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Abstract
The problem of finding the shortest road network is very old, the
first written record goes back to a letter of Gauss replying to a question
posed by Schumacher. After a historical review, we study the mini-
mal road network problem using elementary mathematics, and show
solutions for several examples.

1 Introduction

The problem of finding the shortest network connecting cities can be traced
back to a correspondence between Schumacher and Gauss in 1836. In a first
letter [1], Schumacher asks Gauss about a simpler, but related problem (see
also Figure 1):

Mir ist neulich ein Paradox vorgekommen, das ich so frei bin
Ihnen vorzulegen. Bekanntlich ist, wenn man bei einem Vierecke
ABCD einen Punct sucht, von dem die Summe der an die Winkel-
puncte gezogenen Linien ein Minimum sey, der gesuchte Punct
der Durchschnittspunct der Diagonalen E. Lasst man nun die
Puncte A, B in den Linien DA, BC' immer mehr hinaufriicken,
bis sie am Ende in F' zusammenfallen, so fillt auch E zugleich
in F', das Viereck verwandelt sich in das Dreieck DFC, und man
hitte den Punct F' als denjenigen, von dem die Summe der an
die Winkelpuncte F', C'; D des Dreiecks gezogenen Linien ein Mi-
nimum sey. Das ist aber bekanntlich nur wahr, wenn der Winkel
F >120°.1!

Gauss replied only two days later |2], with the following explanation:

T recently came across a paradox I would like to explain to you. It is well known that
if one searches in a quadrangle ABC'D the point which, when connected with the corners,
leads to the shortest sum of lines, one finds the intersection of the diagonals E. If we
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Figure 1: Example sent to Gauss by Schumacher in 1836

Was Ihr Viereck betrifft, so heisst doch die Aufgabe so: Vier Pk-
te a, b, ¢, d sind gegeben, man soll einen 5ten x finden, so dass
axr + bxr + cx + dx ein Minimum wird, und das ist von den 3
Durchschnittspunkten ab mit cd, ac mit bd, ad mit bc der eine,
wo man fiir die Auswahl die Bedingung entweder leicht auf An-
schauung reduciren, oder analytisch einkleiden kénnte. Lassen Sie
nun a, b, ¢ fest sein, und d dem ¢ immer niher riicken, so bleibt
diese Auflésung noch immer so lange richtig, als Sie nicht ¢ mit
d zusammenfallen lassen. Fillt aber ¢ mit d zusammen, so er-
fordert Geist und Buchstabe der mathematischen Aufgabe, als
solcher, dass Sie dann ¢ zweimahl zdhlen, also in dem Dreieck abc
az + bz + 2cx zu einem Minimum machen, wo sich die allgemeine
Auflésung noch immer als richtig ausweiset. 2

let now the points A and B follow the lines DA, BC up to F, then E also arrives at
F, the quadrangle becomes the triangle DF'C, and the point F' becomes the point which
minimizes the the sum of the connections of the corners F', C, D. It is however well known
that this is only the case if the angle at F' is less than 120°.

2Concerning your quadrangle, the problem should be formulated like this: four points a,
b, ¢, d are given, and one should find a 5th point x, such that ax + bx + cx + dz is minimal,
and this is of the intersection points ab with cd, ac with bd, ad with bc the one, which one
can easily determine by either just looking at the problem, or by proceding analytically.
If you keep now a, b, ¢ fixed, and let d approach ¢, the solution remains correct, as long as
¢ and d do not coincide. Once however ¢ and d coincide, the mathematical nature of the
problem requires that you count ¢ twice, and hence you have to minimize in the triangle
abc the quantity ax + bx + 2cx, in order for the solution to remain correct.



The problem Schumacher was interested in, namely the problem of finding
one point that connects a given set of points with a shortest network, is
actually older, it goes back to 1638, when Descartes asked Fermat to study
curves, whose points have a constant sum of distances to four given points.
Motivated by this question, Fermat asked in 1643 for the case of three given
points which point would minimize the sum of distances [3], and Torricelli
was the first to solve the three point case [4], which gave the problem the
name “Fermat-Torricelli Problem”. The solution for four points was given
by Fagnano [5], and a generalization to n points was given independently
by Tédenat [6] and Lhuilier [7], who was professor of mathematics at the
imperial academy of Geneva. While one can construct the solution for up to
four points with ruler and compass, it was shown using Galois theory that
for more points in general position, such a construction is not possible.

