`, x) = ρu,L(`, x) = u

L1L(`), x ∈ Zd, cf. (3.40)).
Recall the average occupation time density ¯̀

x = ¯̀ρ
x from (3.11).

Definition 7.3. The function ρ : N∗ × Zd → R+ is said to satisfy (Cobst) (with parameters
(u′, u, γ, L,K)) if for some dyadic integer L̂ ∈ [L8 , 8L], the following conditions are satisfied:

¯̀ρ
x ∈ [u′, u] and ρ(N∗, x) ≤ 4du

L̂
for all x ∈ BK+5(L∨L̂);(7.4)

ρ(`, ·) = ρ(`, ·)1`∈{L̂,L̂/2},
L̂
8dρ( L̂2 , ·) =

(1+PL̂/2
2

)
f1 and L̂

4dρ(L̂, ·) = f2, where

f1, f2 : Zd → [0,∞) satisfy u ≥ f1 + f2 ≥ (logL)−γ for all x ∈ BK+5(L∨L̂).
(7.5)

With this we have the following result. Recall the canonical law Pρ of the Poisson process of
ρ-interlacements introduced above (3.4), defined on the canonical space denoted (Ωρ,Aρ) below.

Theorem 7.4 (γ > 10, (1.5), l = L
L′ ). For all u ∈ (0,∞), integer K,N ≥ 0, B = B(x,N) for

x ∈ Zd, and f : Zd → [0, u] as in Theorem 1.3, the following holds. If ρ satisfies (Cobst) with
parameters (u′, u, γ, L,K), for some u′ < u and (7.1) holds with u′(1− (logL)−4) in place of u,
there exists for each ω ∈ Ωρ a coupling Qω of I1, I2 such that

(7.6) I1
law
= If1BK ,L, I2

law
= I(1+ε)PL

′
L (f),L′ , with ε = l−

1
2 ,
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and for all L ≥ C(u′, u, γ), with η = 1− C(u ∨ 1)(K + L)de−cl
1/4

, one has

(7.7) Pρ
[
ω ∈ Ωρ : Qω

[
C ∂
B

(
V(I1 ∪ Iρ(ω))

)
⊃ C ∂

B

(
V(I2 ∪ Iρ(ω))

)]
≥ η

]
≥ η.

Remark 7.5. 1) When combined, Theorems 4.1 and 7.4 are very useful in practice. The proof
of Proposition 7.1 below is a testimony to this. For further applications, we refer the reader
to the proofs of [19, Proposition 4.3] and [19, Lemma 7.2]. In particular, as will be seen
shortly, cf. the proof of Lemma 7.7, the set of conditions forming (Cobst) are relatively
straightforward to verify in practice, even in cases where ρ itself is rather involved.

2) (Range of L̂). The reason we require the scale L̂ in Definition 7.3 to be dyadic is technical,
and has to do with iterated applications of Theorem 4.1 (see the proof of Proposition 7.8
below), which are facilitated if the ‘starting’ scale L̂ is an integer power of 2. Moreover,
by inspecting the proof of Theorem 7.4, one sees that the condition on L̂ can be relaxed
to the requirement that L̂ ∈ [L8 , 8L] be of the form L̂ = L̂1 − L̂2, where L̂1, L̂2 are dyadic

integers such that L̂2 ≥ 8L(log L
8 )−4γ . This slight extension of the range of L̂ allowing for

differences of dyadics is convenient at times, see Section 7 in [19] for instance.

Assuming Theorem 7.4 to which we will return later, we can now give the proof of Proposi-
tion 7.1. The following consequence of Theorem 7.4 will be enough for this purpose.

Corollary 7.6 (Annealed coupling). Under the assumptions of Theorem 7.4, there exists a cou-
pling Q of I1, I2, Iρ with marginals specified by (7.6) and (3.3), such that Iρ, I1 are independent,
Iρ, I2 are independent, and for L ≥ C(u′, u, γ):

(7.8) Q
[
C ∂
B

(
V(I1 ∪ Iρ)

)
⊃ C ∂

B

(
V(I2 ∪ Iρ)

)]
≥ 1− C ′(u ∨ 1)(K + L)de−cl

1/4
.

