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Short Description

Waveform relaxation methods are iterative methods to solve time dependent problems.

They start with an initial guess of the solution over the entire time interval of interest,

and produce iteratively better and better approximations to the solution over the entire

time interval at once.
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Description

Classical Waveform Relaxation Methods

Waveform relaxation algorithms were invented for circuit simulation [9]. The idea is

to partition large scale circuits into subcircuits, as shown for the historical MOS-Ring

oscillator from [9] in Figure 1. Using Kirchhoff’s and Ohm’s laws, one obtains a system

Fig. 1. Historical example of a waveform relaxation decomposition

of ordinary differential equations (ODEs) of the form

dv1

dt
= f1(v1, v2, v3),

dv2

dt
= f2(v1, v2, v3),

dv3

dt
= f3(v1, v2, v3). (1)

for the unknown voltages v1, v2, v3. When the circuit is partitioned into subcircuits,

coupling terms are replaced by artificial sources, providing signals from the previous

iteration, as shown in Figure 1 on the right. This relaxation of signals, called waveforms

in the community, led to the name waveform relaxation. Mathematically, this relaxation

corresponds for given initial waveforms v01(t), v
0
2(t), v

0
3(t) to the iteration

dvk1
dt

= f1(v
k
1 , v

k−1
2 , vk−1

3 ),
dvk2
dt

= f2(v
k
1 , v

k
2 , v

k−1
3 ),

dvk3
dt

= f3(v
k
1 , v

k
2 , v

k
3), k = 1, 2, . . . ,

(2)

which is like a Gauss-Seidel method for linear systems, and is thus called Gauss-Seidel

waveform relaxation. Naturally also a more parallel Jacobi waveform relaxation can be

used.

Waveform relaxation methods are very much related to the classical method of

successive approximations by Picard in 1890 [16], where all arguments on the right
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in (2) would be taken at iteration index k − 1, and they have similar convergence

properties: convergence is superlinear, i.e.

||vk − v|| ≤ (CT )k

k!
||v0 − v||, v := (v1, v2, v3), v

k := (vk1 , v
k
2 , v

k
3), k = 0, 1, . . . , (3)

where (0, T ) is the time interval of simulation and C is a constant related to the

Lipschitz constant of f := (f1, f2, f3). This result was shown for the Picard iteration by

Lindelöf in 1894 [10], and for waveform relaxation by Miekkala and Nevanlinna [12],

see also [14; 15] and the review paper [13]. From (3) we see that convergence is very

fast for T small, and hence it is good to partition long time intervals into shorter so

called time windows to apply the algorithm on each time window separately.

Schwarz Waveform Relaxation

Waveform relaxation can be applied to evolution partial differential equations (PDEs)

after discretization in space. It is however more interesting to decompose directly the

domain, like the circuit, by domain decomposition, as proposed in the PhD thesis

of Morten Bjørhus for hyperbolic systems, and by Gander and Stuart for parabolic

problems [4]. Classical Schwarz waveform relaxation for the heat equation,

∂u

∂t
= ν∆u ∈ Ω ⊂ R

2, (4)

is based on an overlapping decomposition of Ω into subdomains Ωi as shown in Figure

2, and given by the iteration

∂uk
i

∂t
= ν∆uk

i + f in Ωi × (0, T ),

uk
i (·, ·, 0) = u0 in Ωi,

uk
i = uk−1

j on Γij × (0, T ).

(5)

The global iterate can then for example be defined by uk := uk
i in Ω̃i × [0, T ], or using

a partition of unity for more smoothness. Schwarz waveform relaxation algorithms also
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Fig. 2. Space-Time domain decomposition for Schwarz Waveform Relaxation, where Ω̃i are the non-

overlapping subdomains from which the overlapping decomposition Ωi is constructed by enlarging

each Ω̃i by a layer of width δ

2
, leading to the overlapping space-time subdomains Ωi × (0, T )

converge superlinearly for diffusive problems [6; 5], like the heat equation, with an error

estimate of the form

||uk − u|| ≤ Ckerfc(
kδ

2
√
νT

)||u0 − u||,

where δ represents the overlap. However they converge asymptotically faster than clas-

sical waveform relaxation algorithms, since Ckerfc( kδ
√

νT
) ∼ e−k2, whereas for classical

waveform relaxation we have (CT )k

k!
∼ e−k lnk. One can furthermore show that Schwarz

waveform relaxation algorithms applied to diffusive problems still converge linearly over

long time intervals, see [4], a result that also holds for classical waveform relaxation

applied to dissipative systems of ODEs. For the wave equation, and more generally

for hyperbolic systems, where the speed of propagation is finite, one can show that

Schwarz waveform relaxation algorithms converge in a finite number of steps, see for

example [2].

One can obtain much faster Schwarz waveform relaxation algorithms, if one

replaces the transmission conditions in (5) by

Bij(u
k
i ) = Bij(u

k−1
j ) on Γij × (0, T ), (6)



5

where the transmission operators Bij are chosen to improve information transfer be-

tween subdomains. For Robin transmission conditions, Bij := ∂nij
+p with ∂nij

denoting

the normal derivative, the parameter p was optimized for advection reaction diffusion

equation in [3], and higher order transmission operators were optimized in [1], for the

wave equation see [2]. For fixed overlap, these optimized Schwarz waveform relaxation

algorithms converge very rapidly, independently of the mesh parameters, and over short

time intervals also independently of the number of subdomains, there is no need for a

coarse grid. Optimized waveform relaxation algorithms have also been developed for

circuits, where better information transfer was obtained by exchanging combinations

of voltage and current values.

Since optimized Schwarz waveform relaxation methods converge even without

overlap, they are also an excellent modeling tool to couple different physics or different

mathematical models directly in space time, like in fluid structure interaction or in

ocean atmosphere coupling.

Multigrid Waveform Relaxation

In the case of linear systems of equations, one can accelerate the basic Jacobi or Gauss-

Seidel iterations by using them only as a smoother on coarser and coarser grids to

obtain a multigrid method. Lubich and Ostermann [11] proposed in the same spirit to

use the Jacobi or Gauss-Seidel waveform relaxation algorithm as a smoother on coarser

and coarser spatial grids in the space time waveform relaxation iteration. Note that

there is no coarsening in time in this multigrid waveform relaxation algorithm, time

is kept continuous. The algorithm has convergence properties like multigrid applied

to stationary problems, and is also more robust than the parabolic multigrid method

proposed earlier by Hackbusch in [7], where one applies the smoother for the stationary

problem on several time levels in parallel. A complete space-time multigrid method
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was proposed by Horton and Vandewalle in [8]: this method considers the entire space-

time grid and the problem posed thereon, and performs a multigrid iteration by both

coarsening in space and time. The authors show that care must be taken in choosing

the coarsening strategy, as well as the prolongation and restriction operations, in order

to obtain a good space-time multigrid method.
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