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Abstract

These lecture notes describe the content of a six-hours course given by the two
authors at the 2012 probability summer school in Saint-Petersburg. The goal is to
provide a derivation of several critical parameters of classical planar models such as
Bernoulli and Fortuin-Kasteleyn percolation as well as the Ising and Potts models.
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Motivation

Pierre Curie showed experimentally in 1895 that a ferromagnet exhibits a phase transition
by loosing its magnetization when heated above a critical temperature, called the Curie
temperature. Many other examples of phase transition have been found in real systems
coming from physics. During more than one century, mathematicians and physicists have
been developing mathematical models to understand such phase transitions. Beyond the
original motivation, these models have turned out to be very interesting objects, leading
to rich mathematical theories and challenging questions.

In these lecture notes, we focus on a few classical models of statistical physics. The
most famous one is probably the Ising model, which was introduced by Lenz [60] in order
to understand ferromagnetic phase transitions and the existence of the Curie temperature.
Historically, this model has been central in the development of statistical physics. Another
model which has the favor of mathematicians is Bernoulli percolation. Defined as a
product measure, it is a natural playground for developing new mathematical theories.

A third model, called the Potts model, is a model of random coloring of the vertices
of a lattice and has been the object of much interest in the past half-century. These
seemingly different models share many properties, and our goal is to develop the theory
of the FK percolation model (also called random-cluster model), a model which creates
a connection between all these models.

The models above can be defined on any lattice but for simplicity we will mostly deal
with the square lattice Z2. In dimension two, lattice models often exhibit very specific
features: one of the most important ones is duality, and another one is integrability. A
recurrent theme of these notes is the study of the consequences of these properties. In
particular, they will be used to compute the critical parameters of the model.

The next section presents briefly each of the models we will be interested in, with an
emphasis on their common features. Most importantly, we define the FK percolation and
show the connection with Bernoulli percolation, Ising and Potts models. Section 3 shows
the existence of a phase transition for the FK percolation. This result implies the existence
of a phase transition for the three other models. Section 4 contains the computation of
the critical parameter for FK percolation using duality. Section 5 describes an alternative
computation of the critical parameter based on exact integrability. Section 6 contains a
number of conjectures and a non-rigorous description of the phase transition.

Notation The lattice Z2 is constructed by considering vertices (m,n), with n,m ∈ Z,
and edges between nearest neighbors. Consider the graph (Z2)∗ defined as a translate
of Z2 by the vector (1/2,1/2). For any edge e of Z2, there exists a corresponding edge
e∗ of (Z2)∗ intersecting e in its midpoint. In our context, a graph G will always be a
connected subgraph of the square lattice; it is given by its set of vertices VG and its set
of edges EG. For a graph G, the dual graph G∗ is given by the subgraph of (Z2)∗ whose
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vertices correspond to inner faces of G, and edges connect nearest neighbors. Finally, we
will denote by ∂G be the set of vertices in G connected by an edge to a vertex in VZ2 ∖VG.
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1 “One model to rule them all”

1.1 Bernoulli percolation

Percolation is probably the simplest model of statistical physics. It was introduced by
Broadbent and Hammersley in 1957 as a model for a fluid in a porous medium [13]. The
medium contains a network of randomly arranged microscopic pores through which fluid
can flow.

Let us define the model formally. A configuration ω on G is an element of {0,1}EG .
It can be seen as a subgraph of G, composed of the same sites and a subset of its edges
which are those for which ω(e) = 1. The edges belonging to ω are called open, the others
closed. The Bernoulli percolation measure of parameter p ∈ [0,1] is the product measure
Pp on {0,1}EG such that Pp(ω(e) = 1) = p for any e ∈ EG.

We are interested in connectivity properties of ω when G = Z2. A path is a sequence
of neighboring vertices v1, . . . , vn. The path is said to be open if each of the edges
[v1v2], . . . , [vn−1vn] is open. Write a ↔ b if a and b are connected by an open path.
We allow the notation a↔∞ to denote the fact that a belongs to an infinite open path.

Bernoulli percolation on Z2 undergoes a phase transition in the following sense.

Theorem 1.1 There exists 0 < pc < 1 such that Pp(0 ↔ ∞) > 0 for p > pc and Pp(0 ↔
∞) = 0 for p < pc.

Proof: Our goal here is to emphasize several classical arguments allowing for an easy
proof of this theorem.

Consider independent uniform random variables Ue on [0,1] indexed by edges. For
any p ∈ [0,1], let ωp ∈ {0,1}EZ2 be the configuration given by ωp(e) = 1Ue≤p for any e ∈ EZ2 .
Obviously, the law of ωp is Pp. This construction is known as the standard coupling, and
it gives an increasing coupling of the measures Pp for different values of p in the following
sense: ωp ≤ ωp′ for any p ≤ p′ (here and below, we consider the natural ordering on
configurations given by the partial ordering on {0,1}E

2
Z).

Since ωp ≤ ωp′ for any p ≤ p′, this construction of configurations (ωp ∶ p ∈ [0,1]) allows
us to define

pc = inf{p ∈ [0,1] ∶ Pp(0↔∞) > 0} = sup{p ∈ [0,1] ∶ Pp(0↔∞) = 0}.

At this point, pc could possibly be equal to 0 or 1. We now prove that pc > 0. Fix n > 0
and let Ωn be the set of paths starting from the origin with n edges. If there exists an
infinite open path, there must exist an open path in Ωn. We deduce that

Pp(0↔∞) ≤ Pp(∃γ ∈ Ωn which is open) ≤ ∑
γ∈Ωn

Pp(γ is open) ≤ ∣Ωn∣p
n.

3



Figure 1: Three percolation configurations for three different parameters, respec-
tively sub-critical, critical and super-critical.
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Since ∣Ωn∣ ≤ 4n, the quantity on the right tends to 0 when p < 1/4. Therefore, we deduce
that pc ≥ 1/4. This argument is called a Peierls argument.

It only remains to prove the inequality pc < 1. The proof is based on the concept of
duality that we present now. For any configuration ω ∈ {0,1}EZ2 , define the configuration
ω∗ ∈ {0,1}E(Z2)∗ by ω∗(e∗) = 1 − ω(e). In words, a dual edge is open if the corresponding
edge on Z2 is closed, and vice versa. The configuration ω∗ is then distributed according
to a Bernoulli percolation of parameter p∗ ∶= 1 − p.

With this dual configuration in our possession, we can now prove pc < 1. In order for
the origin not to be connected to infinity, ω∗ must contain an open path of dual-edges
surrounding the origin.

Figure 2: One realization of a finite connected component containing the origin,
and the associated surrounding dual circuit.

Let Ωm,n be the set of dual circuits of length m surrounding the origin and passing
by (n + 1

2 ,0). We deduce that

Pp(0↮∞) = Pp (∃γ ∈ ⋃
m,n

Ωm,n which is open) ≤∑
n≥1

∑
m≥2n+4

∣Ωm,n∣(1 − p)
m

≤∑
n≥1

∑
m≥2n+4

(4 − 4p)m =
(4 − 4p)6

(4p − 3)(32p − 15 − 16p2)
.

The second line is based on the observation that a dual circuit passing by (n + 1
2 ,0)

and surrounding the origin contains more than 2n + 4 edges. The last expression has no
real physical meaning, but it shows that when p is close enough to 1, the double sum is
strictly smaller than 1 (one could alternatively derive this from dominated convergence).
Equivalently, Pp(0↔∞) > 0 and therefore pc ≤ p < 1. ◻

The increasing coupling, the Peierls argument as well as the duality between Z2

and (Z2)∗ are not specific to Bernoulli percolation. In particular, one goal of
these notes is to generalize these concepts to other models and to investigate the
possible consequences.

The critical point of percolation on Z2 was proved by Kesten to be equal to 1/2 in
1980. Even though the proof is quite involved, predicting that pc = 1/2 is fairly natural.
Indeed, p = 1/2 is the point for which percolation on Z2 and (Z2)∗ play symmetric roles,
meaning that they are both Bernoulli percolations of parameter 1/2. It is the unique
point for which p∗ is equal to p. We call this point the self-dual point.

Theorem 1.2 (Kesten [51]) The critical point of Bernoulli percolation on Z2 equals
its self-dual point, i.e. pc = 1/2.
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1.2 The Ising model

The Ising model is one of the simplest models in statistical physics to exhibit an order-
disorder transition. It was introduced by Lenz in [60] and studied by his student Ising
in his thesis [46] as an attempt to explain the existence of a Curie temperature for
ferromagnets. In the Ising model, the ferromagnet is modeled as a collection of atoms
with fixed positions on a crystalline lattice. Each atom has a magnetic “spin”, pointing
in one of two possible directions +1 or −1.

The formal definition is slightly more intricate than for percolation. Let G be a finite
graph. The Ising model is a random assignment σ ∈ {−1,1}VG , where σx denotes the spin
at site x. The Hamiltonian of the model is defined by

HG(σ) ∶= − ∑
[xy]∈EG

σxσy. (1)

The partition function of the model is

Z free
β,G = ∑

σ∈{−1,1}VG
exp [−βHG(σ)] , (2)

where β is the inverse temperature of the model. The probability of a configuration σ is
then equal to

µfree
β,G(σ) =

1

Z free
β,G

exp [−βHG(σ)] . (3)

The measure thus obtained is called the Ising measure at inverse temperature β on G
with free boundary conditions. The appearance of boundary conditions comes from the
fact that the Ising model is not a model with independence such as Bernoulli percolation.
Let us construct other boundary conditions. Assume that G is a finite subgraph of Z2, and
fix a configuration b ∈ {−1,1}VZ2 on the whole lattice. In such a case, it is natural to extend
the definition of EG to include bonds connecting a vertex of G to one in its complement;
if [xy] is such a bond, with x ∈ VG, simply add the term σxby to the right-hand side of (1).
The definition in (2) then includes an interaction part along the boundary of G. Let µ+β,G
be the measure obtained for boundary conditions b ≡ 1, and Z+

β,G be the corresponding
partition function. In such case, we speak of plus boundary conditions. Similarly, one
can define minus boundary conditions and the associated measure and partition function.

Defining the Ising model in infinite volume is not completely trivial. For plus and
minus boundary conditions, one can use correlation inequalities to take weak limits µ±

β,Z2

of the measures µ±
β,[−n,n]2 – here and later, convergence is always taken to mean weak

convergence: for any function f depending on a finite number of spins, i.e.

µ±β,[−n,n]2(f)Ð→ µ±β,Z2(f).

The justification of the existence of this measure will be given later.
The Ising model in infinite volume exhibits a phase transition at some critical inverse

temperature βc, above which a spontaneous magnetization appears:

Theorem 1.3 There exists βc ∈ (0,∞) such that µ+
β,Z2(σ0) = 0 for any β < βc, and

µ+
β,Z2(σ0) > 0 for any β > βc (σ0 denotes the spin at the origin).
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The proof of this theorem bears similarities with the proof of Theorem 1.1. Never-
theless, some difficulties arise quickly, for instance when justifying the existence of βc.
Indeed, in the case of percolation, the existence of pc is straightforward thanks to the
increasing coupling, while no useful coupling between Ising measures at different tem-
peratures allows to justify the existence of two well separated phases (one could imagine
that µ+

β,Z2(σ0) alternates from 0 to positive several times).

Proof: Let us prove that βc exists. First fix G and differentiate µ+β,G(σ0) in β to find

d

dβ
(µ+β,G(σ0)) = ∑

e=[xy]∈EG
µ+β,G(σ0σxσy) − µ

+
β,G(σ0)µ

+
β,G(σxσy).

The GKS inequality [37, 49] shows that

µ+β,G(σ0σxσy) − µ
+
β,G(σ0)µ

+
β,G(σxσy) ≥ 0

for any x, y, which implies that µ+β,G(σ0) is increasing. Since the previous claim is valid
for any [−n,n]2, µ+

β,Z2(σ0) = limn→∞ µ+β,[−n,n]2(σ0) is increasing and βc ∈ [0,∞] exists.

Now that βc exists, let us show that it lies strictly between 0 and infinity. The proof
of this fact relies on a combinatorial argument, similar to the one first introduced by
Peierls. Historically, this argument [63] changed the face of statistical physics since it
invalidated a conjecture of Ising on the absence of phase transition for the Ising model.
The argument is very similar to the one described above for percolation, and is in fact
anterior to it. Peierls’ argument is best understood via the low and high temperature
expansions of the planar Ising model.

Let us start with the low temperature expansion. It is a graphical representation on
the dual lattice. Fix a spin configuration σ for the Ising model on G with + bound-
ary conditions. The collection of contours ω(σ) of a spin configuration σ is the set of
interfaces separating +1 and −1 connected components. They are naturally defined on
the dual graph G∗. In a collection of contours, an even number of dual edges emanate
from each dual vertex. Reciprocally, any family of dual edges with an even number of
edges emanating from each dual vertex is the collection of contours of exactly one spin
configuration (since we fix + boundary conditions). The probability of σ can be restated
in terms of the corresponding ω(σ) in the following way. Let E low

G∗ be the set of possible
collections of contours, and let ∣ω∣ be the number of edges of a collection of contours ω.
One can easily check that

µ+β,G(σ) =
e−2β∣ω(σ)∣

∑ω∈E low
G∗
e−2β∣ω∣ .

As a consequence,

µ+β,G(σ0 = −1) ≤

∑
ω∈E low

G∗
with one loop surrounding 0

e−2β∣ω∣

∑
ω∈E low

G∗

e−2β∣ω∣ .

We used the fact that {σ0 = −1} is included in the event that there exists a circuit in
ω(σ) surrounding 0. Since

µ+β,G(σ0) = 1 − 2µ+β,G(σ0 = −1),
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it is sufficient to show that µ+β,G[σ0 = −1] < 1/2 uniformly in the subgraph G of Z2 provided
that β is large enough. Using the previous expression in terms of the low temperature
expansion, we easily obtain that

µ+β,G[σ0 = −1] ≤ ∑
γ loop surrounding 0

e−2β∣γ∣ ≤
∞
∑
n=1

n4ne−2βn,

where the sum goes over circuits γ surrounding 0. For β large enough, this term is smaller
than 1/2. In the first inequality, we used the fact that

∑
ω∈E low

G∗
with a loop surrounding 0

e−2β∣ω∣ ≤
⎛

⎝
∑

γ loop surrounding 0

e−2β∣γ∣⎞

⎠

⎛
⎜
⎝
∑

ω∈E low
G∗

e−2β∣ω∣
⎞
⎟
⎠
.