Proof. This follows immediately upon defining

Q
[
f1(I1)f2(I2)f3(Iρ)

]
=

∫
dPρ(ω)f3(Iρ(ω))EQω[f1(I1)f2(I2)

]
,

for bounded measurable functions fi : {0, 1}Zd → R, 1 ≤ i ≤ 3, with Qω as provided by
Theorem 7.4, and interpreting the right-hand side of (7.8) as 1− 2(1− η) with η as in (7.7).

Proof of Proposition 7.1. We will only show the existence of a coupling exhibiting the second
inclusion in (7.2) as the proof for the other inclusion is similar and the final result follows via
chaining (using Lemma 2.4). We will tacitly assume that L ≥ C(u, γ), and that the measure P
carries two independent Poisson point processes ω1 and ω2 on W+×R+ each having intensity ν
as in (1.2). To avoid clutter of notations, we will abbreviate v− = vL− below.

In the course of the proof, we will define a succession of configurations {Ia; 0 ≤ a ≤ A}
interpolating (in law) between Iv−,L and Iv,2L, where Ia+1 is obtained from Ia by replacing a
small fraction of the L-trajectories with 2L-trajectories; see (7.11) below. For each 0 ≤ a < A,
we will then provide a coupling Qa between the laws of Ia and Ia+1 by combined application
of Theorems 4.1 and 7.4. We will arrive at the desired coupling Q by concatenating the Qa’s.

We now introduce the relevant intermediate configurations (in law). Let δ1 = (logL)−4 and

A
def.
= dδ−1

1 e so that 1
A ≤ δ1. For any integer a satisfying 0 ≤ a ≤ A, let

(7.9) ga(·) =
(
1− a

A

) (
1+PL

2

)
1BR+2L

(·), ha(·) = 1BcR+2L
(·) + a

A

(
1BR+2L

(·) + δ11BR+6L
(·)
)
,
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with PL as in (2.1). Clearly g0 = (1+PL
2 )1BR+2L

, gA = 0 and similarly for ha. Moreover, since
Pn has range n, we get g0

|BR+L
= 1. Therefore introducing under P the configurations

Ia(ω1, ω2)
def.
= I v−ga,L(ω1) ∪ I v−ha,2L(ω2),(7.10)

for 0 ≤ a ≤ A, we note that I0 ∩BR = Iv−,L(ω1)∩BR and IA ⊂ Iv,2L(ω2). For any 0 ≤ a < A,
one extracts from both Ia and Ia+1 a joint ‘bulk’ contribution Ia,1 by decomposing

Ia = Ia,1 ∪ Ia,2, Ia+1 = Ia,1 ∪ Ia,3,(7.11)

where (under P)

Ia,1 def.
= I v−ga+1,L(ω1) ∪ I v−ha,2L(ω2),

Ia,2 def.
= I [v−ga+1, v−ga],L(ω1),

Ia,3 def.
= I [v−ha, v−ha+1],2L(ω2).

(7.12)

The bulk contribution Ia,1 is further split as

(7.13) Ia,1 = Ia,1,1 ∪ Ia,1,2,

where, with U = BR+15L and using that ga+1
|Uc = 0 and ha|Uc = 1Uc ,

Ia,1,1 def.
= I v− g

a+1
|U , L

(ω1) ∪ I v−h
a
|U , 2L(ω2), and

Ia,1,2 def.
= I v−1Uc , 2L(ω2).

(7.14)

By construction, the random sets Ia,1,1, Ia,1,2, Ia,2 and Ia,3 are independent under P.
The set Ia,1,1 is going to play the role of ‘environment’ configuration Iρ appearing in the

context of Theorem 7.4. Clearly, in view of (3.3), the set Ia,1,1 has the same law (under P) as
Iρ (under Pρ), where ρ : N∗ × Zd → R+ is given by

(7.15) ρ(`, x) = 4dv−
L

(
1L(`)ga+1(x) + 1

212L(`)ha(x)
)
1U (x).

Recall the obstacle condition (Cobst) from Definition 7.3. In what follows, ρ is said to satisfy
(Cobst)(x) for some x ∈ Zd if ρ0 given by ρ0(`, y) = ρ(`, x+ y) for all ` ∈ N∗ and y ∈ Zd satisfies
(Cobst). We first isolate the following result.

