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From Euler, Ritz, and Galerkin
to Modern Computing∗

Martin J. Gander†

Gerhard Wanner†

Abstract. The so-called Ritz–Galerkin method is one of the most fundamental tools of modern com-
puting. Its origins lie in Hilbert’s “direct” approach to the variational calculus of Euler–
Lagrange and in the thesis of Walther Ritz, who died 100 years ago at the age of 31 after
a long battle with tuberculosis. The thesis was submitted in 1902 in Göttingen, during
a period of dramatic developments in physics. Ritz tried to explain the phenomenon of
Balmer series in spectroscopy using eigenvalue problems of partial differential equations
on rectangular domains. While this physical model quickly turned out to be completely
obsolete, his mathematics later enabled him to solve difficult problems in applied sciences.
He thereby revolutionized the variational calculus and became one of the fathers of modern
computational mathematics. We will see in this article that the path leading to modern
computational methods and theory involved a long struggle over three centuries requiring
the efforts of many great mathematicians.
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1. The Variational Calculus of Euler and Lagrange. The most well-known con-
tribution of Walther Ritz is the development of a systematic approach for solving
variational problems. His methods transformed variational calculus from a theoreti-
cal tool to one of practical importance, and they are the precursor to many algorithms
in modern scientific computing. Going back in history, we will see how variational
calculus started in 1696 with the famous challenge concerning the brachystochrone
problem, which led to endless disputes between the Bernoulli brothers. Euler [12]
gave in 1744 a general solution to variational problems in the form of a differential
equation. Eleven years later, the nineteen-year-old Lagrange then communicated, in
a famous letter to Euler, an elegant justification for this equation. The prodigious
contributions of Euler concerning the analytic and numerical solutions of differential
equations, in particular, his Institutiones Calculi Integralis [13] from 1768–1770, then
added the finishing touch to the theory.

1.1. The Brachystochrone Problem. In 1696, Johann Bernoulli challenged the
mathematical world (which included his brother Jacob) with the following problem
(see Figure 1.1): Given two fixed points A and B in a vertical plane, find a curve
AMB such that a body gliding on it under gravity, starting from A, arrives after the
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2 MARTIN J. GANDER AND GERHARD WANNER

shortest possible time at B, or, in beautiful Latin: Datis in plano verticali duobus
punctis A & B, assignare Mobili M viam AMB, per quam gravitate sua descendens,
& moveri incipiens a puncto A, brevissimo tempore perveniat ad alterum punctum
B. Galileo, in 1638, already knew that the shortest path, the straight line between
A and B, is not the quickest, and he guessed wrongly that a circle would be the best
solution. The true shape of the best curve remained a mystery for nearly a century.

dxdx

dydy
dsds

A

B
M

x

y

Fig. 1.1 The brachystochrone problem (left); Jacob Bernoulli’s solution (right).

In order to turn this physical question into a mathematical one,1 we notice that
the time for covering a small arc length ds is dJ = ds

v . Inserting v =
√
2gy (Galileo),

we obtain the problem of finding a function y(x) with y(a) = A, y(b) = B such that
the integral

J =

∫ b

a

√
dx2 + dy2√

2gy
=

∫ b

a

√
1 + p2√
2gy

dx −→ min, where p =
dy

dx
.(1.1)

We will see below that the optimal solution is a cycloide, which allowed Johann
Bernoulli to proudly correct an error of Galileo.

1.2. Euler’s Differential Equation for a Variational Problem. Half a century
later appeared Euler’s famous Methodus inveniendi lineas curvas [12] (E65, 1744),
which solved a great variety of minimization problems, among them

J =

∫ b

a

Z(x, y, p) dx −→ min/max, where p =
dy

dx
,(1.2)

where Z is an arbitrary function; see Figure 1.2.2

Euler’s Theorem. For an optimal solution, we have

N − d

dx
P = 0 , where N =

∂Z

∂y
, P =

∂Z

∂p
.(1.3)

1Letter of de l’Hôpital to Johann Bernoulli, June 15th, 1696: “Ce probleme me paroist des plus
curieux et des plus jolis que l’on ait encore proposé et je serois bien aise de m’y appliquer; mais pour
cela il seroit necessaire que vous me l’envoyassiez reduit à la mathématique pure, car le phisique
m’embarasse . . . .”