In the second inequality, we bounded the number of self-avoiding loops of length n sur-
rounding the origin by n4n.

The high temperature expansion is a graphical representation on the primal lattice
itself [73]. It is not a geometric representation in the sense that a spin configuration σ
cannot be mapped to a subset of configurations in the graphical representation. Yet,
it is a rather convenient way to represent correlations between spins using statistics of
contours. It is based on the fact that spins take only two values, which translates into
the following identity:

eβσxσy = cosh(β) + σxσy sinh(β) = cosh(β) [1 + tanh(β)σxσy] . (4)

Let us start by expressing the partition function with + boundary conditions. We know

Z+
β,G = ∑

σ
∏

[xy]∈EG
eβσxσy

= cosh(β)∣EG∣∑
σ
∏

[xy]∈E
[1 + tanh(β)σxσy]

= cosh(β)∣EG∣∑
σ
∑
ω⊂E

tanh(β)∣ω∣ ∏
e=[xy]∈ω

σxσy

= cosh(β)∣EG∣ ∑
ω⊂E

tanh(β)∣ω∣∑
σ

∏
e=[xy]∈ω

σxσy,

where we used (4) in the second equality. Let E high
G be the set of families of edges of G

such that an even number of edges emanate from each vertex in G (possibly including
edges from a vertex in G to one in Z2 ∖G). Notice that ∑σ∏e=[xy]∈ω σxσy equals 2∣VG∣ if

ω is in E high
G , and 0 otherwise, hence proving that

Z+
β,G = 2∣VG∣ cosh(β)∣EG∣ ∑

ω∈E high
G

tanh(β)∣ω∣.

A similar computation can be performed with ∑σ σ0e−βH(σ). We obtain the following
identity

∑
σ

σ0e
−βH(σ) = cosh(β)∣EG∣ ∑

ω∈E high
G (0)

tanh(β)∣ω∣,

where E high
G (0) is the set of families of edges of G such that an even number of edges

emanate from each vertex, except at 0 and possibly at some of the vertices of ∂G, where
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an odd number of edges emanates. Note that an element of E high
G (0) is the union of an

element in E high
G and a path from 0 to the boundary. Taking the ratio of the previous

quantity and the partition function, one obtains

µ+β,G(σ0) =
∑ω∈E high

G (0) tanh(β)∣ω∣

∑ω∈E high
G

tanh(β)∣ω∣
.

Then, a argument similar to Peierls’ argument described above shows that whenever
tanh(β) is small enough, the above quantity tends to 0 as G tends to the whole lattice
(this is due to the existence of the additional path from 0 to ∂G, we leave it as an exercise
for the reader). This implies that β < βc for β small enough. ◻

Some will have noticed the similarity between the low and high temperature expan-
sions, since they both involve sets of edges with similar structures. In fact, the low and
high temperature expansions can be extended to free boundary conditions. When per-
forming the high temperature expansion of the Ising model on G∗, one obtains that the
set of contours is exactly E low

G∗ . In [53, 54], Kramers and Wannier used this observation
to relate properties of the Ising model on Z2 at β and the Ising model on (Z2)∗ at β∗

given by tanh(β∗) = e−2β. This relation is a duality relation since (β∗)∗ = β. They then
used this duality to identify (albeit non rigorously) the critical point as being the unique
point such that βc = β∗c . This was later proved formally by Onsager:

Theorem 1.4 (Onsager [62]) For the Ising model on Z2, the critical inverse tempera-
ture βc equals 1

2 log(1 +
√

2).

The study of the Ising model and Bernoulli percolation share similarities. A
Peierls argument shows that βc ∈ (0,∞) and exactly as in the case of Bernoulli
percolation, the critical parameter corresponds to the self-dual point of some
duality relation (here the so-called Kramers-Wannier duality). Nevertheless,
the proofs are already more involved than in the percolation case, and some
ingredients do not apply (for instance the increasing coupling).

1.3 The Potts models

The Potts model with q colors is a random q-coloring of a graph G. On a finite graph,
the energy of a configuration σ is given by

Hq,G(σ) ∶= −2∑
x∼y

1σx=σy

and the probability at inverse temperature β by

µfree
q,β,G(σ) =

e−βHq,G(σ)

∑σ̃ e
−βHq,G(σ̃) ,

where the summation is over any q-coloring ofG. This measure is called the Potts measure
with free boundary conditions at inverse temperature β. As for the Ising model, one can
fix vertices in ∂G to have color 1. The conditioned measure, denoted µ1

q,β,G, is called Potts
measure with q colors and monochromatic boundary conditions 1. Alternatively, one can
also, as in the case of the Ising model, fix a configuration b on the whole lattice and use it
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Figure 3: Three Potts configurations with q = 3 for β < βc(3), β = βc(3) and
β > βc(3). The color 1 (corresponding to the boundary condition) is red.

to add an interaction term along the boundary of G. The q = 2 case corresponds exactly
to the Ising model — the factor 2 was introduced to make the values of β match.

A phase transition also occurs for Potts models. Namely, there exists a critical inverse
temperature βc(q) such that

• for β < βc(q), lim
n→∞

µ1
q,β,[−n,n]2(σ0 = 1) = 1

q ,

• for β > βc, lim
n→∞

µ1
q,β,[−n,n]2(σ0 = 1) > 1

q .

The first phase is called disordered, and the second ordered. The former corresponds to
infinite range memory. It is sometimes called symmetry breaking, since the color 1 is
favored.

Theorem 1.5 (Beffara, Duminil-Copin [6]) For the Potts model with q colors, the
critical inverse temperature on Z2 equals βc(q) =

1
2 log(1 +

√
q).

As mentioned earlier, the case q = 2 is exactly Onsager’s result about the Ising model.
Pirogov-Sinai theory [52] shows that the large-q regime exhibits a first-order phase tran-
sition, which was used to derive the value of βc in that case as well — see below after the
corresponding statement about the FK percolation for a more detailed discussion.

The existence of the phase transition is much harder to comprehend in this case. In
particular, there is no equivalent of the GKS inequality. In addition, the low and high
temperature expansions do not work easily in this case (but it can be done — we suggest it
as an exercise for the serious reader of these notes). Last but not least, no direct duality
relation can be exhibited. Even though the tools used in the case of percolation and the
Ising model are not at our disposal for this model, the critical inverse temperature still
exists and still has a simple expression, but we will need to change our point of view to
determine it.
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At this point of the study, we have presented three seemingly different models, all
having very explicit critical parameters. Furthermore, in two cases the value of
this critical parameter can be guessed via a duality relation. It becomes natural
to ask whether these three models can be seen as belonging to a more general
family, which would make a unified approach possible. This family of models
does exist, and we present it now.

1.4 Fortuin-Kasteleyn percolation

The FK percolation or random-cluster model is a model of dependent bond-percolation on
graphs. It was introduced by Fortuin and Kasteleyn in [31]. The space of configuration
is {0,1}EG , and similarly to Bernoulli percolation, a configuration ω can be seen as a
subgraph of G, composed of the same sites and a subset of its edges. The edges belonging
to ω are called open, the others closed. Similarly to the case of Bernoulli percolation,
a path is said to be open if all its edges are open. Two sites a and b are still said to
be connected if there is an open path connecting them (this event will be denoted by
a↔ b). The maximal connected components will be called clusters (they can be isolated
vertices).

Let o(ω) be the number of open edges in ω, c(ω) be the number of closed edges and
k(ω) be the number of clusters. The probability measure φp,q,G of the FK percolation on
a finite graph G with parameters p ∈ [0,1] and q > 0 is defined by

φp,q,G({ω}) ∶=
po(ω)(1 − p)c(ω)qk(ω)

Zp,q,G

for every configuration ω on G, where Zp,q,G is a normalizing constant referred to as the
partition function.

The case q = 1 corresponds to Bernoulli percolation. In this case, the topological term
qk(ω) is identically equal to 1, and the model is independent. For general values of q, the
topological term introduces some long range dependency.

We will extend the definition above in the following way. Boundary conditions ξ are
given as a partition of ∂G. The graph obtained from the configuration ω by identifying
(or wiring) the vertices in ∂G that belong to the same component of ξ is denoted by
ω ∪ ξ. Boundary conditions should be understood as encoding how sites are connected
outside of G. Let o(ω) (resp. c(ω)) denote the number of open (resp. closed) edges of ω
and k(ω, ξ) the number of connected components of ω ∪ ξ.

Definition 1.6 The probability measure φξp,q,G of the FK percolation on G with parame-
ters p and q and boundary conditions ξ is defined by

φξp,q,G({ω}) ∶=
po(ω)(1 − p)c(ω)qk(ω,ξ)

Zξ
p,q,G

(5)

for every configuration ω on G, where Zξ
p,q,G is the partition function.

The case presented above corresponds to the absence of wiring between boundary
vertices. In such case, we say that we are in presence of free boundary conditions and
we set ξ = 0. The somewhat opposite example is given by wired boundary conditions,
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corresponding to all the boundary vertices being wired together. In such case, we set
ξ = 1.

This model also satisfies a duality relation. In two dimensions, one can associate with
any FK percolation on a graph G a dual model on G∗. Given a subgraph configuration
ω, construct a model on G∗ by declaring any edge of the dual graph to be open (resp.
closed) if the corresponding edge of the primal lattice is closed (resp. open) for the initial
configuration. The new configuration is called the dual configuration of ω and is denoted
ω∗. So far, this is simply a version (on finite graphs) of the construction for Bernoulli
percolation and we did not use any property of the measure. The “miracle” of this
duality is that the dual configuration is also an FK configuration, although with different
parameters.

Proposition 1.7 (Planar duality) The dual model of the FK percolation on G with
parameters (p, q) and wired boundary conditions is the FK percolation with parameters
(p∗, q∗) and free boundary conditions on G∗, where

pp∗

(1 − p)(1 − p∗)
= q and q∗ = q.

When q = 1, p∗ = 1 − p and we recover the duality in Bernoulli percolation.

Proof: Note that the state of edges between two sites of ∂G is not relevant when
boundary conditions are wired. Indeed, sites on the boundary are connected via boundary
conditions anyway, so that the state of each boundary edge does not alter the connectivity
properties of the subgraph. For this reason, forget about edges between boundary sites
and consider only inner edges. These edges correspond to edges of G∗ (remember that G∗

was constructed from inner faces of G). In this proof, o(ω) and c(ω) denote the number
of open and closed inner edges.

From the definition of the dual configuration ω∗ of ω, we have o(ω∗) + o(ω) = ∣EG∗ ∣,
where o(ω∗) is the number of open dual edges. Moreover, connected components of ω∗

correspond exactly to faces of ω, so that f(ω) = k(ω∗), where f(ω) is the number of faces
(counting the infinite face). Using Euler’s formula

o(ω) + k(ω) + 1 = ∣VG∣ + f(ω),

which is valid for any planar graph (here we applied it to ω), we obtain

k(ω) = ∣VG∣ − 1 + f(ω) − o(ω) = ∣VG∣ − 1 + k(ω∗) − ∣EG∗ ∣ + o(ω∗).

12



The probability of ω∗ is equal to the probability of ω under φ1
p,q,G, i.e.

φ1
p,q,G(ω) =

1

Z1
p,q,G

po(ω)(1 − p)c(ω)qk(ω)

=
(1 − p)∣EG∗ ∣

Z1
p,q,G

[p/(1 − p)]o(ω)qk(ω)

=
(1 − p)∣EG∗ ∣

Z1
p,q,G

[p/(1 − p)]∣EG∗ ∣−o(ω
∗)q∣VG∣−1−∣EG∗ ∣+k(ω∗)+o(ω∗)

=
p∣EG∗ ∣q∣VG∣−1−∣EG∗ ∣

Z1
p,q,G

[q(1 − p)/p]o(ω
∗)qk(ω

∗)

=
p∣EG∗ ∣q∣VG∣−1−∣EG∗ ∣

Z1
p,q,G

[p∗/(1 − p∗)]o(ω
∗)qk(ω

∗)

=
p∣EG∗ ∣q∣VG∣−1−∣EG∗ ∣

(1 − p∗)∣EG∗ ∣Z1
p,q,G

(p∗)o(ω
∗)(1 − p∗)c(ω

∗)qk(ω
∗)

= φ0
p∗,q,G∗(ω∗).

In the third and sixth lines, we used the relation o(ω∗)+o(ω) = ∣EG∗ ∣. The Euler formula
was harnessed in the third line, and the relation between p and p∗ in the fifth. ◻

Let us introduce the self-dual point psd(q), given by the unique solution of the equation
p∗(psd, q) = psd, i.e.

psd(q) =

√
q

1 +
√
q
. (6)

For fixed q ≥ 1, the FK percolation shares many properties with Bernoulli percolation.
In particular, the definition, which required G to be finite, can be extended to infinite
volume and there exists a natural ordering (in p) between measures. We will describe
these properties in the following section. In fact, the main object of these lecture notes
is to show that the self-dual point is indeed the critical point for all FK percolation with
q ≥ 1.

Theorem 1.8 (Beffara, Duminil-Copin [6]) Let q ≥ 1. The critical point pc = pc(q)
for the FK percolation with cluster-weight q on the square lattice satisfies

pc = psd(q) =

√
q

1 +
√
q
.

The proof of this theorem will be the core of this article. It is postpone to the next
sections. A rigorous derivation of the critical point was previously known in three cases.
For q = 1, the model is Bernoulli percolation, proved by Kesten in 1980 [51] to be critical
at pc(1) = 1/2. For q = 2, the model can be related to the Ising model, as we will see
very soon, and the computation of Baxter and Yang allows for a computation of pc(2).
Finally, for sufficiently large q, a proof is known based on the fact that the FK percolation
exhibits a first order phase transition (see [55, 56], the proofs are valid for q larger than
25.72). Let us mention that physicists derived the critical temperature for the Potts
models with q ≥ 4 in 1978, using non-geometric arguments based on analytic properties
of the Hamiltonian [42].
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1.5 The relation between the Potts models and FK percolation

As emphasized earlier, it would be very useful if the critical parameters of spin models
(the Ising and Potts models) could be understood as the solution of some duality relation.
This is indeed the case. FK percolations and Potts models (and therefore also the Ising
model) are all related via the following coupling, which allows to reinterpret the critical
parameters as self-dual points for the duality of FK percolation models. Since the Ising
model is simply the Potts model with 2 color, we treat the case of Potts models directly.