Lemma 7.7. For all > 0, γ > 1 and L ≥ C(γ), the density ρ in (7.15) satisfies (Cobst) with
parameters (v(1− 3(logL)−4), 4v, γ, L,K = R+ 3L).

Proof of Lemma 7.7. Verifying (Cobst) amounts to checking conditions (7.4) and (7.5) inside the
box BK+5(L∨L̂). We choose L̂ = 2L. Since K = R + 3L we thus need (7.4)-(7.5) to hold in

BR+3L+5×2L = BR+13L
def.
= B̂. By (3.11), ¯̀ρ

x only depends on ρ(k, y) if |y − x| < k and the
relevant values of k are L and 2L, so we can drop the indicator function 1U in (7.15) when
dealing with the quantities ¯̀ρ

x and ρ(`, x) for x ∈ B̂, as for the verification of (7.4)-(7.5) with
the above choices.

We first verify condition (7.5) for ρ as in (7.15). It follows directly from the definition of
ga, ha, see (7.9), that ρ satisfies (7.5) with L̂ = 2L: indeed, 2Lρ(2L, x) = 4d f2 and Lρ(L, x) =
4d (1+PL

2 )f1 with f1 + f2 ∈
[
v−(1− 1

A), v−(1 + δ1)
]

for all x ∈ B̂.
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We now verify (7.4). The previous paragraph further yields that ρ(N∗, x) ≤ 4d4v
L̂

with

L̂ = 2L for all L ≥ C. We proceed to check the required lower bound on ¯̀ρ
x. For convenience, we

use the notation ¯̀
x(ρ) = ¯̀ρ

x in the sequel. Let ρ̃ ≤ ρ be obtained by replacing ha in (7.15) by fa,

defined similarly as ha but with the function f
def.
= 1BR+2L

playing the role of 1BR+2L
+ δ11BR+6L

.
By monotonicity and linearity of ρ 7→ ¯̀·(ρ) (see (3.11)) and by definition of ga+1 and fa (see
(7.9)), it follows that for all x ∈ B̂,

¯̀
x(ρ) ≥ ¯̀

x(ρ̃) = ¯̀
x

(
4d v−2L12L(·) fa(·)

)
+ ¯̀

x

(
4d v−L 1L(·) ga+1(·)

)
= ¯̀

x(ρ̃out) + a
A

¯̀
x(ρ̃f ) +

(
1− a+1

A

)
¯̀
x(ρ̃g),

where ρ̃out = 4d v−2L12L(`)1BcR+2L
, ρ̃f (x, `) = 4d v−2L12L(`)1BR+2L

and ρ̃g(x, `) = 4dv−L 1L(`)g0(x)
(recall (7.9)). We will momentarily show that

(7.16) ¯̀
x(ρ̃g) = ¯̀

x(ρ̃f ), for all x ∈ B̂.

Together with the previous display, and recalling from above (7.9) that A−1 ≤ (logL)−4, this
then yields that

¯̀
x(ρ) ≥ (1−A−1)¯̀

x(ρ̃out + ρ̃f ) = (1−A−1)¯̀
x

(
4dv−2L12L(·)

) (3.41)
= (1−A−1)v− ≥ v(1−3(logL)−4).

The upper bound condition on ¯̀
x(ρ) in (7.4) is straightforward since ¯̀(4dv−L 1L(`)) = v− < v by

(3.41). This completes the verification of (7.4). It remains to argue that (7.16) holds. Indeed,

¯̀
x(ρ̃g) = ¯̀

x

(
4dv−L 1L(·)g0(·)

) (3.11)
=

v−
L

∑
`≥0

Ex

[ ∑
`′>`

1L(`′)g0(X`)
]

=
v−
L

∑
0≤`<L

Ex[g0(X`)]

=
v−
L

∑
0≤`<L

(P`g
0)(x)

(7.9)
=

u

L

∑
0≤`<L

P`

(1 + PL
2

)
f̃(x) =

v−
2L

∑
0≤`<2L

P`f(x) = ¯̀
x(ρ̃f ),

where in the penultimate step we applied the semigroup property and we omitted the details
leading to the final inequality, which are similar to the first four steps.