2To represent his mathematical colleagues as dogs barking at a theory (the brachystochrone),
nailed out of their reach high up on a tree, was not Euler’s style, but it was Johann Bernoulli’s, who
had produced the picture for his own Opera omnia in 1742. The editor, M. Bousquet, thought it a
good idea to reuse the printing plate two years later. Perhaps Bousquet thought that Euler was an
ape sitting still higher up in the tree and eating up all the coconuts.
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Variational Calc. 1744 E65 Zoom: above envy!

Fig. 1.2 Euler’s legacy for the theory of variational calculus, with a zoom.

We will come back later to Euler’s proof of this formula. Because the term P is in
general a function of p = y′, and because this term is differentiated once again in
Euler’s equation, we usually obtain a second order ordinary differential equation for
y(x), which may be difficult to solve. In the case where Z is independent of x, i.e., if
dZ = N dy+ P dp, Euler found, in section 30 of Caput II of E65 [12], an elegant way
to reduce the order: multiply

N − dP

dx
= 0 by dy = p dx ⇒ N dy − p dP = 0,

then add and subtract P dp to obtain

N dy + P dp︸ ︷︷ ︸
dZ

− (p dP + P dp)︸ ︷︷ ︸
d(p · P )

= 0 ⇒ Z − p · ∂Z
∂p

= const.(1.4)

Example 1 (smallest curve length, smallest energy; Euler E65 [12], Caput II,
section 33). We search for a curve with y(a) = A, y(b) = B of shortest arc length,
i.e.,

J =

∫ b

a

√
1 + p2 dx −→ min.(1.5)

Here, N = 0 and we obtain from (1.3) that dP
dx = 0, i.e., P = p√

1+p2
must be constant;

thus p = constant too. Not surprisingly, the solution is a straight line. Euler explains
that the same result is valid for any problem where Z depends uniquely on p. An
interesting case is

J =

∫ b

a

p2

2
dx −→ min, for which (1.3) becomes − d2y

dx2
= 0 .(1.6)
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This represents an approximation of J in (1.5) for small p and models a stretched
flexible cord. If a transversal force f(x) acts on the cord, we get the problem

J =

∫ b

a

(
p2

2
− f · y

)
dx −→ min,

which leads to

−d
2y

dx2
= f(x) .

−1 1
A B

y(x)

f(x)
(1.7)

This case was too simple for Euler to mention, but its extension to higher dimensions
will become very important later.

Example 2 (the brachystochrone problem; Euler E65 [12], Caput II, section 34).
We obtain from (1.4)√

1 + p2√
2gy

− p2√
2gy

√
1 + p2

= C or 1 =
√
1 + p2

√
2gy · C .(1.8)

It is still not a trivial matter to find a curve with this property. We remark that
Johann Bernoulli, with one of his typically brilliant intuitions, arrived immediately at
this last equation by applying Snell’s law of light refraction. Because sinα

v = const =
1
v
dx
ds = 1/(

√
1 + p2

√
2gy), by (1.8) this law is satisfied everywhere and represents, by

Fermat’s principle, the quickest path.

1.3. Euler’s Integral Calculus. A considerable part of Euler’s tremendous work
was devoted to analytical and numerical methods for the solution of integrals and
differential equations. This work culminated in the three volumes of Institutiones
Calculi Integralis [13] (E342, E366, E385, published 1768–1770). Let us apply these
methods to find the solution of the brachystochrone problem (1.8): we solve the
equation for p = dy

dx and obtain

1 + p2 =
1

C2y
or p =

dy

dx
=

√
1

C2y
− 1 =

√
c− y

y
,(1.9)

with c = C−2. In section 397 of E342 [13], Euler explains that the variables x and y
should be separated, i.e.,√

y

c− y
· dy = dx such that

∫ √
y

c− y
· dy = x .