In the letter where Gauss replied to Schumacher [2], he also proposed a
different, but related problem, namely the one of really finding the shortest
network:

Ist bei einem 4 Eck nicht von der stricten mathematischen Auf-
gabe, wie sie oben ausgesprochen ist, sondern von dem kiirzesten
Verbindungssystem die Rede, so werden mehrere einzelne Félle
von einander unterschieden werden miissen, und es bildet sich
so eine recht interessante mathematische Aufgabe, die mir nicht
fremd ist, vielmehr habe ich bei Gelegenheit einer Eisenbahn-
verbindung zwischen Harburg, Bremen, Hannover, Braunschweig
sie in Erwdgung genommen und bin selbst auf den Gedanken
gekommen, dass sie eine ganz schickliche Preisfrage fiir unsere
Studenten bei Gelegenheit abgeben konnte. Die Mdéglichkeit ver-
schiedener Fille erlautern wohl hinreichend folgende Figuren, wo
in der dritten Figur die Verbindung von ¢ nach d direct gehen
muss (was wirklich bei obigem Beispiel der Fall wird). 3

We can see that Gauss had worked on this problem for the very practical
reason of the construction of the shortest possible rail network linking four
important cities in Germany. This type of problem appears in many applica-
tions, in particular in circuit layout and network design, and it is now known

3If in a quadrangle one asks in contrast to the question above what the shortest net-
work is, then one needs to distinguish several cases, and we obtain quite an interesting
mathematical problem, which I am familiar with, since I had the opportunity to study it
in the context of train connections between the cities of Harburg, Bremen, Hannover and
Braunschweig, and I came to the conclusion that this problem would be an excellent prize
problem for our students. The different possibilities are illustrated in Figure 2, where in
the third drawing the connection from ¢ to d must be a direct one (like in the example
above as well).



Figure 2: Examples for the shortest network problem by Gauss.

under the name “Steiner Tree Problem” [8, 9|, although it is not clear what
the eminent geometer Jakob Steiner (born in Utzenstorf, Switzerland, not to
be confounded with A. Steiner, the third author of this article) contributed
to this problem. The basic Steiner tree problem is to find the shortest net-
work that connects a set of planar points. For some sets of points, adding an
intersection point, known as Steiner point, can reduce the length of the net-
work. Du and Hwang [10] showed that adding an intersection point can not
reduce the length of the network by a factor of more than 1 — @, about 13%,
using an equilateral triangle with the center of the triangle added as an in-
tersection. In 1977, Graham, Garey and Johnson showed that for the general
case, the problem of picking the optimal intersection points is NP-complete
[11], see also the article by Kolata [12].

In this paper, we study, using elementary mathematics, the problem of
finding the shortest network linking n cities in a 2d plane. Throughout this

paper, we call
A city: a point of the given initial set of cities.

A Steiner point: a point in a network that is not a city and where two or
more roads connect (with a non flat angle between the roads).

A node: either a Steiner point or a city.

2 A Limit on the Number of Steiner Points

Between two points in a flat plane, the curve of minimal length is a straight
line. The network of minimal length is therefore a union of straight lines or



segments, and we obtain a first relation between the number of roads and
the number of nodes:

Lemma 2.1. We consider n cities and a network of minimal length connect-
ing those cities. If p is the number of Steiner points and r the number of
roads, then
r=p+n-—1.

Proof. A network of minimal length made of a collection of segments cannot
contain a cycle. If there was a cycle, we could remove any road from the cycle
and achieve a shorter connecting network. A connected network without
cycles is a tree and the number of roads r in a tree is equal to the number of
nodes minus 1. O

The next lemma shows that Steiner points are real intersections, i.e. they
connect more than two roads.

Lemma 2.2. In a shortest network connecting n cities, any Steiner point is
connected to at least three roads.

Proof. If a Steiner point P were connected to only two roads, then we could
remove the Steiner point and connect directly the two nodes that were con-
nected to P thus obtaining a network of smaller or at most equal length. [

Lemma 2.3. We consider n cities and a network of minimal length connect-
ing those cities. If p is the number of Steiner points and r the number of
roads, then the inequality
. 3p+n
- 2

holds.

Proof. We count the roads connected to each node. Each city is connected
to at least one road and each Steiner point to at least three. We sum over
the nodes and since each road is counted twice (once for each extremity of
the road), we obtain r > 2242, O

We will later refine this result, once we have studied the network of min-
imal length for three cities. Using the previous lemmas however, we can
already give an upper bound on the number of Steiner points in a shortest
network.

Theorem 2.4. We consider n cities and a network of minimal length con-
necting those cities. Let p be the number of Steiner points. Then we have
the inequality

p<n—2.

Proof. This result is obtained by combining the results of Lemma 2.1 and
Lemma 2.3. O



3 Minimal Network Connecting Three Cities

It is instructive to study the special case of three cities, since we obtain
geometric information about the shape of the network near Steiner points.