With Lemma 7.7 at our disposal, we resume the proof of (7.2). We proceed to define the
desired coupling Qa of Ia and Ia+1, for 0 ≤ a < A. In view of (7.11), this amounts to replacing
Ia,2 by Ia,3. This will rely on a combination of Corollary 7.6 and Theorem 4.1, which will
involve an intermediate configuration Ĩ comprising shorter (fragmented) trajectories of length
L′ � L and appropriate intensity.

For convenience, rather than working with Ia,2 directly, we will work with a ‘larger’ config-
uration If,L (cf. (7.18) below) instead. Let

(7.17) f(x) = 1
A v− g

0(x) + δ1
80A v−1BR+4L

(x), x ∈ Zd,

and L′ = L(logL)−4γ . One readily verifies that f is supported on a subset of BR+4L and that
2v ≥ f ≥ cv (logL)−8 pointwise on BR+4L for L ≥ C. One then straightforwardly deduces from
(7.12) and (7.17) that for all L ≥ C,

(7.18) Ia,2 (under P) ≤st. If,L;

the benefit of the second term in (7.17), which guarantees ellipticity of f but is unnecessary

for (7.18) to hold, will soon become clear. Recall now that Ia,1,1 law
= Iρ with ρ as in (7.15).
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Corollary 7.6 is in effect for this choice of ρ and with L′ as defined below (7.17), in view of the
discussion following (7.17), Lemma 7.7, and the fact that v′ = v(1−3(logL)−4)(1−(logL)−4) ≥ u
for L ≥ C by assumption on v, so that condition (7.1) holds with v′ in place of u by monotonicity.
Thus, combining Corollary 7.6 with (7.18), it follows that for all L ≥ C(u, γ), there exists a
coupling Qa

1 of (Ia,2∪Ia,1,1) and (Ĩ ∪Ia,1,1), with the two configurations sampled independently

for either pair, where Ĩ law
= I(1+l−

1
2 )PL

′
L (f),L′ , and such that for B = BR,

(7.19) Qa
1

[
C ∂
B

(
V
(
Ia,2 ∪ Ia,1,1

))
⊃ C ∂

B

(
V
(
Ĩ ∪ Ia,1,1

))]
≥ 1− C(u ∨ 1)(R+ L)de−c(logL)γ .

Next we replace Ĩ by Ia,3. To this effect, we apply Theorem 4.1 with 2L playing the role of
L (and thus 2l replacing l), K = R+ 4L and

f = f2 = 1+l−
1
2

1−C4l
− 1

2
f̄ , where f̄ = 1

A v−1BR+2L
(·) + δ1

40A v−1BR+6L
(·).

As we now explain, this yields for L ≥ C(u, γ) a coupling of Ĩ and Ia,3 such that

(7.20) Qa
2

[
C ∂
B

(
V(Ĩ)

)
⊃ C ∂

B

(
V
(
Ia,3

))]
≥ 1− C(u ∨ 1)(R+ L)de−c(logL)γ .

Indeed, one readily verifies that the function f2 above (7.20) satisfies c(logL)−8 ≤ f2 ≤ u
pointwise on BR+5L, so that the conditions of Theorem 4.1 are met for our choice of pa-
rameters when L ≥ C, whence Theorem 4.1 provides a coupling of I1 = If2,2L and I2 =

I(1−C4l−1/2)PL
′

2L(f21BK ),L′ = I(1+l−1/2)PL
′

2L(f̄1BR+4L
),L′ , with l = L

L′ , such that the inclusion V(I1) ⊂
V(I2) holds with probability as in (7.20) on account of (4.1) and by choice of L′. But

PL
′

L (f)
(1.6)
= l−1

∑
0≤k<l

PkL′(f)
(7.17)

= (lA)−1
∑

0≤k<l
PkL′(v−g

0) +
δ2

80
(lA)−1

∑
0≤k<l

PkL′(v−1BR+4L
)

(7.9)

≤ (lA)−1
∑

0≤k<l
PkL′

(1 + PL
2

)
(v− 1BR+2L

) +
δ1

40
(lA)−1

∑
0≤k<l

PkL′
(1 + PL

2

)
(v−1BR+4L

),

and the second line is readily seen to equal = (2l)−1
∑

0≤k<2l PkL′(f̄1BR+4L
) with f̄ as above.