Let G be a finite graph and let ω be a configuration of open and closed edges on G. A
coloring σ ∈ {1, . . . , q}VG can be constructed on the graph G by assigning independently
to each cluster of ω not touching the boundary a color uniformly among {1, . . . , q} (in
this construction all the sites of a cluster in ω receive the same color), and by assigning
color 1 to any site connected to the boundary by an open path.

Proposition 1.9 (Coupling) Let q ∈ {2,3, . . .}. Let p ∈ (0,1) and G a finite graph. If
the configuration ω is distributed according to an FK percolation measure with parameters
(p, q) and wired boundary conditions, then the coloring σ is distributed according to a
Potts measure with inverse temperature β(q) = −1

2 ln(1−p) and monochromatic boundary
conditions equal to 1.

When q = 2, we obtain a coupling between the FK percolation with cluster-weight
q = 2 and the Ising model, called the Edwards-Sokal coupling [30].

Proof: Consider a finite graph G, and let p ∈ (0,1). Consider a measure P on pairs
(ω,σ), where ω is an FK configuration with wired boundary conditions and σ is the
corresponding random coloring, constructed as explained above. Then, for (ω,σ), we
have:

P [(ω,σ)] =
1

Z1
p,q,G

po(ω)(1 − p)c(ω)qk(ω) ⋅ q−k(ω) =
1

Z1
p,q,G

po(ω)(1 − p)c(ω).

Now, we construct another measure P̃ on pairs of percolation configurations and colorings
as follows. Let σ̃ be a coloring distributed according to a Potts model with inverse
temperature β satisfying e−2β = 1 − p and monochromatic boundary conditions equal
to 1. We deduce ω̃ from σ̃ by closing all edges between neighboring sites with different
colorings, and by independently opening edges between neighboring sites with same colors
with probability p. Then, for any (ω̃, σ̃),

P̃ [(ω̃, σ̃)] =
e−2βr(σ̃)po(ω̃)(1 − p)∣EG∣−o(ω̃)−r(σ̃)

Z
=
po(ω̃)(1 − p)c(ω̃)

Z

where r(σ̃) is the number of edges between sites with different colors.
Note that the two previous measures are in fact defined on the same set of “compati-

ble” pairs of configurations: if σ has been obtained from ω, then ω can be obtained from
σ via the second procedure described above, and the same is true in the reverse direction
for ω̃ and σ̃. This implies that P = P̃ and the marginals of P are the FK percolation with
parameters (p, q) and the Potts model at inverse temperature β, which is the claim. ◻

The coupling gives a randomized procedure to obtain a Potts configuration from an FK
configuration (it suffices to assign random colors). The proof also provides a randomized
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procedure to obtain an FK configuration from a Potts configuration: simply open with
probability p edges between two sites with same color.

If one considers free boundary conditions for the FK percolation, the coupling provides
us with a Potts configuration with free boundary conditions by coloring uniformly any
cluster (even those touching the boundary). We omit the details, since the generalization
is straightforward.

The coupling provides us with a “dictionary” between properties of the Potts mod-
els and properties of the percolation models. For instance, Potts correlations and FK
connectivity probabilities can be related since two sites which are connected in the FK
configuration must have the same color, while sites which are not have independent colors.
As an illustration, let us prove the following proposition.

Proposition 1.10 For p ∈ (0,1), q ∈ N ∖ {0,1}, and β(q) = −1
2 ln(1 − p),

µ1
β,G[σx = 1] =

1

q
+ (1 −

1

q
)φ1

p,q,G(x↔ ∂G).

Proof: Using the coupling P ,

µ1
β,G[σx = 1] = P (σx = 1) = P (σx = 1 and x↔ ∂G) + P (σx = 1 and x↮ ∂G)

= P (x↔ ∂G) +
1

q
P (x↮ ∂G) =

1

q
+ (1 −

1

q
)φ1

p,q,G(x↔ ∂G).

In the second line, we used the fact that σx = 1 if x↔ ∂G, and that the color is chosen
uniformly if x↮ ∂G. ◻

As a consequence,

lim
n→∞

µ1
q,β,[−n,n]2[σ0 = 1] >

1

q

if and only if
lim
n→∞

φ1
p,q,[−n,n]2(0↔ ∂[−n,n]2) = φ1

p,q,Z2(0↔∞) > 0

for p = 1−e−2β. In particular, βc(q) =
1
2 log(1−pc(q)). This observation implies that Theo-

rems 1.4 and 1.5 are consequences of Theorem 1.8. Furthermore, recall that Theorem 1.2
is a special case of Theorem 1.8.

Taking into account the previous discussion, we are now facing the following
situation. At this point, we successfully constructed a family of models unifying
the Ising, Potts and Bernoulli percolation. A duality relation allows to identify
non rigorously the critical point as the unique self-dual point. The rest of these
notes is devoted to the proof of existence of a phase transition, and to the rigorous
justification of the identification of the critical parameter. We now focus on the
FK percolation.

Let us mention that the previous discussion required the measures in infinite volume
to be defined properly. We will introduce infinite-volume measure for FK percolation
rigorously in the next section. Note that the coupling between FK percolation and
Potts models can be extended to the infinite volume, and this can be used to justify the
definition of infinite-volume measures for Ising and Potts models.
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2 Existence of a critical point for FK percolation

with q ≥ 1

In this section, we develop the required technology to prove that FK percolation measures
exist in infinite volume (i.e., on the whole lattice Z2). We also describe a natural ordering
between FK measures with the same cluster-weight q. Together, these two facts imply
the existence of a phase transition.

2.1 Strong positive association when q ≥ 1

The object of this section is to compare FK measures with different p but same q and to
derive correlation inequalities generalizing the Harris inequality for Bernoulli percolation.

Let G be a finite graph. The space Ω = {0,1}EG is (partially) ordered in the standard
way. Probability measures are always assumed to be positive, in the sense that the
probability of ω is strictly positive for any ω ∈ {0,1}EG . An event A is increasing if for
any ω′ ≥ ω, ω ∈ A implies ω′ ∈ A. A probability measure µ1 on Ω = {0,1}EG stochastically
dominates µ2 if µ1(A) ≥ µ2(A) for every increasing event A (in such case, µ2 is said to
be stochastically dominated by µ1).

Holley criterion Let us start by discussing stochastic ordering and correlation inequal-
ities for general probability measures. Define ω1 ∨ ω2 and ω1 ∧ ω2 by the formulas

(ω1 ∨ ω2)(e) = max{ω1(e), ω2(e)} and (ω1 ∧ ω2)(e) = min{ω1(e), ω2(e)}.

Theorem 2.1 (Holley inequality [43]) Let µ1, µ2 be two positive measures such that

µ1(ω1 ∨ ω2)µ2(ω1 ∧ ω2) ≥ µ1(ω1)µ2(ω2), ω1, ω2 ∈ Ω, (7)

then µ1(A) ≥ µ2(A) for any increasing event A.

The proof of this statement is a construction via Markov chains of a coupling (ω1, ω2)
between the two measures (the law of ω1 is µ1, while the law of ω2 is µ2), in a way that
ω2 ≤ ω1 almost surely. See [38, Theorem (2.1)] for the complete proof.

Theorem 2.1 possesses an elegant simplification: (7) does not need to be checked for
every configurations ω1, ω2. Define ωe (resp. ωe) to be the configurations coinciding with
ω on E ∖ {e}, and with e open (resp. e closed). Define ωef (resp. ωfe , ωef and ωef ) to be
the configurations coinciding with ω on E ∖ {e, f} and with e open and f closed (resp. e
closed and f open, e, f open and e, f closed). Then, it is sufficient to check that for any
ω and e, f ,

µ1(ω
e)µ2(ωe) ≥ µ1(ωe)µ2(ω

e) (8)

and µ1(ω
ef)µ2(ωef) ≥ µ1(ω

f
e )µ2(ω

e
f). (9)

The Holley criterion is particularly suitable to prove the Fortuin-Kasteleyn-Ginibre
inequality [32] (FKG inequality for short). First proved by Harris in the case of product
measures (in this case, it is called Harris inequality), the inequality relates the probability
of the intersection of two events to the product of the probabilities.
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Theorem 2.2 (FKG lattice condition) Let G = (V,E) be a finite graph and µ be a
positive measure on Ω. If for any configuration ω and e, f ∈ E

µ(ωef)µ(ωef) ≥ µ(ωfe )µ(ω
e
f), (10)

then for any increasing events A,B,

µ(A ∩B) ≥ µ(A)µ(B). (11)

Proof: Equation (11) can be understood as µ(⋅∣B) stochastically dominating µ. Let us
check Holley inequalities (8) and (9). We do it only for (9) ((8) is even easier). Fix ω as
well as e and f . We obtain

1ωef ∈B µ(ωef)µ(ωef) ≥ 1ωfe ∈B µ(ωfe )µ(ω
e
f).

by noticing that the indicator function on the left is equal to 1 if the one on the right is
equal to 1 (we use that B is increasing). Dividing by µ(B), we get

µ(ωef ∣B)µ(ωef) ≥ µ(ωfe ∣B)µ(ωef).

◻

By taking complements, the inequality µ(A ∩ B) ≤ µ(A)µ(B) holds for decreasing
events. Similarly, if A is increasing and B is decreasing, then µ(A ∩ B) ≤ µ(A)µ(B).
The theorem above also implies that µ(XY ) ≥ µ(X)µ(Y ) for any two increasing (resp.
decreasing) random variables X,Y .

Corollary 2.3 (FKG inequality) Let p ∈ [0,1] and q ≥ 1, and consider boundary con-
ditions ξ. For any two increasing events A and B,

φξp,q,G(A ∩B) ≥ φξp,q,G(A)φξp,q,G(B). (12)

Beware of the fact that q is required to be larger or equal to 1: in fact, the result is
false when q < 1. For instance, uniform spanning trees can be obtained as limits of FK
percolation with q going to 0: since they are negatively correlated, it is in fact natural to
conjecture that negative association would hold whenever q < 1.

Proof: Let us check (10). Fix a configuration ω and two edges e, f . We need to prove

po(ω
ef )+o(ωef )(1 − p)o(ω

ef )+o(ωef )qk(ω
ef )+k(ωef )

≥ po(ω
f
e )+o(ωef )(1 − p)o(ω

f
e )+o(ωef )qk(ω

f
e )+k(ωef ).

The terms involving p and (1 − p) do not create any difficulty since o(ωef) + o(ωef) =

o(ωfe ) + o(ωef) and c(ωef) + c(ωef) = c(ω
f
e ) + c(ωef). Recalling that q ≥ 1, we only need to

check that k(ωef) + k(ωef) ≥ k(ω
f
e ) + k(ωef). This inequality follows by studying whether

both end-points of f are already connected or not in ω∣G∖{e,f}. ◻

Corollary 2.4 (Comparison in p) Fix boundary conditions ξ and q ≥ 1. For any p1 ≤
p2 and any increasing event A,

φξp1,q,G(A) ≤ φξp2,q,G(A). (13)

This corollary affirms that φξp1,q,G is stochastically dominated by φξp2,q,G. It legitimates
the intuition that the larger p is, the more edges are open.
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Proof: For a random variable X, an easy computation implies

φξp2,q,G(X) = φξp1,q,G(XY )/K

where K is a normalizing constant and

Y (ω) = (
p2/(1 − p2)

p1/(1 − p1)
)

o(ω)

.

Plugging X = 1, we find K = φξp1,q,G(Y ). Now, X and Y being increasing (recall that
p1 ≤ p2), the FKG inequality implies

φξp2,q,G(X) = φξp1,q,G(XY )/φξp1,q,G(Y ) ≥ φξp1,q,G(X).

◻

Corollary 2.5 (Comparison between boundary conditions) Fix p ∈ [0,1] and q ≥
1. For any boundary conditions ξ ≤ ψ (meaning that sites wired in ξ are also wired in ψ)
and any increasing event A,

φξp,q,G(A) ≤ φψp,q,G(A). (14)

For stochastic ordering, the free and the wired boundary conditions are thus extremal:
for any increasing event A and any boundary conditions ξ,

φ0
p,q,G(A) ≤ φξp,q,G(A) ≤ φ1

p,q,G(A). (15)

In order to prove this inequality, an additional property is required. This property
will be crucial in the next sections. Consider a subset F of the edges of G. The following
proposition presents how the influence of the configuration outside F on the measure
within F can be encoded using appropriate boundary conditions ξ. This property is the
analog of the Dobrushin-Lanford-Ruelle conditions for Gibbs measures [35].

Proposition 2.6 (Domain Markov Property) Let p ∈ [0,1], q > 0 and ξ boundary
conditions. Fix F ⊂ EG. Let X be a random variable measurable in terms of edges in F
(call FEG∖F the σ-algebra generated by edges of EG ∖ F ). Then,

φξp,q,G(X ∣FEG∖F )(ψ) = φ
ξ∪ψ
p,q,F (X),

where ψ is a configuration outside F and ξ ∪ ψ is the wiring inherited from ξ and the
edges in ψ.

Proof: Let us deal with the case F = EG ∖{e}. Let ω be a configuration on F . For any
configuration ω,

φξp,q,G(ω∣F{e})(ω(e) = 1) ∶= φξp,q,G(ω∣ω(e) = 1)

=
φξp,q,G(ω

e)

φξp,q,G(ω(e) = 1)

=

po(ω)+1(1−p)c(ω)qk(ωe,ξ)
∑ω̃ po(ω̃)(1−p)c(ω̃)qk(ω̃,ξ)

∑ω̃(e)=1 po(ω̃)(1−p)c(ω̃)qk(ω̃,ξ)

∑ω̃ po(ω̃)(1−p)c(ω̃)qk(ω̃,ξ)

=
po(ω)+1(1 − p)c(ω)qk(ω,ψ)

∑ω̃
∣F
po(ω̃∣F )+1(1 − p)c(ω̃∣F )qk(ω̃∣F ,ψ)

= φψp,q,G(ω)
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where ψ is given by the boundary conditions ξ with the two end-points of e wired together.
In the third line, the sum on ω̃ ranges over all configurations on EG. Similarly

φξp,q,G(ω∣F{e})(ω(e) = 0) = φξG∖e,p,q(ω)

and the claim follows easily for F = EG∖{e}. The result can be deduced for every random
variable X by linearity. Now, one can repeat the previous reasoning recursively and the
result follows for any arbitrary subset of edges F . ◻

Proof of Corollary 2.5: Consider ξ as being the partition (V1, . . . , Vk) of boundary
vertices and construct a new graph by adding edges between vertices of Vi for every i.
Call this new graph G0 and E0 the set of additional edges. Now, the domain Markov
property implies

φξp,q,G(⋅) = φξp,q,G0
(⋅∣ all the edges of E0 are closed)

φψp,q,G(⋅) = φξp,q,G0
(⋅∣ all the edges of E0 are open).