The easiest method for such integrals are trigonometric substitutions, which Euler
mentioned relatively late in E342 (in section 329). If we set y = c · sin2 u and profit
from 1 − sin2 u = cos2 u, then the integral becomes an easy one and leads to the
solution

x = c u− c

2
sin 2u, y = c · sin2 u =

c

2
− c

2
cos 2u ,

so that “curvam quaesitam esse Cycloidem.”
Numerical Solution. Whenever such an analytical solution is not possible, Euler

proposed (in E342 [13], section 650) to compute the solution vero proxime assignare,
by writing an equation such as (1.9) in the general form

dy

dx
= V (x, y) , so that xi+1 = xi +Δx , yi+1 = yi +Δx · V (xi, yi)(1.10)
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Fig. 1.3 First publication of Euler’s numerical method for differential equations.
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Fig. 1.4 Numerical solution of the brachystochrone problem by Euler’s method (exact solution dot-
ted, left); Lagrange’s variation εδy of y for ε = −1,− 1

2
, 1
2
, 1 (right).

are, for i = 1, 2, 3, . . . , valores successivi of numerical approximations to the solution.
The smaller we choose the “step size” Δx, the better will be the numerical approxima-
tion. We see in Figure 1.3 the first publication of this method, and in Figure 1.4 (left)
the numerical result of computing 16 steps with this formula for the brachystochrone
problem.3 This is the first of the so-called finite difference methods, which dominated
scientific calculations for two centuries.

1.4. Joseph Louis de Lagrange. On August 12, 1755, the nineteen-year-old Lu-
dovico de la Grange Tournier wrote to Vir amplissime atque celeberrime L. Euler,
from whom Vir praestantissime atque excellentissime Lagrange received a kind and
enthusiastic answer (September 6, 1755).

Lagrange’s idea was the following: we perturb the optimal solution y(x) by an
arbitrary variation4 δy. Only another 15 years later did it become clear to Euler
[14] how “facilis” was the geometric meaning behind Lagrange’s formalism: we add a
fixed function δ(x) multiplied by ε to y(x) (see Figure 1.4, right) and insert the result
into (1.2). This integral must be minimal for all functions δy(x) at ε = 0, i.e., the
derivative of

J(ε) =

∫ b

a

Z(x, y + εδy, p+ εδp) dx −→ min(1.11)

with respect to ε must be zero at ε = 0. We differentiate as follows:

∂J(ε)

∂ε
|ε=0 =

∫ b

a

(N · δy + P · δp) dx = 0.(1.12)

3The formula does not work for i = 0, because V becomes infinite there. Such singularities must
be treated separately.

4From here originates the name of the whole theory.
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Since δp is the derivative of δy, we can integrate by parts:∫ b

a

(
N − d

dx
P

)
· δy · dx = 0 “weak solution.”(1.13)

Because δy(a) = δy(b) = 0 (the end points of y are fixed), the end-point contributions
of (1.13) vanish. Since δy is arbitrary, we conclude that for all x,

N − d

dx
P = 0 “strong solution.”(1.14)

This last step, a trivial conclusion for the young discoverer, later caused the greatest
difficulties.

The passage from the variational problem (1.11) by differentiation to (1.12), then
by partial integration to (1.13), and finally to (1.14) is the central highway of varia-
tional calculus. In modern times (1.12) came to be called the “directional derivative”
of J and the function δy(x) in (1.13) a “test function”; this equation is the starting
point of the “Galerkin method.” If we then manage to solve (1.14), we will have
solved the original variational problem à la Euler. A very important application of
the theory appeared in 1788 with Lagrange’s Mécanique analytique, where the above
“highway” connects the Lagrangian of a mechanical system (difference between po-
tential and kinetic energy) to the differential equations of its motion. This later led
to Hamiltonian mechanics.

Fig. 2.1 Attraction of a nonspherical celestial body.