Since Ĩ has the same law as I(1+l−1/2)PL
′

L (f),L′ , one immediately infers from this that Ĩ ≤st. I2.
Moreover, by choice of L′ and since l = L

L′ , keeping in mind that δ1 = (logL)−4 whilst γ > 10,
one readily sees that whenever L ≥ C,

f2 ≤ (1 + C(δ1)2)f̄ ≤ v−
A 1BR+2L

(·) + v−δ1
A 1BR+6L

(·) (7.9)
= v−(ha+1 − ha),

whence I1 ≤st. Ia,3 in view of (7.12). Applying Lemma 2.4 twice to concatenate the coupling
of I1 and I2 supplied by Theorem 4.1 with those implied by the two dominations Ĩ ≤st. I2 and
I1 ≤st. Ia,3 yields Qa

2 satisfying (7.20), as desired.

Having obtained Qa
1 and Qa

2 satisfying (7.19) and (7.20) for each 0 ≤ a < A, the remaining
task is to extend and concatenate these so as to produce a measure Q satisfying (7.2). We start
by reconstructing for individual a’s the full configurations Ia and Ia+1. In light of (7.11), (7.13)
and the sets coupled under Qa

1 and Qa
2, this boils down to incorporating Ia,1,2, which is not

involved in either of the two measures. The set Ia,1,2 = I1,2 does not depend on a (see (7.14))
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and thus evolves trivially as a→ (a+ 1). Hence feeding I1,2 into (7.13) and subsequently (7.11)
yields the rewrite (still under P)

Ia = I1,2 ∪ Îa, Îa = Ia,2 ∪ Ia,1,1,

Ia+1 = I1,2 ∪ Ia+1
, Ia+1

= Ia,3 ∪ Ia,1,1,
(7.21)

valid for all 0 ≤ a < A, and and each of the union is over independent sets.
Returning to Qa

1 and Qa
2, observe that the inclusion in (7.20) remains true if the pair (Ĩ, Ia,3)

is replaced by (Ĩ ∪J , Ia,3∪J ), for arbitrary J ⊂ Zd. We apply this observation to Qa
2 with the

choice J law
= Ia,1,1, sampled independently and incorporated into Qa

2 by suitable extension. In

view of (7.21), (7.19) asserts that the inclusion C ∂
B(V(Îa)) ⊃ C ∂

B(V(I ′)), where I ′ law
= Ĩ ∪ Ia,1,1,

holds with Qa
1-probability 1 − C(u ∨ 1)(R + L)de−c(logL)γ . In the same vein, (7.20) lifts to

the event C ∂
B(V(I ′)) ⊃ C ∂

B(V(Ia+1
)) under Qa

2. Thus, concatenating Qa
1 and Qa

2 by means of

Lemma 2.4 produces a coupling Qa of (Îa, Ia+1
) satisfying

(7.22) Qa
[
C ∂
B

(
V(Îa)

)
⊃ C ∂

B

(
V(Ia+1

)
)]
≥ 1− C(u ∨ 1)(R+ L)de−c(logL)γ .

Further chaining the couplings Qa’s over all a with 0 ≤ a < A by repeated application of
Lemma 2.4 and extending the resulting measure by an independent sample of I1,2, we arrive in

view of (7.21) at a coupling Q of I1,2 ∪ Î0 law
= I0 and I1,2 ∪ IA law

= IA. Combining (7.22), the
same observation as following (7.21) and a union bound, cf. Remark 2.5,2), it follows that

(7.23) Q
[
C ∂
B

(
V(I1,2 ∪ Î0)

)
⊃ C ∂

B

(
V(I1,2 ∪ IA)

)]
≥ 1− 2Ae−c(logL)γ ,

with B = BR. The measure Q is our final coupling satisfying (7.2) which is an immediate
consequence of (7.23) for L ≥ C(u, γ) upon recalling the observation following (7.10).

It remains to give the proof of Theorem 7.4 which employs Theorem 1.5 in its annealed
version as given by (1.22) for the choice of environment I = Iρ. The applicability of (1.22) rests
on a lower bound on the probability of the disconnection event D introduced in (1.20). The
following result is key towards this. Recall the definitions of Disc(y) and Disc(S) from (1.19)
and the associated scales ˜̀O = `1.01

O and ¯̀O > ˜̀O. A set S ⊂ Zd is called r-separated if the (`∞-)
distance between any two points in S is larger than r.