Using the FKG inequality twice, we obtain

φξp,q,G(A) ≤ φξp,q,G0
(A) ≤ φψp,q,G(A)

for any increasing event A depending on edges in G. ◻

2.2 FK measures on Z2 and the phase transition

The definition of an FK measure on Z2 is not direct. Indeed, one cannot invoke the
number of open or closed edges on Z2 since they would typically be infinite. We thus
define FK measures on Z2 indirectly by taking (weak) limits of FK measures on finite
graphs. The set of configurations is equipped with the product σ-field.

Theorem 2.7 There exist two infinite measures φ0
p,q,Z2 and φ1

p,q,Z2, called the infinite-
volume FK percolation measures with free and wired boundary conditions respectively,
such that for any event A depending on a finite number of edges,

φ1
p,q,[−n,n]2(A)Ð→ φ1

p,q,Z2(A) as n→∞ and

φ0
p,q,[−n,n]2(A)Ð→ φ0

p,q,Z2(A) as n→∞.

Proof: We treat the case of the wired boundary conditions, the free boundary conditions
being handled similarly. Let A be an increasing event depending on a finite number of
edges, say on [−N,N]2. For n ≥ N , we get

φ1
p,q,[−(n+1),n+1]2(A) = φ1

p,q,[−(n+1),n+1]2[φ
1
p,q,[−(n+1),n+1]2(A∣FE

[−(n+1),n+1]2∖E[−n,n]2
)]

≤ φ1
p,q,[−(n+1),n+1]2[φ

1
p,q,[−n,n]2(A)] = φ1

p,q,[−n,n]2(A).

In the second line, we used the Domain Markov Property and the comparison between
boundary conditions (since the wired boundary conditions dominate arbitrary boundary
conditions). We deduce that φ1

p,q,[−n,n]2(A) is decreasing for n ≥ N and therefore converges
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to a limit denoted φ1
p,q,Z2(A). One can check compatibility relations between limits for

different events. Since F is generated by events depending on a finite number of edges,
these limits define a measure denoted φ1

p,q,Z2 . ◻

There are a priori many possible constructions of measures on Z2 and we described
only two of them. Some measures could also not be limits of measures in finite volume.
Nevertheless, let us mention without justification (see [38, Theorem (4.19)]) that FK
measures on Z2 are all stochastically dominated by φ1

p,q,Z2 and all dominate φ0
p,q,Z2 .

We do not aim for a description, or even a formal definition of FK measures on Z2 and
we refer to [38, Chapter 4] for a complete discussion. Let us mention that the description
of these measures is very difficult in general, but the following powerful theorem (we
omit the proof here) shows that the set of p for which several FK measures exist, or
equivalently, for which φ0

p,q,Z2 ≠ φ
1
p,q,Z2 , is fairly small.

Theorem 2.8 (Theorem (4.60) in [38]) For q ≥ 1, the set Dq of edge-weights p for
which uniqueness fails is at most countable.

We are now in a position to discuss the phase transition of the FK percolation.

Theorem 2.9 There exists a critical point pc ∈ [0,1] such that:

• For p < pc, any FK measure on Z2 a.s. has no infinite cluster;

• For p > pc, any FK measure on Z2 a.s. has an infinite cluster.

Proof: Fix q ≥ 1. For any N > 0,

φ1
p,q,Z2(0↔ ∂[−N,N]2) = lim

n→∞
φ1
p,q,[−n,n]2(0↔ ∂[−N,N]2)

and the quantity on the right is increasing in p (thanks to Corollary 2.4), we deduce that
φ1
p,q,Z2(0↔ ∂[−N,N]2) and therefore φ1

p,q,Z2(0↔∞) are increasing. We can define

p1
c = inf{p ∈ [0,1] ∶ φ1

p,q,Z2(0↔∞) > 0}

and
p0
c = inf{p ∈ [0,1] ∶ φ0

p,q,Z2(0↔∞) > 0}.

Theorem 2.8 implies that these two quantities must be equal. Let pc be the common
value p0

c = p
1
c .

Now, the existence of an infinite cluster is a translationally invariant event. The
measure φ0

p,q,Z2 can be proved to be ergodic (the proof is easy but technical and we

therefore refer to [38, Corollary (4.23)]), which forces the existence of an infinite cluster
almost surely.

Since any FK measure φ on Z2 with parameters p and q is stochastically dominated
by φ1

p,q,Z2 and dominates φ0
p,q,Z2 , we find

φ(0↔∞) ≤ φ1
p,q,Z2(0↔∞) = 0,

which immediately implies that there is no infinite cluster almost surely. Similarly, when
p > pc,

φ(∃ infinite cluster) ≥ φ0
p,q,Z2(∃ infinite cluster) = 1,
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which concludes the proof. ◻

The fact that pc lies strictly between 0 and 1 is not completely obvious, but can
be proved by a counting argument similar to Peierls’s proof. We do not present this
argument since we will directly compute the critical value in the next section, but it is
an interesting exercise that we recommend to the reader.

At this point, the previous theorem implies the existence of a critical βc(q) for
any integer q ≥ 2. This provides an alternative proof of the existence of a phase
transition for the Ising model, and a first justification of the existence of a phase
transition for Potts models.

3 A first computation of pc based on duality

Fix q ≥ 1. We know from the last section that the critical parameter pc = pc(q) exists. We
now aim to exploit the duality of FK percolation to compute the critical point. Recall
that

psd = psd(q) =
√
q/(1 +

√
q).

3.1 The inequality pc ≥ psd

The proof of this inequality is fairly easy and uses a classical construction known as
Zhang’s argument. This argument was first used in the case of percolation, but extends
easily to the FK percolation, and works as follows. If one assumes that pc < psd, the
configuration at psd must contain one infinite open cluster and one infinite dual open
cluster (since the dual FK percolation is then supercritical as well). Intuition indicates
that such coexistence would imply that there is more than one infinite open cluster, which
would be in contradiction with the following important fact.

Lemma 3.1 (Uniqueness of the infinite cluster) For any p ∈ [0,1], the number of
infinite cluster is equal to 0 or 1 almost surely. Moreover, for any extremal Gibbs measure,
it is either equal to 0 almost surely or equal to 1 almost surely.

This property is not specific to Z2. On any amenable infinite transitive graph, the
infinite cluster is unique when it exists. This uniqueness can fail when considering FK
percolations on more general graphs such as non-amenable Cayley graphs. We refer to
the argument of Burton and Keane [14] for the case of percolation and to [38, Theorem
(6.17)] for full detail on the FK percolation. We still give a sketch of the argument.

Proof: We prove the (slightly stronger) second version of the statement. Let N be
the number of infinite components in the configuration (it is a random variable). First,
ergodicity of the extremal measures under translation shows that for each of them, N
takes an almost sure value n ∈ Z+ ∪ {∞}. We need to show that in fact n ∈ {0,1}.

Assume first that n ∈ N ∖ ∖{0,1}. There exists L such that, with probability at
least 1/2, the box of size L at the origin meets all n infinite components. If that is the
case, opening all the bonds in that box would create a configuration with exactly one
infinite component. The domain Markov property shows that given the configuration,
the conditional probability that all the bonds inside the box are indeed open is strictly
positive. This implies that P [N = 1] > 0, which is a contradiction.
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Now assume that n = ∞. Again, there exists L such that with probability 1/2, the
box of size L at the origin meets at least 3 infinite components. Again, one can modify
the states of the (finitely many) bonds within that box to create a configuration where
the origin is a trifurcation, in the sense that it is on an infinite connected component but
that removing it from its component separates it into three disjoint infinite components.
Hence, the probability η that the origin is a trifurcation is strictly positive.

Consider a box of size M > 0, and look at the number XM of trifurcations in that
box. The expectation of XM is equal to η times the number of vertices in the box, i.e. of
order ηM2. On the other hand, it is easy to check by induction on XM that the number
of infinite components in the complement of the box (vertices in Λm do not count) which
touch the boundary of the box is at least equal to XM+2 whenever XM > 0 (indeed, adding
a trifurcation on an existing cluster forces the existence of one more infinite component
outside the box). This gives a deterministic upper bound on XM which is the number
of vertices on the boundary of the box, of order M . This leads again to a contradiction
when taking M to be large enough.

The only remaining cases are n = 0 and n = 1, which ends the proof. ◻

We are now in a position to present Zhang’s argument.

Proposition 3.2 (Lower bound pc ≥ psd) For q ≥ 1, there exists almost surely no infi-
nite cluster for φ0

psd,q,Z2. As a consequence, pc ≥ psd.

Proof: Let ε≪ 1. Assume that φ0
psd,q,Z2(0↔∞) > 0 and choose N large enough that

φ0
psd,q,Z2([−N,N]2 ↔∞) > 1 − ε.

The integer N exists since the infinite cluster exists almost surely, which implies that the
quantity on the left tends to 1 as N tends to infinity.

Fix n ≥ N . Let Aleft (resp. Aright, Atop and Abottom be the events that {−n} × [−n,n]
(resp. {n} × [−n,n], [−n,n] × {n} and [−n,n] × {−n}) are connected to infinity in Z2 ∖
[−n,n]2. By symmetry,

φ0
psd,q,Z2(Aleft ∪Aright) = φ

0
psd,q,Z2(Atop ∪Abottom).

We also find that

φ0
psd,q,Z2(Aleft ∪Aright ∪Atop ∪Abottom) = φ0

psd,q,Z2([−n,n]
2 ↔∞) > 1 − ε.

A naive bound would say that φ0
psd,q,Z2(Aleft ∪Aright) ≥

1−ε
2 . Nevertheless, we are dealing

with increasing events and we can invoke the FKG inequality to improve this naive lower
bound. Indeed, a very simple computation based on the FKG inequality shows that

φξp,q,G(A ∪B) ≥ 1 − (1 − φξp,q,G(A))(1 − φξp,q,G(B))

for any two increasing events A and B. If A and B have same probability, we find

φξp,q,G(A) ≥ 1 − (1 − φξp,q,G(A ∪B))1/2.

This argument is called the square-root trick. Applying this trick twice, we deduce that

φ0
psd,q,Z2(Aleft) ≥ 1 − ε1/4.
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As a consequence,
φ0
psd,q,Z2(Aleft ∩Aright) ≥ 1 − 2ε1/4.

Since φ0
psd,q,Z2 is stochastically dominated by φ1

psd,q,Z2 , we also obtain

φ1
psd,q,Z2(Atop ∩Abottom) ≥ 1 − 2ε1/4.

We now use that p∗sd = psd. Note that the dual measure of φ0
psd,q,Z2 is φ1

psd,q,(Z2)∗ .

Indeed, one can easily see that the duality relation extends to infinite volume by looking
at measures on [−n,n]2 and letting n go to infinity. For n ≥ N + 1,

φ0
psd,q,Z2(Aleft ∩Aright ∩A

∗
top ∩A

∗
bottom) > 1 − 4ε1/4,

where A∗
top and A∗

bottom are the events that (1
2 ,

1
2) + [1 − n,n − 1] × {n − 1} and (1

2 ,
1
2) +

[1−n,n− 1]× {1−n} are connected to infinity in the dual configuration restricted to the
outside of (1

2 ,
1
2) + [1 − n,n − 1]2.

Now, Let B be the event that every dual edge in (1
2 ,

1
2) + [1 − n,n − 1]2 is dual open

(the corresponding edge is closed in the FK model on Z2). Note that the events B and
Aleft ∩Aright ∩A∗

top ∩A
∗
bottom depend on disjoint sets. The domain Markov property shows

that
φ0
psd,q,Z2(B∣Aleft ∩Aright ∩A

∗
top ∩A

∗
bottom) > 0 (16)

which immediately implies that

φ0
psd,q,Z2(B ∩Aleft ∩Aright ∩A

∗
top ∩A

∗
bottom) > 0.

But this last event is contained in the event that there are two disjoint infinite clusters,
which we excluded, thus leading to a contradiction. ◻

Let us mention that the fact that the Domain Markov property implies (16) can be
generalized. In fact, the Domain Markov property immediately implies that the prob-
ability that an edge e is open conditionally to a configuration on EG ∖ {e} is bounded
away from 0 and 1 uniformly on the configuration. This property is called finite energy
property, and is a very important feature of FK percolation.

It is a good time to mention that on Z2, Theorem 2.8 can be improved. Indeed, it
can be shown that the FK measure on Z2 is unique for p < pc. By duality, this implies
that the FK measure is unique for p > p∗c as well. Since pc ≥ psd, this implies that the
unique point for which uniqueness can possibly fail is the self-dual point. The previous
argument uses duality in a strong way.

3.2 Interlude

We now aim to prove the much harder bound pc ≤ psd. To get this inequality, one needs to
prove that φ1

p,q,Z2(0↔∞) > 0 for any p > psd. This is done by estimating the probability
that there exists an open path crossing a rectangle, and then by combining paths in
different rectangles to create an infinite path from 0 to infinity. More precisely, the proof
is based on three main ingredients.