Proposition 3.1. Let us consider three cities A, B and C. Then, there are
two possibilities:

1. if one angle in the the triangle is more than 120°, then the shortest net-
work contains no Steiner points and is made of two roads that connect
at the obtuse angle.

2. Otherwise, the shortest network is the one that connects all three cities
to the unique Steiner point O that is inside the triangle ABC and such
that the angles (OA,OB) = (OB,0C) = (OC,0A) = £120°.

Proof. Let O be the Steiner point connecting A, B and C. The network
length associated with O is [(O) = OA+ OB + OC. To find an optimal
position for O, we need to know the variation of /(O) with respect to O, i.e.
we need to compute the first derivative of the network length when O moves
in the h direction,

(O+th) 0A OB oc
h) + (@,h) + (%,

h)

dt ( OA’
For this expression to vanish for all h, we thus need to have

0OA OB 0OC _
0A " 0B 0C

(1)

This can however only happen if the vectors OA, OB and OC are at angle
120° from each others. If ABC has an angle superior to 120°, then O cannot
exists and the shortest network has no Steiner point. If no angle is superior
to 120°, there is a unique point O satisfying 1, which can be constructed by
drawing three circular arcs, one over each side of the triangle, see Figure 3,
which contain all points inside the triangle ABC', such that the angle with
the two corner points under the arc equals 120°. The radius of each circular
arc is % times the length of the side, which is constructible. The Steiner
point O is then located at the intersection of the three circular arcs, see
Figure 3.

The length of the network passing by O can also easily be computed: if



Figure 3: Construction of the optimal Steiner point for a triangle

we note o = (A0, AC) and ' = (BC, BO) then

sin 60° — o/

A0 _sié101200 IAC
sin 60° —
BO = sin 1,2005 BC
Sin
co = sin 1207
Sin
CO=m 1500

Therefore,
AO + BO + CO = cos(a)AC + cos(8')BC.

The network with one Steiner point in O is therefore smaller than any of the
three networks with no Steiner point. O

4 Some results for the minimal network in the
general case

From the case of three cities, we infer some interesting properties that the
shortest network for n cities must satisfy.



Proposition 4.1. The shortest network connecting n cities has the following
properties:

1. Two roads connecting a common node form an angle superior or equal
to 120°.

2. No node is connected to more than three roads.
3. Any node connected to three roads has roads forming 120° angles.
4. All Steiner points are connected to exactly three roads.

Proof. If two roads connecting three nodes, A, B, C' form an angle smaller
than 120 degrees at their common node B, then by Proposition 3.1, we could
construct another Steiner point O such that OA + OB + OC is smaller than
AB + BC.

As the full circle is only 360 degrees, if a node N were to be connected
to 4 or more roads, there would be at least two roads connecting N that
would form an angle inferior to 120 degrees. For the same reason, if a node
is connected by three roads, no two roads connecting it can form an angle
larger than 120 degrees: if that were the case, the remaining road would form
an angle smaller than 120 degrees with at least one of the two roads.

A Steiner point is connected to at least three roads by Lemma 2.2. We just
proved a node could not be connected to more than three roads. Therefore,
a Steiner point is always connected to exactly three roads. O

In turn, this allows us now to improve Theorem 2.4:

Theorem 4.2. We consider n cities and a network of minimal length con-
necting those cities. Let p be the number of Steiner points, r be the number
of roads, and let N be the number of connections to cities (a road connecting
two cities will be counted twice). We have N > n, and

_3p+N
==

T and p=2n— N —2.

In particular, that means that if all cities are connected to only one road,
then p=n — 2.

5 Examples

In this section, we give examples of shortest length networks.
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Figure 4: A linear network

5.1 Shortest network for the quadrangle

By Theorem 2.4, there can only be 0, 1 or 2 Steiner points. We enumerate
all the possibilities for the shortest network:

No Steiner point, degenerate case One of the cities is exactly placed as
the Steiner point of the other three cities. Connect this city to the
three other ones to have the shortest network.

No Steiner point, normal case Two cities are connected to two roads
and the last two cities are connected to only one road. This means
the network is a linear succession of roads, see Figure 4.

One Steiner point The Steiner point is connected to three cities. The last
city is directly connected to one of the other cities, see for example the
third drawing by Gauss in Figure 2.

Two Steiner points Each Steiner point is connected to two cities and to
the other Steiner point, see the first and second drawing by Gauss in
Figure 2.