2. Laplace’s Equation and Dirichlet’s Principle. Since Newton’s Principia from
1687, it was known that celestial bodies move under the action of forces obeying
the inverse square law, and since Euler’s work (in particular, E112 from 1747) that
their motion obeys second order differential equations with the corresponding term
fx ≈ x−ξ

r3 , r =
√

(x− ξ)2 + (y − η)2 + (z − ζ)2. But this is only valid for pointwise,
or at most perfectly spherical, bodies. If our body has another shape (see Figure 2.1),
the attractive forces become

fx =

∫∫∫
ρ(ξ, η, ζ)

x− ξ

r3
dξ dη dζ ,(2.1)

and similarly for fy and fz, which are cumbersome expressions. Here Laplace (Théorie
des attractions des spheroides et de la figure de la terre, 1785; see also Oeuvres I,
Mécanique Céleste, p. 157) had the idea to introduce the potential function

V =

∫∫∫
ρ(ξ, η, ζ)

1

r
dξ dη dζ, so that fx = −∂V

∂x
,(2.2)
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and similarly for fy and fz. If we differentiate (2.1) once again with respect to x (and
y and z, respectively), we find for V the elegant expression

ΔV =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0,(2.3)

which bears the name Laplace’s equation.
Soon after its formulation, this equation found many other important applications,

not only in the heavens, but also down on earth:
• theory of stationary heat transfer (Fourier, 1822);
• theory of magnetism (Gauss and Weber in Göttingen, C.F.Gauss, Werke 5,
p. 195, 1839 [16]);

• theory of electric fields (W.Thomson, later Lord Kelvin [44], 1847);
• conformal mappings (Gauss, Werke IV, p. 189, 1825);
• in complex analysis (Cauchy, 1825, and Riemann [36], Thesis, 1851);
• irrotational fluid motion in two dimensions (Helmholtz, 1858).

All these applications led young Riemann to the following enthusiastic statement:

. . . eine vollkommen in sich abgeschlossene mathematische Theorie . . . ,

welche . . . fortschreitet, ohne zu scheiden, ob es sich um die Schwerkraft,

oder die Electricität, oder den Magnetismus, oder das Gleichgewicht der

Wärme handelt. (Manuscript of Riemann, Nov. 1850, Werke, p. 545.)

2.1. Conformal Maps and the Riemann Mapping Theorem. In his thesis [36]
from 1851, Riemann founded geometric function theory, which studies theorems in
complex analysis through elegant geometric considerations, and which was later per-
fected mainly through the work of Richard Courant (cf. the second part of Hurwitz
and Courant [24]). The starting points are the Cauchy–Riemann differential equations
for continuously differentiable functions f(z) = u(x, y) + iv(x, y) with z = x+ iy,

(2.4)

in Riemann’s handwriting,5 which, when differentiated, give

Δu =
∂2u

∂x2
+
∂2u

∂y2
= 0 and Δv =

∂2v

∂x2
+
∂2v

∂y2
= 0,(2.5)

i.e., u and v are harmonic. Furthermore, equations (2.4) tell us that the Jacobian in
R

2 of a continuously differentiable function is of the form( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

(
a b
−b a

)
= Const ·

(
cosφ sinφ
− sinφ cosφ

)
,(2.6)

i.e., it consists locally of a uniform scaling and an orthogonal rotation. Such every-
where angle-preserving functions are called conformal (“in kleinsten Theilen ähnlich”;
see Figure 2.2).

Riemann Mapping Theorem. For any simply connected domain Ω there exists
a bijective conformal mapping to the unit disk f : Ω → B. The point z0 mapped to

5Courtesy of Prof. E. Neuenschwander, Riemanns Einführung in die Funktionentheorie, Göttin-
gen, Vandenhoeck and Ruprecht, 1996.
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Fig. 2.2 A conformal mapping.

−→
f

Fig. 2.3 Example for Riemann’s mapping theorem for the domain Ω defined by r(φ) ≤ (1 −
0.99 cos2 φ)1/2 (computed by M. Gutknecht in 1975).

the origin can be freely chosen in the interior of Ω, as well as the image of one point
on the boundary. (“Zwei gegebene einfach zusammenhängende ebene Flächen können
stets so aufeinander bezogen werden, dass jedem Punkte der einen Ein mit ihm stetig
fortrückender Punkt der anderen entspricht und ihre entsprechenden kleinsten Theile
ähnlich sind; . . . ”; Riemann [36], 1851, section 21, Werke, p. 40).