The first one is an estimate on crossing probabilities at the self-dual point p = psd:
the probability of crossing a rectangle with aspect ratio (α,1) — meaning that the ratio
between the width and the height is of order α — in the horizontal direction is bounded
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away from 0 and 1 uniformly in the size of the box. For a rectangle R, let Ch(R) denote
the event that there exists a path between the left and the right sides which stays inside
the rectangle. Such a path is called a horizontal (open) crossing of the rectangle. If
there exists a vertical open crossing of the rectangle, this rectangle is said to be crossed
horizontally. Similarly, we denote Cv(R) for the existence of a vertical crossing, i.e. an
open path from top to bottom. The targeted result would be something of the following
kind:

φ1
psd,q,Z2(Ch([0,2n] × [0, n]) ≥ c > 0

uniformly in n.
The second ingredient is a sharp threshold theorem which was originally introduced

for product measures. In our case, it may be used to estimate the derivative of the
probability of crossings. In particular, the probability of crossings goes to 1 when p > psd
and the speed of convergence can be bounded from below. Roughly speaking, we aim for
a claim of the following kind: for any p > psd, there exists c > 0 such that

φ1
p,q,Z2(Ch([0,2n] × [0, n]) ≥ 1 − n−c

for any n ≥ 0.
The last ingredient is a construction combining different crossings together to con-

struct an infinite cluster. More precisely, define Rn = [0,2n] × [0,2n+1] if n is odd and
Rn = [0,2n+1] × [0,2n] if n is even. Let C (Rn) be the event that Rn is crossed in the
long direction (meaning vertically if n is odd and horizontally if n is even). Let B be the
event that edges in [0,2]2 are open. The FKG inequality then implies

φ1
p,q,Z2(0↔∞) ≥ φ1

p,q,Z2(B ∩ (∩n≥1C (Rn)) )

≥ φ1
p,q,Z2(B)∏

n≥1

φ1
p,q,Z2(C (Rn))

≥ φ1
p,q,Z2(B)∏

n≥1

(1 − 2−cn) > 0.

There are many details to account for in the approach sketched above. The main
difficulty is that the second step requires (see Section 3.4) to work with a torus. Let
us describe this in more details. For m ≥ 1, the torus of size m (meaning of volume
m2) can be seen as the box [0,m]2 with the boundary condition obtained by imposing
that (i,0) is wired to (i,m) for every i ∈ [0,m] and that (0, j) is wired to (m,j) for
every j ∈ [0,m]. The FK percolation measure on the torus of size m will be denoted by
φp
p,q,[0,m]2 or more concisely φp

p,q,m. Note that this realization of the torus provides us with

a natural embedding in the plane.
The precise theorem corresponding to the first step is the following generalization of

the celebrated Russo-Seymour-Welsh theorem [65, 69] for percolation.

Theorem 3.3 Let α > 1 and q ≥ 1. There exists c(α) > 0 such that for every m > αn > 0,

φp
psd,q,m

(Ch([0, αn] × [0, n])) ≥ c(α). (17)

With this theorem at our disposition, the precise target of the second step will be the
following result asserting that crossing probabilities converge to 1 fairly fast when p > psd.
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Theorem 3.4 Let q ≥ 1 and p > psd. There exists c′(p) > 0 such that for every n > 0,

φp
p,q,8n(Ch([0,4n] × [0, n])) ≥ 1 − n−c

′(p). (18)

The last step then consists in using Theorem 3.4 to construct an infinite path with
positive probability. As one can see, the boundary conditions raise new difficulties and
the construction presented above does not quite work.

The rest of this section is devoted to the presentation of these three steps. They are
ordered by difficulty, starting by the third one and finishing by the first step.

3.3 A new construction for the infinite path

As explained in the previous subsection, Theorem 3.3 can be used to construct a path
from 0 to infinity when p > psd with positive probability. There is a major difficulty in
doing such a construction: one needs to transform estimates in the torus into estimates in
the whole plane. One solution is to replace the periodic boundary conditions with wired
boundary conditions. The path construction is a little tricky since it must propagate
wired boundary conditions through the construction.

Let n ≥ 1; define the annulus

An ∶= [−2n+1,2n+1]2 ∖ [−2n,2n]2.

An open circuit in an annulus is an open path that surrounds the origin. Denote by An

the event that there exists an open circuit in An surrounding the origin, together with
an open path from this circuit to the boundary of [−2n+2,2n+2]2, see Fig. 4. Note that
the intersection of the following events is included in A:

Ch([−2n+1,2n+1] × [2n,2n+1]), Ch([−2n+1,2n+1] × [−2n+1,2n]),
Cv([2n,2n+1] × [−2n+1,2n]), Cv([2n,2n+1] × [2n,2n+1]),
Cv([−2n,2n] × [0,2n+2]),

where Cv means that there exists an open path from bottom to top. As a consequence,
for any graph G containing [−2n+2,2n+2]2,

φξp,q,G(An) ≥ φ
ξ
p,q,G(Ch([0,2

n+2] × [0,2n])5. (19)

[−αn+2, αn+2]2

[−αn, αn]2

[−αn+1, αn+1]2

0

Figure 4: Left: The event An. Right: The combination of events An: it indeed
constructs a path from the origin to infinity.
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By observing that

φ1
p,q,Z2(0↔∞) ≥ φ1

p,q,Z2 (⋂
k≥1

Ak) = lim
n→∞

φ1
p,q,Z2 (

n

⋂
k=1

Ak) > 0,

it becomes clear that it is sufficient to bound φ1
p,q,Z2 (⋂

n
k=1 Ak) from below, uniformly in

n. For every n ≥ 1,

φ1
p,q,Z2 (

n

⋂
k=1

Ak) = φ1
p,q,Z2(An)

n−1

∏
k=1

φ1
p,q,Z2(Ak∣Aj, k < j ≤ n). (20)

On ⋂j>k Aj, consider the exterior-most open circuit Γ in Ak+1. Conditionally on Γ = γ,
where γ is a possible realization of Γ, the configuration within the interior of γ follows the
law of a FK configuration with wired boundary condition (indeed, the Domain Markov
property allows to encode the law of the configuration inside in terms of the boundary
conditions, which are wired since the path γ is open). In particular, the conditional
probability that there exists a circuit in Ak connected by an open path to γ is greater than
the probability that there exists a circuit in Ak connected to the boundary of [−2k+2,2k+2]2

with wired boundary conditions. Therefore, we obtain that almost surely

φ1
p,q,Z2(Ak∣Aj, k + 1 ≤ j ≤ n) = φ1

p,q,Z2(φp,q,Z2(Ak∣Γ))

≥ φ1
p,q,[−2k+2,2k+2]2(Ak)

≥ φp

p,q,2k+3
(Ak)

≥ φp

p,q,2k+3
(Ch([0,2

k+2] × [0,2k])5

≥ (1 − 2−c
′(p)k)5

In the first inequality, we used the uniform lower bound on the conditional probability. In
the second, we used the comparison between boundary conditions between [−2k+2,2k+2]2

with wired boundary conditions and periodic boundary conditions on the torus of size
2k+3. The third is due to (19). The last inequality follows from Theorem 3.4 (in particular
c′(p) > 0 is the universal constant given by the theorem).

Plugging the previous estimate into (20), we obtain

φ1
p,q,Z2 (

n

⋂
k=1

Ak) ≥ φ1
p,q,Z2(An)

n−1

∏
k=1

(1 − 2−c
′(p)k)5 ≥ Cφ1

p,q,Z2(An)

Letting n go to infinity will conclude the proof if φ1
p,q,Z2(An) remains bounded away from

0 uniformly in n, or equivalently if φ1
p,q,Z2(Ch([0,4n] × [0, n])) remains bounded away

from 0 uniformly in n (thanks to (19)). Yet, for m large enough,

φ1
p,q,[−m

2
,m
2
]2[Ch([0,4n] × [0, n])] ≥ φp

p,q,m[Ch([0,4n] × [0, n])]

≥ φp
psd,q,m

[Ch([0,4n] × [0, n])] ≥ c(4).

In the second line, we used Theorem 3.3. As m goes to infinity, the left hand side
converges to the probability in infinite volume and

φ1
p,q,Z2(Ch([0,4n] × [0, n])) ≥ c(4).

The proof is therefore finished.
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3.4 A sharp threshold theorem for crossing probabilities

The aim of this section is to prove Theorem 3.4 with the help of Theorem 3.3. In order
to do so, one needs to understand the behavior of the function p ↦ φξp,q,n(A) for the
increasing event A ∶= Ch([0, αn] × [0, n]). This increasing function is equal to 0 at p = 0
and to 1 at p = 1, and we are interested in the range of p for which its value is between
ε and 1 − ε for ε ∈ (0,1/2) (this range is usually referred to as a window). The study
does not restrict to the event Ch([0, αn]×[0, n]) but extends to a large class of increasing
events. For this reason, we do not focus on the event Ch([0, αn] × [0, n]) only and work
with arbitrary increasing events A.

Let us start by deriving lower bounds on the derivative of increasing events. The case
of the Bernoulli percolation is the most classical and we begin by discussing it. Given a
configuration ω, an edge e is said to be pivotal for the event A if ωe ∈ A and ωe ∉ A.

Proposition 3.5 (Russo’s formula [66]) For any increasing event A depending on a
finite set of edges E,

d

dp
Pp(A) = ∑

e∈E
Pp(e is pivotal for A).

Proof: Assume that A depends on edges e1, . . . , en only. We reuse the increasing cou-
pling for Bernoulli percolation. Let U(e1), . . . , U(en) be independent uniform variables on
[0,1] and let P be the law of the collection (U(e1), . . . , U(en)). For any p̄ = (p1, . . . , pn),
define the inhomogeneous percolation configuration

ωp̄ = (1U(e1)≤p1 , . . . ,1U(en)≤pn).

Let j ∈ {1, . . . , n} and let p′ be defined by p′j > pj and p′i = pi for any i ≠ j. Then

P(ωp̄′ ∈ A) −P(ωp̄ ∈ A) = P(ωp̄′ ∈ A and ωp̄ ∉ A)

= P(ej is pivotal for A and ωp̄′(ej) = 1 and ωp̄(ej) = 0)

= P(ej is pivotal for A and U(ej) ∈ (pj, p
′
j))

= (p′j − pj)P(ej is pivotal for A and ωp̄)

In the third line, we used the fact that ej is the only edge that differs between ωp̄ and
ωp̄′ . In the fourth, we used the fact that the state of ej is independent of the fact that it
is pivotal. Therefore,

d

dpj
P(ωp̄ ∈ A) = P(ej is pivotal for A).

Summing on j for p̄ = (p, . . . , p), we deduce the result. ◻

For general cluster weights, the previous coupling is not available but Russo’s formula
still extends (as an inequality) to this context, with appropriate modifications.

Proposition 3.6 Let q ≥ 1 and ε > 0. There exists c = c(q, ε) > 0 such that for any
p ∈ [ε,1 − ε] and any increasing event A,

d

dp
φξp,q,G(A) ≥ c∑

e∈E
IA(e),

where IA(e) ∶= φ
ξ
p,q,G(A∣ω(e) = 1)−φξp,q,G(A∣ω(e) = 0) is the (conditional) influence of the

edge e on A.

When q = 1, IA(e) = Pp(e is pivotal for A) and we find Russo’s formula.
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Proof: By differentiating with respect to p (for details of the computation, see of [38,
Theorem (2.46)]), one obtains

d

dp
φξp,q,G(A) =

1

p(1 − p)
∑
e∈E

[φξp,q,G(1Aω(e)) − φ
ξ
p,q,G(ω(e))φ

ξ
p,q,G(A)] . (21)

By definition of IA(e), the summation term on the right is equal to

IA(e)φ
ξ
p,q,G(ω(e))(1 − φ

ξ
p,q,G(ω(e))),

so that (21) becomes

d

dp
φξp,q,G(A) =

1

p(1 − p)
∑
e∈E

φξp,q,G(ω(e))(1 − φξp,q,G(ω(e)))IA(e)

= ∑
e∈E

φξp,q,G(ω(e))(1 − φξp,q,G(ω(e)))

p(1 − p)
IA(e)

from which the claim follows since the term

φξp,q,G(ω(e))(1 − φξp,q,G(ω(e)))

p(1 − p)

is bounded away from 0 uniformly in p ∈ [ε,1 − ε] and e ∈ E when q is fixed. ◻

There has been an extensive study of the largest influence for an arbitrary event A.
It was initiated for the uniform measure (equivalently the Bernoulli percolation with
parameter 1/2) in [47] (see also [33, 34, 48] for related theorems) and was later extended
to product measures in [12] and to FK percolation in [36].

Theorem 3.7 ([36]) Let q ≥ 1 and ε > 0. There exists a constant c = c(q, ε) ∈ (0,∞)
such that the following holds. For every p ∈ [ε,1 − ε] and every increasing event A,

max
e∈EG

IA(e) ≥ cφξp,q,G(A)(1 − φξp,q,G(A))
log ∣EG∣

∣EG∣
.

In general, the maximum influence provides little information on the sum of influences
over all edges, which is the quantity we are ultimately interested in. For instance, one
may think of the event that a prescribed edge e0 is open, for which the influence of the
edge e0 equals 1, while the one of edges far away is very small (observe that except for
Bernoulli percolation, this influence is still non zero for edges different from e0). For this
example, the graph of p↦ φξp,q,G(e0) does not have a small window between ε and 1 − ε.

In the case of a translation-invariant events, this problem does not arise since horizon-
tal (resp. vertical) edges play a symmetric role, so that the influence is the same for all
the edges of a given orientation. With this observation in mind, Proposition 3.6 together
with Theorem 3.7 provide us with the following differential inequality.

Theorem 3.8 Let q ≥ 1 and ε > 0. There exists a constant c = c(q, ε) ∈ (0,∞) such that
the following holds. For any p ∈ [ε,1 − ε] and for any translation-invariant increasing
event A on the torus of size n,

d

dp
φp
p,q,n(A) ≥ cφp

p,q,n(A)(1 − φp
p,q,n(A)) logn.
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For a translational invariant and increasing event A, the previous inequality can be
integrated between two parameters p1 < p2. Recognizing the derivative of log( x

1−x), one
obtains

1 − φp
p1,q,n(A)

φp
p1,q,n(A)

≥
1 − φp

p2,q,n(A)

φp
p2,q,n(A)

nc(p2−p1).

If φξp1,q,n(A) is assumed to stay bounded away from 0 uniformly in n ≥ 1, there exists
c′ > 0 such that

φp
p2,q,n(A) ≥ 1 − c′n−c(p2−p1).

Our goal is to apply this result to the event Ch([0,4n] × [0, n]) which unfortunately is
not invariant under translations. In [10, 11], Bollobás and Riordan applied a brilliant
strategy to relate the probability of the previous event to the probability of a certain
translational invariant event. We follow the same idea here.