Proposition 7.8 (Disconnection estimate). For all γ > 10, K ≥ 0, L ≥ 1, the following hold.

If `O satisfies (1.14), ¯̀O ≤ L
1

10d , ρ fulfills (Cobst) with parameters (u,Du, γ, L,K) for some

D > 1, then for all L ≥ L0(γ, u) and any L
1
2d -separated set S ⊂ BK+1.5(L∨L̂), one has

(7.24) Pρ[Disc(S) = ∅] ≤
(
1− Pu′ [Disc(y)] + e−c

′(u∧1)Lc
′)|S|

+ C(u ∨ 1)(K + L)de−c(logL)γ

for some c′ = c′(D) > 0, where u′ = u(1− C(logL)−γ) and Pu′ is the law of Iu′.

With hopefully obvious notation, in writing Pρ[Disc(S) = ∅] in (7.24), we mean that the
relevant vacant set V = Vρ = Zd \ Iρ in (1.19), and similarly for Pu′ [Disc(y)], where V = Vu′ .
We will prove Proposition 7.8 in the next paragraph. Assuming this result we can finish the
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Proof of Theorem 7.4. We aim to apply Theorem 1.5 with the choices P = Pρ, I = Iρ and the
length scales `O and ¯̀O as

(7.25) `O = (logL)100γ , ¯̀O = L
1

10d ;

note that this also fixes the (enlarged) obstacle size ˜̀O = `1.01
O , see above (1.12), which satisfies

˜̀O < ¯̀O whenever L ≥ C(γ). Clearly, `O given by (7.25) satisfies (1.14) and ¯̀O ≤ L̃ (see (1.15)).

Moreover, on account of (1.5) and with l = L/L′, one has that ε = l−
1
2 (see (7.6)) satisfies

ε ≥ C`
−1/100
O and ε ≥ `

−1/(d−2)
O (logL)γ/2 for any L ≥ C(γ). In view of this, Theorem 1.5 is in

force and (1.21) (see also (1.22)) immediately yields (7.8), provided we can argue that

(7.26) Pρ[D ] ≥ 1− C(u ∨ 1)(K + L)de−cl
1/4

under the assumptions on ρ inherent to Theorem 7.4, namely, if ρ satisfies (Cobst) with param-
eters (u′, u, γ, L,K), for some u′ < u and (7.1) holds with u′′ = u′(1 − (logL)−4) in place of u.
For later reference, spelling out the latter part using the scales (7.25) and (1.19), we find that

(7.27) Pu′′ [Disc(y)] ≥ L−
1
10 for all y ∈ Zd.

We will use Proposition 7.8 to show (7.26). To ensure the required separatedness for discon-
nection events occurring within a given cell C̃, we introduce the event D̃ ⊂ D as follows. With
the notation from (1.19), where the event Disc(y) under Pρ refers to the disconnection event in
the configuration V = Vρ, we set

(7.28) D̃ =
{

Disc(L(C̃)) 6= ∅ for all C̃ ∈ C̃
}
,

where L(C̃)
def.
= (dL

1
2d +1eZd)∩ C̃ for C̃ ∈ C̃. In words, (7.28) requires that each cell C̃ witnesses

a disconnection event Disc(y) centered around a point y belonging to the ‘lattice’ L(C̃). With
a view towards applying Proposition 7.8, we now set S = L(C̃) for a fixed cell C̃ ∈ C̃, which
is L1/2d-separated and readily seen to satisfy |S| ≥ L1/2. The estimate (7.26) now follows
upon bounding Pρ[D ] ≥ Pρ[D̃ ], feeding (7.28), applying a union bound over C̃, and using (7.24)

together with (7.37) to bound Pρ[Disc(L(C̃)) = ∅].