Riemann’s proof of the mapping theorem. Riemann sketched a dubious proof
of this audacious vision in the last two paragraphs of his thesis [36]. Some years
later, in [37], he explained his ideas “in etwas veränderter Form.” The theorem
is illustrated in Figure 2.3, where Ω is an “inverse ellipse” defined by the radius
r(φ) ≤ (1 − 0.99 cos2 φ)1/2; for z0 we choose the origin. We then place a logarithm
log(z − z0) = log r + iφ at the point z0. The level curves of its real part u0(x, y) are
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the concentric circles around z0; the level curves of the imaginary part, orthogonal to
the first ones, are the star-shaped rays out of z0. The problem is that the boundary
of Ω is normally not a level curve of u0. We postulate that there exists an everywhere
harmonic function u1(x, y) such that u1(x, y) = u0(x, y) on the boundary ∂Ω. The
function u(x, y) := u0(x, y) − u1(x, y) will be harmonic in Ω with the exception of
the point z0, where we have the logarithmic singularity, and it will be zero on ∂Ω.
By solving the differential equations (2.4), we complete u(x, y) to a complex function
u(x, y) + iv(x, y). The exponential function of this function will then map z0 to the
origin and the boundary of Ω to the boundary of the circle.

These ideas of Riemann left scientists with much to do over the next century:
clarifying the above proof, clarifying regularity conditions, developing the theory for
more general domains, and developing better computational algorithms; see the last
chapter of [24], Chapters 16 and 17 of Henrici’s trilogy [20], and Gutknecht [19]. The
main obstacle was the existence of the function u1, which we will discuss in the next
subsection.

2.2. Dirichlet’s Principle.
Problem. Let Ω be a bounded domain and F an arbitrary function defined on the

boundary ∂Ω. Find a function w(x, y) with Δw = 0, such that w = F for (x, y) ∈ ∂Ω
(see Figure 2.4 for an example).

xxxx

yyyy

w(x, y)

Fig. 2.4 Stereogram of the solution of Δw = 0, 0 ≤ x ≤ Φ, Φ = 1.618 . . . , 0 ≤ y ≤ 1, F (x, 0) =√
(−2 cos 2πx

L
)+, F (x, 1) = min(π

2x
4L

,
π2(L−x)

4L
), F (0, y) = 0, F (Φ, y) = sinπy.

Riemann’s solution [37]. This is based on the fact that the generalization of the
variational problem (1.7) to higher dimensions is

∫∫
Ω

(
1

2

((∂w
∂x

)2
+
(∂w
∂y

)2)− f · w
)
dx dy −→ min ⇒ −∂

2w

∂x2
− ∂2w

∂y2
= f.(2.7)

This relation was discovered independently by Gauss [16], W.Thomson [44], and
Dirichlet (in his lectures, which Riemann attended). The proof is precisely the same
as above. Slightly more complicated is the step from (1.12) to (1.13): for one term
we use partial integration with respect to x, which is straightforward, since the inte-
gration dx is inside the integration dy. For the second term we use partial integration
with respect to y; before doing this, we switch the order of integration:

Hierzu kann in vielen Fällen . . . ein Princip dienen, welches Dirichlet zur

Lösung dieser Aufgabe für eine der Laplace’schen partiellen Differential-

gleichung genügende Function . . . in seinen Vorlesungen . . . seit einer Reihe

von Jahren zu geben pflegt. (Riemann, 1857, Werke, p. 97)
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Riemann concludes that for all functions defined on Ω with the prescribed boundary
values F , the integral

J(w) =

∫∫
Ω

1

2

((∂w
∂x

)2
+
(∂w
∂y

)2)
dx dy is always > 0.(2.8)

Choose among these functions the one for which this integral has the smallest possible
value!