Proof of Theorem 3.4: Let B be the event that there exists a vertical crossing of a
rectangle with dimensions (n/2,8n) in the torus of size 8n. This event is invariant under
translations and satisfies

φp
psd,q,8n

(B) ≥ φp
psd,q,8n

(Ch([0,8n] × [0, n/2])) ≥ c(16)

uniformly in n.
Let p > psd. Since B is increasing and invariant under translation, Theorem 3.8 and

the discussion following it imply the existence of ε = ε(p, q) and c = c(p, q) such that

φp
p,q,8n(B) ≥ 1 − cn−ε. (22)

If B holds, one of the 32 rectangles

[j4n, (j + 1)4n] × [in/2, in/2 + n], (i, j) ∈ {0,1} × {0, . . . ,15}

must be crossed from top to bottom. Denote these events by Aij (the way we index
rectangles here is obvious). These events are translates of Ch([0,4n] × [0, n]). Using
the FKG inequality in the second line (this is another instance of the square-root trick
mentioned earlier), we find

φp
p,q,8n(B) = 1 − φp

p,q,8n(B
c) ≤ 1 − φp

p,q,8n(∩i,jA
c
ij)

≤ 1 −∏
i,j

φp
p,q,8n(A

c
ij) = 1 − [1 − φp

p,q,8n(Ch([0,4n] × [0, n]))]
32
.

Plugging (22) into the previous inequality, we deduce

φp
p,q,8n (Ch([0,4n] × [0, n])) ≥ 1 − (cn−ε)1/32.

◻
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3.5 Crossing probabilities for rectangles at the self-dual point

We are now getting close to a complete proof of pc ≤ psd. The third and second steps
of our program have been implemented in the previous sections and we now focus on
the first one, i.e. the proof of Theorem 3.3. The inherent difficulty of this theorem is
two-fold. The first difficulty comes from boundary conditions. The result would be false
with arbitrary boundary conditions, such as free boundary conditions. Indeed, for q large
enough, the probability of crossing a rectangle at the self-dual point is known to decay
exponentially fast for free boundary conditions. The second difficulty comes from the
lack of independence. There are many ways to prove this result in the case of percolation
but they always involve independence in a crucial way. In our case, no independence is
available and we overcome this difficulty by using self-duality in a very strong fashion.

We work on the torus of size m. For technical reasons, it will be convenient to
rotate the lattice in this torus by π/4 In such case, the graph [0, αn] × [0, n] is then the
intersection of the rotated lattice with the rectangle [0, αn] × [0, n]. We will prove the
following result.

Proposition 3.9 Let q ≥ 1. There exists c > 0 such that for every m > 3
2n > 0,

φp
psd,q,m

(Ch([0,
3
2n] × [0, n])) ≥ c. (23)

Let us explain how this result implies Theorem 3.3.

Proof of Theorem 3.3: We use Proposition 3.9. Let us emphasize once again that
the lattice is rotated by π/4. Let R = T ([0, n] × [0, αn]), where T is the composition of
the rotation of angle π/4 and the translation of vector (n2 ,0), see Figure 5. Define the
following rectangles:

Rv
j = [j n2 , (j + 1)n2 ] × [j n2 , (j +

3
2)

n
2 ] and Rh

j = [j n2 , (j +
3
2)

n
2 ] × [(j + 1

2)
n
2 , (j +

3
2)

n
2 ]

for j ∈ [0, ⌊2α⌋ − 1], where ⌊x⌋ denotes the integral part of x. If every rectangle Rh
j is

crossed horizontally, and every rectangle Rv
j is crossed vertically, then T ([0, αn]×[0, n]) is

crossed in the long direction. The FKG inequality and Proposition 3.9 provide us with a
lower bound on the crossing probability. Now, the graph T ([0, αn]× [0, n]) is isomorphic
to the rectangle [0, αn]×[0, n] when the lattice is not rotated, which concludes the proof.
◻

Let us now turn to the proof of Proposition 3.9. Proving lower bounds on the proba-
bility of crossing rectangles [0, 3

2n]× [0, n] is much harder than bounding the probability
that [0, n]2 is crossed. Indeed, in the case of squares, the proof relies entirely on duality,
as explained in the next lemma.

Lemma 3.10 Let q ≥ 1, there exists c > 0 such that for every m > n ≥ 1,

φp
psd,q,m

(Ch([0, n]
2)) ≥ c.

Proof: We work on the torus Tm of size m, which has m2 vertices and 2m2 edges.
The proof uses duality once again. The case of periodic boundary conditions is a little
more involved that free and wired boundary conditions (which we recall was treated in
Proposition 1.7). Indeed, its dual is not a FK percolation; yet it is not very different
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Figure 5: Left: A combination of crossings in smaller rectangles creating a crossing
in the rectangle T ([0, αn] × [0, n]). Right: The rectangles R, R1 and R2 and the
event A.

from one. In order to state duality in this case, additional notation is required. Define
an additional parameter δ(ω) as follows. Call a (maximal) connected component of ω a
net if it contains two non-contractible simple loops of different homotopy classes, and a
cycle if it is non-contractible but is not a net. Notice that every configuration ω can be
of one of three types:

• One of the clusters of ω is a net. Then no other cluster of ω can be a net or a cycle.
In that case, let δ(ω) = 2;

• One of the clusters of ω is a cycle. Then no other cluster can be a net, but other
clusters can be cycles as well (in which case all the involved, simple loops are in the
same homotopy class). Then let δ(ω) = 1;

• None of the clusters of ω is a net or a cycle. Let δ(ω) = 0.

With this additional notation, Euler’s formula becomes

∣VTm ∣ − o(ω) + f(ω) = k(ω) + 1 − δ(ω). (24)

Besides, these terms transform in a simple way under duality: o(ω) + o(ω∗) = ∣ETm ∣,
f(ω) = k(ω∗) and δ(ω) = 2 − δ(ω∗). The same proof as that of Proposition 1.7, taking
the additional topology into account, then leads to the relation

(φp
p,q,n)({ω}) =

q1−δ(ω)

Z
φp
p∗,q,n({ω

∗}), (25)

where Z is a normalizing constant. This means that even though the dual model of
the periodic boundary conditions FK percolation is not exactly a FK percolation at the
dual parameter, it is absolutely continuous with respect to it and the Radon-Nikodym
derivative is bounded above and below by constants depending only on q.

The dual of the subgraph [0, n]2 is [0, n]2 (meaning the sites of the dual torus inside
[0, n]2). If there is no crossing from left to right in [0, n]2, there exists necessarily a cross-
ing in the dual configuration from top to bottom. Hence, the complement of Ch([0, n]2)
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is the event C ∗
v ([0, n]

2) that [0, n]2 is crossed vertically in the dual configuration, thus
yielding

φp
psd,q,m

(Ch([0, n]
2)) + φp

psd,q,m
(C ∗

v ([0, n]
2)) = 1.

Using the duality property for periodic boundary conditions and the symmetry of the
lattice, the probability φp

psd,q,m(C ∗
v ([0, n]

2)) is larger than cφp
psd,q,m(Ch([0, n]2)) (for some

constant c only depending on q), giving

1 ≤ (1 + c)φp
psd,q,m

(Ch([0, n]
2)),

which concludes the proof. ◻

d = −
√
2
4 + iR

γ2

γ1

σd(γ2)

σd(γ1)

G(γ1, γ2)

free on this arc

Figure 6: Two paths γ1 and γ2 satisfying Hypothesis (⋆) and the graph G(γ1, γ2).

One can in fact go much further with duality. We extend crossing estimates to a
very large family of symmetric domains. We refer to Figure 6 for a picture of what is a
symmetric domain. Such a domain is given by two paths γ1 and γ2 satisfying a certain
Hypothesis (⋆) (see below) and is denoted G(γ1, γ2). The mixed boundary conditions
on this graph are wired on γ1 (all the edges are pairwise connected), wired on γ2, and
free elsewhere. The measure on G(γ1, γ2) with parameters (psd, q) and mixed boundary
conditions is denoted by φpsd,q,γ1,γ2 or more simply φγ1,γ2 .

More formally, define the line d ∶= −
√

2/4 + iR. The orthogonal symmetry σd with
respect to this line maps Z2 to (Z2)∗. Let γ1 and γ2 be two paths satisfying the following
Hypothesis (⋆):

• γ1 remains on the left of d and γ2 remains on the right;

• γ2 begins at 0 and γ1 begins on a site of Z2 ∩ (−
√

2/2 + iR+);

• γ1 and σd(γ2) do not intersect (as curves in the plane);

• γ1 and σd(γ2) end at two sites (one primal and one dual) which are at distance√
2/2 from each other.
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The definition extends trivially via translation, so that the pair (γ1, γ2) is said to satisfy
Hypothesis (⋆) if one of its translates does. When following the paths in counter-clockwise
order, one can create a circuit by linking the end points of γ1 and σd(γ2) by a straight
line, the start points of σd(γ2) and γ2, the end points of γ2 and σd(γ1), and the start
points of σd(γ1) and γ1. The circuit (γ1, σd(γ2), γ2, σd(γ1)) surrounds a set of vertices
of Z2. Define the graph G(γ1, γ2) composed of sites of Z2 that are surrounded by the
circuit (γ1, σd(γ2), γ2, σd(γ1)), and of edges of Z2 that remain entirely within the circuit
(boundary included).

Lemma 3.11 For any pair (γ1, γ2) satisfying Hypothesis (⋆), the following estimate
holds:

φγ1,γ2(γ1 ↔ γ2) ≥
1

1 + q2
.

Proof: If γ1 and γ2 are not connected, σd(γ1) and σd(γ2) must be connected by a path
in the dual configuration (event corresponding to σd(γ1) ↔ σd(γ2) in the dual model).
Hence,

1 = φγ1,γ2(γ1 ↔ γ2) + σd ∗ φ
∗
γ1,γ2(γ1 ↔ γ2), (26)

where σd∗(φ∗γ1,γ2) denotes the image under σd of the dual measure of φγ1,γ2 . This measure
lies on G(γ1, γ2) as well and has parameters (psd, q).

When looking at the dual measure of a FK percolation, the boundary conditions
are transposed into new boundary conditions for the dual measure. Here, the boundary
conditions become wired on γ1 ∪ γ2 and free elsewhere (once again, this is easy to check
using Euler’s formula).

It is very important to notice that the boundary conditions are not exactly the mixed
one, since γ1 and γ2 are wired together. Nevertheless, the Radon-Nikodym derivative of
σd ∗ φ∗γ1,γ2 with respect to φγ1,γ2 is easy to bound. Indeed, for any configuration ω, the
number of cluster can differ by at most 1 when counted for σd ∗ φ∗γ1,γ2 or φγ1,γ2 so that
the ratio of partition functions belongs to [1/q, q]. Therefore, the ratio of probabilities
of the configuration ω remains between 1/q2 and q2. This estimate extends to events by
summing over all configurations. Therefore,

σd ∗ φ
∗
γ1,γ2(γ1 ↔ γ2) ≤ q

2φγ1,γ2(γ1 ↔ γ2).

When plugging this inequality into (26), we obtain

φγ1,γ2(γ1 ↔ γ2) + q
2φγ1,γ2(γ1 ↔ γ2) ≥ 1

which implies the claim. ◻

Proof of Proposition 3.9: The proof goes as follows: we start with creating two paths
crossing square boxes, and we then prove that they are connected with good probability.

Setting of the proof. Consider the rectangle R = [0,3n/2] × [0, n] which is the union
of the rectangles R1 = [0, n]2 and R2 = [n/2,3n/2] × [0, n], see Figure 5. Let A be the
event defined by the following conditions:

• R1 and R2 are both crossed horizontally (these events have probability at least c to
occur, using Lemma 3.10);
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• [n/2, n] × {0} is connected inside R2 to the top side of R2 (which has probability
greater than c/2 to occur, by symmetry and Lemma 3.10).

Employing the FKG inequality, we deduce that

φp
psd,q,m

(A) ≥
c3

2
. (27)

When A occurs, define Γ1 to be the top-most horizontal crossing of R1, and Γ2 the right-
most vertical crossing of R2 from [n/2, n] × {0} to the top side. Note that this path is
automatically connected to the right-hand side of R2 — which is the same as the right-
most side of R. If Γ1 and Γ2 are connected, then there exists a horizontal crossing of R.
In the following, Γ1 and Γ2 are shown to be connected with good probability.

Exploration of the paths Γ1 and Γ2. There is a standard way of exploring R in
order to discover Γ1 and Γ2. Start an exploration from the top-left corner of R that
leaves open edges on its right, closed edges on its left and remains in R1. If A occurs, this
exploration will touch the right-hand side of R1 before its bottom side; stop it the first
time it does. Note that the exploration process “slides” between open edges of the primal
lattice and dual open edges of the dual (formally, this exploration process is defined on
the medial lattice, see later). The open edges that are adjacent to the exploration form
the top-most horizontal crossing of R1, i.e. Γ1. At the end of the exploration, the process
has a priori discovered a set of edges which lies “above” Γ1, so that the remaining part
of R1 is undiscovered.

By starting an exploration at point (n,0), leaving open edges on its left and closed
edges on its right, the rectangle R2 can be explored entirely. If A holds, the exploration
ends on the top side of R2. The open edges adjacent to the exploration constitute the
path Γ2 and the set of edges already discovered lies “to the right” of Γ2.

The reflection argument. Assume first that Γ1 = γ1 and Γ2 = γ2, and that they do
not intersect. Let x be the end-point of γ1, i.e. its unique point on the right-hand side of
R1. We wish to define a set G0(γ1, γ2) similar to those considered in Lemma 3.11. Apply
the following “surgical procedure,” see Figure 7:

• First, define the symmetric paths σd(γ1) and σd(γ2) of γ1 and γ2 with respect to
the line d ∶= (n −

√
2/4) + iR;

• Then, parametrize the path σd(γ1) by the distance (along the path) to its starting
point σd(x) and define γ̃1 ⊂ γ1 so that σd(γ̃1) is the part of σd(γ1) between the start
of the path and the first time it intersects γ2. As before, the paths are considered
as curves of the plane; denote the intersection point of the two curves by z. Note
that γ1 and γ2 are not intersecting, which forces σd(γ1) and γ2 to be;

• From this, parametrize the path γ2 by the distance to its starting point (n,0) and
set y to be the last visited site in Z2 before the intersection z. Define γ̃2 to be the
part of γ2 between the last point intersecting n + iR before y and y itself;

• Paths γ̃1 and γ̃2 satisfy Hypothesis (⋆) so that the graph G(γ̃1, γ̃2) can be defined;

• Construct a sub-graph G0(γ1, γ2) of G(γ̃1, γ̃2) as follows: the edges are given by
the edges of Z2 included in the connected component of G(γ̃1, γ̃2) ∖ (γ1 ∪ γ2) (i.e.
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x

Figure 7: The light gray area is the part of R that is a priori discovered by the
exploration processes (note that this area can be much smaller). The dark gray
is the domain G0(γ̃1, γ̃2). All the paths involved in the construction are depicted.
Note that dashed curves are “virtual paths” of the dual lattice obtained by the
reflection σd: they are not necessarily dual open.