We consider four points of a square and we are going to compute the
shortest network. Let a be the length of the edges. With no Steiner point the
length of the shortest network is 3a. With one Steiner point, the Steiner point
is connected to three cities and the network length is %(24—\/64— V2) = 2.93a.
With two Steiner points, the Steiner points are connected to each other and
to two cities and the network length is (v/3 + 1)a ~ 2.73a, see Figure 5.

5.2 Shortest network for the regular pentagon

We now compute the shortest network for the regular pentagon with the
maximum number of Steiner points: three. No two cities can be connected
directly when the number of Steiner points is maximal. So each city is
connected to a Steiner point. In turn, a Steiner point cannot be connected
to three cities, as it would leave the network disconnected. So there are two
Steiner points S; and S; connected to two cities and one Steiner point Ss
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Figure 5: Shortest network for a square
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Figure 6: Networks with three and no Steiner points for the regular pentagon

connected to only one city and to the two other Steiner points, see Figure 5.2.
We denote by R the length between the center of the pentagon and any of
its vertices. The length of each road of this network can easily be computed:

sin(36°) sin(42°)
€S = DSy = 2R o 0.9083R,
BS, = BS, = 2p 5367 sin(18) 0 1105k,
sin(1209)

5253 = 5153 =2R sin(36°) ~ 06787R,
AS3 = (1 + cos(36°))R — CS; — Rsin(36°)/v/3 ~ 0.5614R.

The total length of the network is thus 2CS; + 2BS; + 25,53 + AS3 =
4.5743R. The network with no Steiner points cannot be shorter, since the
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Figure 7: Networks with four and no Steiner points for the regular hexagon

angle between two adjacent edges is 112° < 120°. Indeed, the length is
8sin(36°)R = 4.7022R.

5.3 Shortest network for the regular hexagon

We compute the shortest network for the regular hexagon with the maximum
number of Steiner points: four. The intuitive way is to first add three Steiner
points each of them connected to two adjacent cities. Then, we connect those
three Steiner points through the fourth Steiner point located at the center
of the hexagon, see Figure 7. If each edge has length R, then the length
of each road connected to a city is ?R. The length of a road connecting
a Steiner point to the Steiner point located at the center of the hexagon is
(v3/2 —V3/6)R = ?R. Therefore the total network length is 3v/3R =
5.196R. This is longer than the network of length 5R with no Steiner points.

5.4 Shortest network for the regular polygon with 3 - 2"
vertices

We only consider the shortest network with the full number of Steiner points.
Consider the outer layer of Steiner points. If n > 1, every two cities on
the polygon are connected to a Steiner point. We place the Steiner point
S connected to two adjacent cities A and B such that AS = BS and
(SA,SB) = 120°. There are 3 - 2"~ Steiner points: they form a regu-
lar polygon and we can consider them to be the cities of another network

11



Number of vertices | Length of network
3 3
6 5.19615
12 7.82894
24 10.7892
48 13.9837
96 17.3390

Table 1: Length of network with full number of Steiner points for regular
polygons

and connect them via other Steiner points. By induction, this allows us to
compute the length of such a network.

Let R be the length between the center of the polygon and any city (lo-
cated at the vertices of the regular polygon). First, we compute the distance
of the outer layer of Steiner points to the center of the polygon. This distance
is Rcos(180°/N) — Rsin(180°/N)/ tan(60°) with N = 3-2". The distance of
a road connecting a Steiner point to a city is Rsin(180°/N)/ sin(60°).

Therefore, if we denote by I, the length of such a network (for R = 1),
then we have the relation [, ;; = N sin(180°/N)/sin(60°) + (cos(180°/N) —
sin(180°/N)/ tan(60°))l,, and ly = 3. Can this configuration always be the
shortest network ? It cannot! For a triangle, we get a length of 3. For an
hexagon, we get a length of 5.196 and for a dodecagon, we get a length of
7.83 which is superior to 27: the length of the full circle. This means that
for the dodecagon and for the polygons with more vertices, the network with
no Steiner point is shorter. See Table 5.4.

6 Conclusion

To conclude, we use our results to compute the solutions of the three prob-
lems Gauss used as illustration in his letter to Schumacher [2]. We show in
Figure 8 in green the shortest network we obtained, and in red the optimized
shape of the network topology which Gauss indicated in his drawing, which
leads however to a network longer than the green one: in the first case, the
red network is of length 12.6, and the green one 11.6 (we measured the coor-
dinates to millimeter accuracy), in the second the red network is not really
a stationary point, whereas the green one is of length 15.5, and in the last
case the red network is of length 12.44, while the green one is 12.39.

12
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Figure 8: Correct solutions in green for the three examples presented by
Gauss, and in red the optimized solution Gauss indicated by his drawing,
which is however longer than the green one.
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