In other words, we pass through the Euler–Lagrange highway (1.11) ⇒ (1.14) in
the opposite direction (1.11)⇐ (1.14). In contrast to “Euler’s world,” here the solution
of the differential equation (1.14) is impossible, whereas the variational problem (1.11)
appears “trivial.” From here originate the terms “Dirichlet’s principle” and “Dirichlet
boundary conditions.”

Weierstrass’s Critique. Soon afterwards some people started to mistrust this
“brave new world,” the most serious critic being Weierstrass [49] with the counterex-
ample ∫ 1

−1

(x · y′)2 dx −→ min

y(−1) = a, y(1) = b

y = a+b
2 + b−a

2

arctan x
ε

arctan 1
ε

−1 0 1
a

b

.(2.9)

The factor x in the integral allows y′ to do anything close to the origin, and the solution
of the problem becomes discontinuous (“Die Dirichlet’sche Schlussweise führt also in
dem betrachteten Falle offenbar zu einem falschen Resultat.”)

F.Klein (Entw. Math., 19, Jahrh., Chelsea, 1967, p. 264) reports that Riemann
replied to Weierstrass, “my theorems remain nevertheless true” (“meine Existenz-
theoreme sind trotzdem richtig”), and that Helmholtz declared “for us physicists
Dirichlet’s principle remains a proof” (“für uns Physiker bleibt das Dirichletsche
Prinzip ein Beweis”).

Proof without Dirichlet’s Principle. The majority of mathematicians, however,
abandoned Riemann’s idea and started to look for alternative methods of proof, such
as the alternating method invented by H.A. Schwarz (1870, Crelle 74, 1872). This
method is based on the fact that for rectangles, as well as circles, the existence of
the solution is assured by Fourier series methods. A more complicated domain is
represented as an overlapping union of such simple domains:

Solve alternatively in Ω1 and Ω2;
new boundary values on dotted curves;
prove that iteration converges;
add third, fourth domain, etc.

Ω1Ω2(2.10)

Revival of Dirichlet’s Principle by Hilbert. Precisely half a century after Rie-
mann’s thesis, D. Hilbert undertook the task of putting Dirichlet’s principle onto a
new basis [21, 22]. Certainly, Weierstrass’s counterexample is embarrassing, but the
integral in (2.9) is not the same as in (2.8). So Hilbert managed, in an extraordinary
tour de force, to establish a way of proving the existence of u directly from the prop-
erties of the integral (2.8). A couple of theses written under Hilbert’s supervision,
including Courant’s [8, 9], then improved this theory by making it simpler and more
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complete. These discussions became another motivation for W.Ritz to develop his
method.

Das Dirichletsche Prinzip verdankte seinen Ruhm der anziehenden Ein-

fachheit seiner mathematischen Grundidee, dem unleugbaren Reichtum

der möglichen Anwendungen . . . und der ihm innewohnenden Überzeugungskraft.

(D.Hilbert)

Mittlerweile war das verachtete und scheintote Dirichletsche Prinzip durch

Hilbert wieder zum Leben erweckt worden; . . . (Hurwitz and Courant [24,

p. 392])

3. The Elastic Plate. The main motivation for Ritz was the announcement of the
Prix Vaillant for 1907 by the Academy of Science in Paris (see Figure 3.1), published
in vol. 53 of Journal für Mathematik und Physik, p. 65. This announcement was sent
to him by his friend Paul Ehrenfest on a postcard, in order for the “Scheusaltheorie”
of Ritz’s thesis to find a new application. The deformation of an elastic plate under
an external force was a very difficult problem at that time; it was first considered
by Sophie Germaine in several articles (1811–1815),6 to which Lagrange and Poisson
added corrections and improvements. The definitive breakthrough was achieved in a
long article by Kirchhoff [25] (1850) in the form of the differential equation

ΔΔw =
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
= f(x, y),(3.1)

to which suitable boundary conditions must be added. If the plate is assumed to be
clamped on all sides, we have

w = 0 and
∂w

∂n
= 0 on ∂Ω.(3.2)

Fig. 3.1 Announcement for the Prix Vaillant in Journal für Mathematik und Physik.