G(γ̃1, γ̃2) minus the set γ1 ∪ γ2) containing d (it is the connected component which
contains x − εi, where ε is a very small number), and the sites are given by their
endpoints.

The graph G0(γ1, γ2) has a very useful property: none of its edges has been discov-
ered by the previous exploration paths. Indeed, σd(γ1) and σd(x) are included in the
unexplored connected component of R ∖R1, and so does G0(γ1, γ2) ∩ (R ∖R1). Edges of
G0(γ1, γ2) in R1 are in the same connected component of R∖ (γ1 ∪ γ2) as x− εi, and thus
lie ‘below’ γ1.

Conditional probability estimate. Still assuming that γ1 and γ2 do not intersect,
we would like to estimate the probability of γ1 and γ2 being connected by a path knowing
that Γ1 = γ1 and Γ2 = γ2. Following the exploration procedure described above, γ1 and
γ2 can be discovered without touching any edge in the interior of G0(γ1, γ2). Therefore,
the process in the domain is a FK percolation with specific boundary conditions.

The boundary of G0(γ1, γ2) can be split into several sub-arcs of various types (see
Figure 7): some are sub-arcs of γ1 or γ2, while the others are (adjacent to) sub-arcs of
their symmetric images σd(γ1) and σd(γ2). The conditioning on Γ1 = γ1 and Γ2 = γ2

ensures that the edges along the sub-arcs of the first type are open; the connections along
the others depend on the exact explored configuration in a much more intricate way,
but in any case the boundary conditions imposed on the configuration inside G(γ̃1, γ̃2)
are larger than the mixed boundary conditions. Notice that any boundary condition
dominates the free one and that γ̃1 and γ̃2 are two sub-arcs of the first type (they are
then wired). Thus, the measure restricted to G0(γ̃1, γ̃2) stochastically dominates the
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restriction of φγ̃1,γ̃2 to G0(γ̃1, γ̃2).
From these observations, we deduce that for any increasing event B depending only

on edges in G0(γ1, γ2),

φp
psd,q,m

(B∣Γ1 = γ1,Γ2 = γ2) ≥ φγ̃1,γ̃2(B). (28)

In particular, this inequality can be applied to {γ1 ↔ γ2 in G0(γ1, γ2)}. Note that if γ̃1

and γ̃2 are connected in G(γ̃1, γ̃2), γ1 and γ2 are connected in G0(γ̃1, γ̃2). The first event
is of φγ̃1,γ̃2-probability at least 1/(1 + q2), implying

φp
psd,q,m

(γ1 ↔ γ2∣Γ1 = γ1,Γ2 = γ2) ≥ φγ̃1,γ̃2(γ1 ↔ γ2 in G0(γ1, γ2))

≥ φγ̃1,γ̃2(γ̃1 ↔ γ̃2) ≥
1

1 + q2
. (29)

Conclusion of the proof. Note the following obvious fact: if γ1 and γ2 intersect, the
conditional probability that Γ1 and Γ2 intersect, knowing Γ1 = γ1 and Γ2 = γ2 is equal to
1 — in particular, it is greater than 1/(1 + q2). Now,

φp
psd,q,m

(Ch(R)) ≥ φp
psd,q,m

(Ch(R) ∩A)

≥ φp
psd,q,m

({Γ1 ↔ Γ2} ∩A)

= φp
psd,q,m

(φp
psd,q,m

(Γ1 ↔ Γ2∣Γ1,Γ2)1A)

≥
1

1 + q2
φp
psd,q,m

(A) ≥
c3

2(1 + q)2

where the first two inequalities are due to inclusion of events, the third one to the defi-
nition of conditional expectation, and the fourth and fifth ones, to (29) and (27). ◻

We have therefore finished the proof that pc =
√
q/(1 +

√
q). The duality was at

the heart of the proof and was used extensively. We now sketch an alternative
proof based on another property of the FK percolation, called integrability.

From now on, we go back to the unrotated lattice.

4 A second computation of pc based on integrability

4.1 Exact integrability

The historical approach to statistical physics was not based on couplings or duality but
rather on exact integrability. In the physical approach to statistical models, studying
the growth of the partition function is the first step towards a deep understanding of the
model. This discussion is voluntarily kept informal, since we will adopt an alternative
point of view on integrability in the next section.

Take the fundamental example of the Ising model. Consider the cylinder Cmn of
size n ×m and let Z(Cmn, β) be the partition function of the Ising on Cmn at inverse
temperature β. The free energy is defined by

f(β) = lim
m,n→∞

1

nm
logZ(Cmn, β).

The first computation of the free energy for the square lattice Ising model is due to
Onsager [62]. In few words, the proof is based on the so-called transfer matrix method,
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Figure 8: Left. The configuration ω with its dual configuration ω∗. Right. The
loop representation associated to ω.

and is very algebraic. The main idea is to express the partition function in Cmn as the
trace of a product of matrices. By co-diagonalizing all these matrices, the rate of growth
of the partition function can be identified in terms of their spectral properties. Once
computed, the free energy enables to identify the critical point (and in fact much more
things) as being the unique singularity of the free energy seen as an analytic function in
β.

The fact that the matrices involved in the previous program can be co-diagonalized is
somewhat of a “miracle” and there is no reason that this should be doable in general: for
arbitrary models, the program cannot always be implemented. Nevertheless, for specific
planar models at their critical point, the free energy may be expressed in a relatively
simple way. These models satisfy special algebraic properties, and are usually referred
to as integrable models. We do not wish to describe the theory of integrable models in
details, and we refer to [4] for an exposition (in particular the connection to the Yang-
Baxter equation).

Of great interest for us is the fact that the transfer matrix method has been im-
plemented for FK percolation at the self-dual point by Baxter [4]. As a corollary, he
computed the free energy. Unfortunately, the computation works only at the self-dual
point, and is therefore not sufficient to identify the self-dual point as being a singular
point for the free energy, and therefore the critical point.

4.2 Loop representation of the FK percolation

When computing the free energy, physicists work with a different representation of the
FK percolation, called loop representation of the model, or fully packed O(n)-model. Let
us describe this representation now.

For G ⊂ Z2, define G◇ to be the graph with vertex set given by center of edges in
EG, and edges between nearest neighbors. This graph is called the medial graph. For
instance, (Z2)◇ is a rescaled and rotated version of Z2.

Consider a configuration ω. It defines clusters in G and dual clusters in G∗. Through
every face of the medial graph passes either an open edge of G or a dual open edge of G∗.
Therefore, there is a unique way to draw Eulerian (i.e. using every edge exactly once)
loops on the medial graph — interfaces, separating clusters from dual clusters. Namely,
a loop arriving at a vertex of the medial lattice always makes a ±π/2 turn so as not to
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cross the open or dual open bond through this vertex; see Figure 8. This provides us
with a bijection between FK configurations on G and Eulerian loop configurations on G◇.
This bijection is called the loop representation of the FK percolation. We orientate loops
by orienting edges of G◇ counter-clockwise around faces corresponding to vertices in VG.

Proposition 4.1 Let p ∈ (0,1) and q > 0, then for any configuration ω,

φ1
p,q,G(ω) =

1

Z
xo(ω)

√
q
`(ω)

(30)

where x = p/[
√
q(1 − p)], `(ω) is the number of loops in the loop configuration associated

to ω, o(ω) is the number of open edges, and Z is the partition function.

When p = psd, one obtains that φ1
p,q,G(ω) is proportional to

√
q`(ω) and the FK perco-

lation has been rephrased in terms of a loop model.

Proof: Recall that

φ1
p,q,G(ω) =

1

Z1
p,q,G

[p/(1 − p)]o(ω)qk(ω).

The dual of φ1
p,q,G is φ0

G∗,p∗,q. With ω∗ being the dual configuration of ω, we find

φ1
p,q,G(ω) =

√
φ1
p,q,G(ω) φ

0
G∗,p∗,q(ω

∗)

=

√
p/(1 − p)

o(ω)√
q k(ω)√p∗/(1 − p∗)

o(ω∗)√
q k(ω∗)

√
Z1
p,q,GZ

0
p∗,q,G∗

=

√
p∗/(1 − p∗)

o(ω∗)+o(ω)

√
Z1
p,q,GZ

0
p∗,q,G∗

√
q
k(ω)+k(ω∗)

¿
Á
ÁÀp(1 − p∗)

(1 − p)p∗

o(ω)

=

√
p∗/(1 − p∗)

o(ω)+o(ω∗)

√
Z1
p,q,GZ

0
p∗,q,G∗

√
q
k(ω)+k(ω∗)

xo(ω)

where the definition of p∗ was used to prove that p(1−p∗)
(1−p)p∗ = x2. Note that `(ω) = k(ω) +

k(ω∗) − 1 and o(ω) + o(ω∗) = ∣EG∣. We deduce the result since

Z =

√
Z1
p,q,GZ

0
p∗,q,G∗

√
q
√
p∗/(1 − p∗)

∣EG∣

does not depend on the configuration. ◻

4.3 Parafermionic observables

Integrability cannot be reduced to the fact that the free energy can be computed explicitly.
In recent years, another point of view on planar models has been developed. The idea
is that integrability can be related to the existence of observables which are discrete
holomorphic at the self-dual point, in the sense that they satisfy discrete analogues of
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Figure 9: A loop representation in a Dobrushin domain.

Cauchy-Riemann equations. For a comprehensive discussion on discrete holomorphicity
and its relation to discrete models, see [28].

In the case of FK percolation, these observables were first introduced by Smirnov in
[71] as holomorphic parafermions of fractional spin σ ∈ [0,1], given by certain vertex
operators (in [71], the observable is defined for q ∈ [0,4] only but it was extended later to
every q ≥ 0). The goal of this section is to define these observables and to briefly explain
how they can be used to compute critical points. We only explain the overall structure
of the proof, and most of the technical details will not be described. We refer to the
literature for further details.

The observable is defined in terms of the loop representation of FK percolation with
specific boundary conditions, called Dobrushin boundary conditions (due to its similarity
in spirit with the original +/− Dobrushin boundary condition for the Ising model). We
define it now. Assume that ∂G is a self-avoiding polygon in Z2. Let a and b be two sites
of ∂G. The triplet (G,a, b) is called a Dobrushin domain. Orienting its boundary coun-
terclockwise defines two oriented boundary arcs ∂ab and ∂ba. The Dobrushin boundary
conditions are defined to be free on ∂ab (there are no wirings between boundary sites) and
wired on ∂ba (all the boundary sites are pairwise connected). The measure associated to
these boundary conditions will be denoted by φa,bp,q,G.

Let us now look at the loop representation in this context. Besides loops, the con-
figuration contains a single curve joining the edges adjacent to a and b, which are the
medial edges ea and eb between ∂ab and ∂∗ba. This curve is called the exploration path; it
is denoted by γ. The winding Wγ(e, eb) of γ is the total rotation (in radians) that the
curve makes from the center of the medial edge e to the center of the medial edge eb. It
can also be seen as π/2 times the number of left turns minus the number of right turns
that the curve makes between e and eb.

Following [71], we define the observable F for any medial edge e ∈ EG◇ as

F (e) = φa,bp,q,G (eiσWγ(e,eb)1e∈γ) ,
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where σ is given by the relation

sin (σ
π

2
) =

√
q

2
.

The observable F is called the parafermionic observable. An interesting feature of this
observable is the following local relations.

Proposition 4.2 Consider a medial vertex v with four adjacent edges in EG◇. The two
edges pointing towards v are indexed by A and C, and the other two by B and D in such
a way that A, B, C and D are found in clockwise order. Then,

F (B) − F (D) =
eiσπ/2 + x

eiσπ/2x + 1
i[F (A) − F (C)]. (31)

Before discussing the consequences of this relation, we provide a proof, which turns
out to be completely elementary.

Proof: Consider the involution s on the space of configurations which switches the state
(open or closed) of the edge of G passing through v. Let e be an edge of the medial graph
and denote by eω = eiσWγ(e,eb)1e∈γp(ω) the contribution of ω to F (e) (here p(ω) is the
probability of the configuration ω). Since s is an involution, the following relation holds:

F (e) =∑
ω

eω =
1
2 ∑
ω

[eω + es(ω)] .

In order to prove (31), it suffices to prove the following for any configuration ω:

Bω +Bs(ω) −Dω −Ds(ω) =
eiσπ/2 + x

eiσπ/2x + 1
i [Aω +As(ω) −Cω −Cs(ω)] . (32)

When γ(ω) does not go through any of the edges incident to v, neither does γ(s(ω)).
All the contributions then vanish and identity (32) trivially holds. Thus we may assume
that γ(ω) passes through at least one edge incident to v. The interface enters through
either A or C and leaves through B or D. Without loss of generality, we assume that it
enters first through A and leaves last through D; the other cases are treated similarly.

to eb

from ea

to eb

from ea

Figure 10: Two associated configurations ω and s(ω)

Two cases can occur (see Figure 10): either the exploration curve, after arriving
through A, leaves through B and then returns a second time through C, leaving through
D; or the exploration curve arrives through A and leaves through D, with B and C
belonging to a loop. Since the involution exchanges the two cases, we can assume that
ω corresponds to the first case. Knowing the term Aω, it is possible to compute the
contributions of ω and s(ω) to all of the edges incident to v. Indeed,

• the probability of s(ω) is equal to x
√
q times the probability of ω (due to the fact

that there is one additional loop, and the primal edge passing through v is open);

40



• windings of the curve can be expressed using the winding of the edge A. For
instance, the winding of B in the configuration ω is equal to the winding of the
edge A plus an additional −π2 turn.