7.2. Disconnection estimate. In this section we supply the proof of Proposition 7.8. One
issue is that the family of events {Disc(y) : y ∈ S} involved in the event Disc(S) is not at all
independent. Indeed, by assumption the points in S have a separation scale which is a (small)
polynomial in L, whereas Iρ involves trajectories having length of order L, cf. Definition 7.3.
To generate decoupling, Theorem 4.1 will be used repeatedly to couple Iρ with a configuration
I ρ̃ involving suitably shortened trajectories.

Proof of Proposition 7.8: We will work throughout the proof under the weaker assumption that
L̂, which appears as part of (Cobst), be of the more general form specified in Remark 7.5,2). We
will apply Theorem 4.1 repeatedly to Iρ, with ρ satisfying (Cobst), see Definition 7.3. First note

that, by (7.5) and (3.40), the set Iρ has the same law as I
1
2

(1+PL̂/2)f1,
L̂
2 ∪ If2,L̂ where the latter

two configurations are sampled independently. Now define the triplets (L,N, g) for integer k ≥ 0
(with L and N decreasing in k) as follows:

(7.29) L0 = L̂, N0 = K + 5(L ∨ L̂), g0 = f1 + f2,
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and for k ≥ 0, define recursively

(7.30) l−1 def.
=

Lk+1

L
= max{2−m : 2−m ≤ 1

10 ∧ (log(L)−4γ)}, for k = 0, 1, . . . ,

as well as, with C4 as in Theorem 4.1,

(7.31) gk+1
def.
= (1− C4l

−1/2)l−1
l−1∑
n=0

PnLk+1
(g1BN−L), Nk+1 = N − 2L.

The recursive definition in (7.30) is valid since L1 is dyadic by our particular choice of the scale
L0 = L̂ as the difference of two dyadic integers L̂1 − L̂2 with L̂2 ≥ 8L(log L

8 )−4γ . For later

reference, we note that, with the above choices and k+ def.
= max{k : L ≥ L

1
3d },

(7.32) Γ
def.
=

k+∏
k=0

(1− C4l
−1/2)

(7.30)

≥
∞∏

m=dc logLe

(1− C4m
−2γ) ≥ 1− C(logL)γ ,

for L ≥ C. Also using that l−1 ≤ 1
10 and L0 = L̂, we obtain

(7.33) N = N0 − 2L0

k−1∑
n=0

( k−2∏
i=0

l−1
i

)
≥ N0 − 3L0 ≥ K + 2.6(L ∨ L̂), for any k ≥ 1

(where we interpret an empty product as 1). Now notice that k+ ≥ 1 and Lk+1 ≥ L1−c′ ,
where c′ is from Theorem 4.1), for every k whenever L ≥ C(γ), which will be tacitly assumed
henceforth. We aim to apply Theorem 4.1 for all 0 ≤ k < k+ with the choices L = L, L′ = Lk+1,
K = N−L and f = g. This hinges on obtaining a suitable lower bound for g, see the hypotheses
of Theorem 4.1. To this effect, we now proceed to verify that for all x ∈ BN ,

u ≥ g(y) ≥
[ k−1∏
i=0

(1− C4l
−1/2
i )

]
(logL0)−γ , for 0 ≤ k ≤ k+.(7.34)

Indeed, for k = 0, by definition of g0 in (7.29), upper and lower bounds in (7.34) follow im-
mediately from (7.5) since N0 = K + 5(L ∨ L̂). Suppose now that (7.34) holds for some k
with 0 ≤ k < k+. The upper and lower bounds for gk+1 then follow from (7.31), by sub-
stituting the corresponding bounds for g from (7.34) valid by induction hypothesis. In do-
ing so, note that the indicator function present in (7.31) is inconsequential for the purpose of
bounding gk+1(x) when x ∈ BNk+1+Lk+1

since one applies Pt for t = nLk+1 ≤ L − Lk+1 and
Nk+1 + Lk+1 + (L − Lk+1) = N − L by the definition of N . Together with (7.30) and (7.32),
(7.34) implies that

(7.35) Du ≥ g(x) ≥ c(logL)−γ , for x ∈ BN , 0 ≤ k ≤ k+,

whenever L ≥ C. In view of (7.35), for each 0 ≤ k < k+, and chaining the resulting couplings
using Lemma 2.4 yields a coupling Q of Iρ and I ρ̃ (see (3.3) for notation), where ρ̃ : N∗×Zd → R+

with

(7.36) ρ̃(`, x)
def.
=

gk+ (x)
Lk+

1{`=Lk+}
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and the inclusion I ρ̃ ⊂ Iρ holds with Q-probability at least 1 − e−c(logL)γ , for suitable c > 0.

Since ρ̃ in (7.36) involves trajectories of length Lk+ − 1 and
Lk+

L1/2d → 0 as L → ∞ be definition

of k+, the events Disc(y), y ∈ S are independent under Pρ̃ for large enough L since S is L1/2d-
separated by assumption. We will now argue that

(7.37) Pρ̃[Disc(y)] ≥ Pu′ [Disc(y)]− e−c′(u′∧1)Lc
′
, for all y ∈ S,

where u′ = u′(1− C(logL)−γ) and c′ depends on D in addition to dimension d. If (7.37) holds
then applying the coupling and using independence immediately gives (7.24).

To complete the proof, it thus remains to show (7.37) with ρ̃ given by (7.36). This follows
from a direct application of Proposition 3.4 (with, say, N = L1/9d, a = 3 and small enough ε > 0),
by which V ρ̃ inherits up to a small coupling error the disconnection lower bound Pu′ [Disc(y)],
provided we can show that ρ̃ satisfies for all x ∈ BK+2.6(L∨L̂),

¯̀ρ̃
x =

∑
`′≥0

Ex[ρ̃(`′ + N∗, X`′)] ∈ [u(1− C(logL)γ), u] and ρ̃(N∗, x) ≤ DuL−
1
3d .(7.38)

The second of these conditions follows immediately by (7.35) and (7.36). In order to obtain the
required estimates on ¯̀ρ̃

x in (7.38), we first observe that, for all x ∈ BN+L,

g(y) =
[ k−1∏
j=0

(1− C4l
−1/2
j )

] L
L0

∑
0≤n<L0

L

(PnLg0)(x), for 1 ≤ k ≤ k+.(7.39)

For k = 1, (7.39) is (7.31), noting that for points x of interest, the indicator function in (7.31)
can be omitted. For the induction step, one uses again the observation that Nk+1 +Lk+1 + (L−
Lk+1) = N−L together with the semigroup property for (Pn)n≥0. Now, for all x ∈ BK+2.6(L∨L̂),

noting that (7.39) is in force for any such x due to (7.33), we have

∑
`′≥0

Ex[ρ̃(`′ + N∗, X`′)] =
∑
m≥1

∑
0≤`′<m

Ex[ρ̃(m,X`′)]
(7.36)

=
∑

0≤`′<Lk+

L−1
k+

(
P`′gk+

)
(x)

(7.39),(7.32)

≥ Γ

L0

∑
0≤n< L0

L
k+

∑
0≤`′<Lk+

(
PnLk++`′g0

)
(x)

(7.30),(7.29)
=

Γ

L̂

L̂−1∑
`′=0

[
P`′(f1 + f2)

]
(x)

(7.5)
= Γ

∑
`∈{L̂/2,L̂}

∑
0≤`′<`

Ex[ρ(`,X`′)] = Γ
∑
`′≥0

Ey[ρ(`′ + N∗, X`′)],

from which the first condition in (7.38) follows by (7.4) and (7.32). Overall (7.38) thus holds,
which completes the proof.

Acknowledgements. This work has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation programme (grant
agreement No. 757296). HDC acknowledges funding from the NCCR SwissMap, the Swiss FNS,
and the Simons collaboration on localization of waves. SGs research was supported by the SERB
grant SRG/2021/000032, a grant from the Department of Atomic Energy, Government of India,
under project 12R&DTFR5.010500 and in part by a grant from the Infosys Foundation as a

64



member of the Infosys-Chandrasekharan virtual center for Random Geometry. PFR thanks the
IMO in Orsay for its hospitality during the final stages of this project, with funding from ERC
Grant agreement No. 740943. FS has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation program (grant agree-
ment No 851565). During this period, AT has been supported by grants “Projeto Universal”
(406250/2016-2) and “Produtividade em Pesquisa” (304437/2018-2) from CNPq and “Jovem
Cientista do Nosso Estado”, (202.716/2018) from FAPERJ. SG, PFR, FS and AT thank IHÉS
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