Contributions are computed in the following table.

configuration A B C D

ω Aω eiσ
π
2Aω e−iσπAω e−iσ

π
2Aω

s(ω) x
√
qAω 0 0 e−iσ

π
2 x

√
qAω

Using the identity eiσ
π
2 − e−iσ

π
2 = i

√
q, we deduce (32) by summing the contributions

of all the edges incident to v. ◻

When p = psd, the previous relation becomes

F (B) − F (D) = i[F (A) − F (C)]

which is a discrete version of the Cauchy-Riemann equation. Nevertheless, there are in
general no reason to be able to extract information from the relations above. Indeed,
these relations do not determine the observable since we get one complex relation per
vertex, while there is one complex value of the observable per edge. There are still some
special cases that are easier to study.

The case q = 2 corresponds to σ = 1
2 . For this value of q, the complex argument

modulo π of the observable can easily be checked to depend only on the orientation θ
of the edge (the winding takes value in θ + 2πiZ and therefore ei 1

2
Wγ(e,eb) equals eiθ/2 or

−eiθ/2). At p = psd, this specificity implies a strong notion of discrete holomorphicity for
the observable, called s-holomorphicity; see [71, 72]. The observable can then be used to
compute the critical parameter [7]. Roughly speaking, the observable can be computed
explicitly, and can also be related to probabilities of connections. This allows to prove
directly that there exists an infinite cluster almost surely when p > psd, and no infinite
cluster almost surely when p < psd. In fact, the observable can be used to understand
many other properties on the model, including conformal invariance of the observable
[21, 71] and loops [17, 45], correlations [18, 19, 44] and crossing probabilities [9, 16, 26].
The s-holomorphicity has been the subject of an extensive study, and we refer to [28] and
references therein for mode details.

Another case for which the complex argument of the observable is known is the case
q ≥ 4. Indeed, the spin σ takes values in 1 + iR and once again the complex argument
(modulo 2π this time) of the observable depends on the orientation of the edge only. This
feature enables us to prove pc = psd using the observable. We refer to [8] for details of the
proof.

Interestingly, even though the complex argument of the observable cannot be de-
termined when q ∈ (0,4) ∖ {2}, the parafermionic observable can still be used to show
non-trivial facts on the model. For instance, the divergence of the correlation length
when p approaches the critical point and 1 ≤ q ≤ 4 was proved in [25]. Let us mention
that this is not an isolated fact. In the self-avoiding walk model (a model that can be
related to FK percolation), similar observables were introduced. Once again, only partial
information is available but it remains nonetheless sufficient to compute several critical
parameters of the model (e.g. the connective constant [29] or critical fugacity [5]).
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Even though we did not describe in details how parafermionic observables can be
used to compute the critical point, we emphasize that they satisfy local relations
which are reminiscent of the underlying integrability of the models.

4.4 Other lattices and universality

A general question in statistical physics is the understanding of universal behavior, i.e. the
behavior of a certain model, for instance the planar FK percolation, on different graphs.
The class of graphs on which we want to consider the model is a priori unrestricted, but
several mild conditions should hold in order to be able to develop a theory of universality.
In other words, one needs to consider a large enough class of interesting graphs, but small
enough that tools are still available for our study.

A large class of such graphs, which appeared to be central in different domains of
planar statistical physics, is the class of isoradial graphs. We describe these graphs below
and explain what is known about FK percolation on them.

An isoradial graph is a planar graph admitting an embedding in the plane in such
a way that every face is inscribed in a circle of radius one. We will say that such an
embedding is isoradial.

θe θe
e

Figure 11: The black graph is the isoradial graph. White vertices are the vertices
of the dual graph. All faces can be inscribed in a circle of radius one. Dual vertices
have been drawn in such a way that they are the centers of these circles.

Isoradial graphs were introduced by Duffin in [23] in the context of discrete complex
analysis. The author noticed that isoradial embeddings form a large class of embeddings
for which a discrete notion of the Cauchy-Riemann equations is available. Isoradial graphs
first appeared in the physics literature in the work of Baxter [3], where they are called
Z-invariant graphs. In this work, they are obtained as intersections of lines in the plane,
and are not embedded in the isoradial way. The so-called star-triangle transformation
was then used to relate the Ising free energy on different Z-invariant graphs. The term
isoradial was only coined later by Kenyon, who studied discrete complex analysis and the
graph structure of these graphs [50]. Since then, isoradial graphs were used extensively,
and we refer to [20, 41, 50, 61] for literature on the subject.

We will consider the probability measure φξp,q,G of the FK percolation on G with
particular parameters p = (pe ∶ e ∈ EG), q ∈ (0,∞) and boundary conditions ξ is defined
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by

φξp,q,G({ω}) =
∏e∈ω pe ⋅∏e∉ω(1 − pe) ⋅ q

k(ω,ξ)

Zξ
p,q,G

. (33)

In order to study the phase transition, we parametrize FK measures with cluster-
weight q ≥ 4 with the help of an additional parameter β > 0. For β > 0, define the
edge-weight pe(β) ∈ [0,1] for e ∈ EG by the formula

pe(β)

[1 − pe(β)]
√
q
= β

sinh[ i(1−σ)(π−θe)2 ]

sinh[ i(1−σ)θe2 ]
.

The dual of an isoradial graph G is an isoradial graph. Furthermore, the dual of the FK
measure on G with parameter β is a FK measure with parameter 1/β on G∗. In this
sense, β = 1 is self-dual.

Isoradial graphs are not required a priori to be invariant under translations. We
will still make this technical assumption on every graph we will consider here — more
technically, for any isoradial graph G, we will assume the existence of an action of Z2 on
G with finitely many orbits. As for Z2, infinite volume measures can be defined in this
case by taking limits of measures on finite graphs. The infinite-volume measure on G
with cluster-weight q ≥ 4, edge-weights (pe(β) ∶ e ∈ EG) and free (resp. wired) boundary
conditions is denoted by φ0

β,q,G (resp. φ1
β,q,G).

Theorem 4.3 Let q ≥ 4 and θ > 0. For any infinite periodic isoradial graph G and any
boundary condition ∗,

• For β < 1, there is φ∗λ,q,G-almost surely no infinite-cluster.

• For β > 1, there is φ∗λ,q,G-almost surely an infinite-cluster.

The main ingredient of the proof is the parafermionic observable, which can be defined
naturally on isoradial graphs. The result holds only for q ≥ 4 because we use the fact that
the complex argument of the observable depends only on the orientation of the edges.
The observable has been used in the case q = 2 in order to prove conformal invariance
on isoradial graphs [21]. This result implies the previous theorem in the case q = 2. For
q = 1, Manolescu and Grimmett [39, 40, 41] obtained the previous theorem together with
further results via another route.

The previous theorem has an interesting corollary. Inhomogeneous FK percolations
on the square, the triangular and the hexagonal lattices can be seen as FK percolations
on isoradial graphs, which leads to the following corollary.

Corollary 4.4 For cluster-weight q ≥ 4, the FK percolation on the square, triangular and
hexagonal lattices Z2, T and H have the following critical surfaces:

on Z2 p1

1 − p1

p2

1 − p2

= q,

on T p1

1 − p1

p2

1 − p2

p3

1 − p3

+
p1

1 − p1

p2

1 − p2

+
p1

1 − p1

p3

1 − p3

+
p2

1 − p2

p3

1 − p3

= q

on H p1

1 − p1

p2

1 − p2

p3

1 − p3

= q
p1

1 − p1

+ q
p2

1 − p2

+ q
p3

1 − p3

+ q2,

where p1, p2 (resp. p1, p2, p3) are the edge-weights of edges in the different directions.

Let us mention that the isotropic case (p1 = p2 = p3) on the hexagonal and triangular
lattices was treated for any q ≥ 1 in [7] following the strategy of Section 3.
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5 The phase diagram of FK percolation on Z2

5.1 Determination of the critical point

On the one hand, we proved in Section 3 that pc(q) = psd(q) =
√
q/(1+

√
q) for any q ≥ 1.

The main ingredient was duality, but another crucial tool was the positive association of
the model. This positive association is very specific to q ≥ 1. As mentioned before, it fails
whenever q < 1. On the other hand, the strategy of Section 4 does not a priori use the
FKG inequality. The fact that parafermionic observables are defined for any q > 0 leads
to the following question:

Question. Use the parafermionic observable to (prove the existence and to) compute
the critical point on isoradial graphs (or simply on Z2) for any q ∈ (0,4)?

5.2 The subcritical and supercritical phases

The FK percolation undergoes a sharp transition in the following sense.

Theorem 5.1 ([6]) Let q ≥ 1. For any p < pc(q), there exists c > 0 such that for any
x ∈ Z2,

φp,q(0↔ ∂[−n,n]2) ≤ e−cn. (34)

Theorem 5.1 follows from a refinement of the techniques in Section 4. We refer to
[6] for details. This theorem is crucial in the description of the subcritical phase p < pc.
Several conditional results (the assumption being the exponential decay of correlations)
can now be stated as theorems; e.g. Ornstein-Zernike estimates [15], exponential decay in
volume [38, Theorem (5.86)], mixing properties [1, 2], or classifications of Gibbs states for
Potts models [22]. Duality then allows to describe the supercritical phase p > pc. Let us
mention that these phases are now very well understood. We refer to [38] and references
therein for a discussion of these two phases.

5.3 The critical phase

Let us now describe the critical phase (pc(q), q). The behavior is very different depending
on the value of q. In physics, the order of a phase transition is defined as the lowest
derivative of the free energy which is discontinuous at the phase transition. For FK
percolation, Baxter computation of the free energy [4] predicts (non rigorously) that the
phase transition is of first order when q > 4, and of second when q < 4.

Interestingly, this transition corresponds, for the definition of the parafermionic ob-
servable, to the transition between σ ∈ [0,1] and σ ∈ 1 + iR. Since the spin behaves
differently when q < 4 and q > 4, it is natural to expect that the observable can provide
information on the order of the phase transition (see discussion below).

5.3.1 The case q > 4

As mentioned above, the phase transition is conjectured to be of first order, which in
our case means that there are multiple infinite-volume measures at criticality. In partic-
ular, φ0

pc,q,Z2 and φ1
pc,q,Z2 would be different. In fact, the following stronger statement is

expected:
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• φ1
pc,q,Z2(0↔∞) > 0,

• there exists c > 0 such that φ0
pc,q,Z2(0↔ ∂[−n,n]2) ≤ exp(−cn) for every n.

This result is known only for q ≥ 25.72, see [55, 56]. The proof is based on the Pirogov-
Sinai theory, which combines combinatorics and Peierls’s argument.

Question. Use the parafermionic observable to show that the phase transition is of first
order whenever q > 4?

5.3.2 The case q < 4

The model is conjectured to be conformally invariant in the scaling limit. We refer to
[29] for a discussion of conformal invariance, its implication and the associated physics
background. Here, we will mention only one conjecture.

Consider a simply connected domain (Ω, a, b) of R2 with two points on its boundary.
Consider the Dobrushin domain (Ωδ, aδ, bδ) where Ωδ = δZ2∩Ω and aδ and bδ are the points
on the boundary of Ωδ closest to the boundary. We consider the critical FK percolation
in (Ωδ, aδ, bδ) with Dobrushin boundary conditions. Let γδ be the exploration curve in
Ωδ.

Conjecture 1 (Schramm, [68]) Fix q ∈ [0,4]. The law of γδ converges to the Schramm-
Loewner Evolution with parameter κ = 4π

arccos(−√q/2) as δ tends to zero.

Schramm introduced the Schramm-Loewner Evolution in [67] (SLE for short). For κ >
0, the SLE(κ) is the random Loewner Evolution with driving process

√
κBt, where (Bt) is

a standard one-dimensional Brownian motion. We refer to [64, 58, 57] for a description of
the fundamental fractal properties of SLEs. Proving convergence of the discrete interfaces
to SLE is crucial since the path properties of SLEs can then be related to the fractal
properties of the critical models. This is probably one of the most challenging questions
in rigorous mathematical physics; see [68, 70, 71] for a collection of problems.

Conjecture 1 was proved by Lawler, Schramm and Werner [59] for q = 0: they showed
that the perimeter curve of the uniform spanning tree (UST for short) converges to
SLE(8). Note that the loop representation with Dobrushin boundary conditions still
makes sense for q = 0 (more precisely for the model obtained by letting q → 0 and q/p→ 0).
In fact, configurations have no loops, just a curve running from a to b (which then
necessarily passes through all the edges), with all configurations being equally probable.
The q = 2 case was proved in [17]. For values of q ∈ [0,4] ∖ {0,2}, Conjecture 1 is open.
The q = 1 case is particularly interesting, since it corresponds to bond percolation on the
square lattice.

Without entering into details, let us say that the previous conjecture follows from the
following one, which emphasizes the importance of the parafermionic observable (see [28,
25] for details on the connection between the two conjectures). Parafermionic observables
can be defined on medial vertices by the formula

F (v) =
1

2
∑
e∼v
F (e)

where the summation is over medial edges emanating from v. Let Fδ be the parafermionic
observable on (Ωδ, aδ, bδ).
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Conjecture 2 (Smirnov [70]) Fix q ∈ [0,4] and (Ω, a, b) be a simply connected domain
with two points on its boundary. For every z ∈ Ω,

1

(2δ)σ
Fδ(z) Ð→ φ′(z)σ when δ → 0, (35)

where σ = 1− 2
π arccos(

√
q/2) and φ is any conformal map from Ω to R× (0,1) sending a

to −∞ and b to ∞.

As mentioned earlier, Fδ is not determined by the collection of relations (31) for
general q (the number of variables exceeds the number of equations) and a proof of this
conjecture is still missing. Let us mention a very important exception. For q = 2, we
mentioned that Smirnov in [71] proved a strong version of discrete holomorphicity thanks
to the fact that the spin takes the special value σ = 1/2. This discrete holomorphicity
implies the convergence in this special case. This step is the main step towards the proof
in [17] of Conjecture 1 in the q = 2 case.

As mentioned before, the parafermionic observable was used to show the divergence
of the correlation length when p approaches the critical point and 1 ≤ q ≤ 4 [25]. Since
this course was given, the previous result was proved to imply the uniqueness of the FK
percolation measure on Z2. We refer to [27, 24] for details.

In conclusion, we can draw the following phase diagram for the FK percolation (though
most of the items included in it remain conjectural).

0 1
edge-weight p

pc(q) =
√
q

1+
√
q

cluster-weight q

subcritical phase

supercritical phase

critical phase: first order

critical phase: SLE
(

4π
arccos(−√q/2)

)

1

2

4

percolation

FK Ising

4-colours Potts model representation

UST
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