Ritz had worked with many such problems in his thesis, where he tried to explain
the Balmer series in spectroscopy (1902); it therefore appeared to him that he had a
good chance of succeeding in this competition.

6This research was motivated by a visit of Chladni to Paris in 1808.
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4. Ritz’s Treatment of the Plate and Dirichlet’s Principle. We now come to
the publication in the Crelle Journal [38],

through which Ritz achieved immortality. Following Riemann, we proceed on the
Euler–Lagrange highway backwards and arrive, starting from (3.1), at the variational
problem

J =

∫∫
Ω

(1
2

((∂2w
∂x2

)2
+ 2

(∂2w
∂x2

)(∂2w
∂y2

)
+
(∂2w
∂y2

)2)− f · w
)
dx dy −→ min,(4.1)

or

J =

∫∫
Ω

(1
2
(Δw)2 − f · w

)
dx dy −→ min.(4.2)

The standard procedure (“wie man ohne weiteres einsieht”) transforms term by term
the formula (4.1) to (3.1); we just have to perform each time two integrations by
parts, so that the minus sign in (2.7) disappears again.

4.1. Ritz’s Method. The main idea is the following: we choose a sequence of
functions

ψ1(x, y), ψ2(x, y), ψ3(x, y), ψ4(x, y), . . .(4.3)

and try to approximate the solution of (4.1) as a linear combination7

w(x, y) = a1ψ1(x, y) + a2ψ2(x, y) + · · ·+ amψm(x, y),(4.4)

with the coefficients a1, a2, . . . , am to be determined. The quality of the method
depends, of course, on a good choice of these functions. For example, if we assume Ω
to be a square, one choice discussed by Ritz is

ψ1(x, y) = (1− x2)2(1 − y2)2,

ψ2(x, y) = (1− x2)2(1 − y2)2(x2 + y2),

ψ3(x, y) = (1− x2)2(1 − y2)2(x4 + y4),

ψ4(x, y) = (1− x2)2(1 − y2)2x2y2,

ψ5(x, y) = (1− x2)2(1 − y2)2(x6 + y6),

ψ6(x, y) = (1− x2)2(1 − y2)2(x4y2 + x2y4) . . . .

(4.5)

Each of these ψi contains the factor (1− x2)2(1− y2)2 in order to ensure the validity
of the boundary conditions (3.2) for any choice of the ai. We suppose f(x, y) = 1 and
conclude by symmetry that odd powers of x or y will not appear. For the same reason,
the terms containing x2 and y2 will have the same coefficient, so we simplify our calcu-
lations by collecting such equal terms into one function ψ. Another good property of
our basis is that, for m→ ∞, it contains all (symmetric) polynomials; therefore, they
are able, by Weierstrass’s approximation theorem, to approach any (symmetric) solu-
tion function w. This will be important for establishing convergence of the method.

7See the memorial plate in honor of Ritz at the Collège des Creusets, Sion, Switzerland.
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If we insert the expression (4.4) into (4.2), we obtain a finite-dimensional expres-
sion in a1, a2, . . . , am. By chance, J in (4.2) contains only quadratic and linear terms
of w. Hence, if we multiply out all the terms, we obtain a finite-dimensional quadratic
function

Jm =
1

2

m∑
i,j=1

kijaiaj −
m∑
i=1

biai,(4.6)

with

kij =

∫ 1

−1

∫ 1

−1

Δψi ·Δψj dx dy , bi =

∫ 1

−1

∫ 1

−1

ψi · f dx dy .(4.7)

Differentiating (4.6) with respect to a�, for � = 1, 2, . . . ,m, we find that Jm is minimal
if

m∑
j=1

k�jaj = b� .(4.8)

This is a linear system which, in theory, is easily solvable. In practice, however, the
system is very tedious to solve: for m = 6, obtaining just one of the 21 k-values would
require us to compute

Δψ6 ·Δψ6 = 8 x2
(
1− y2

)2 (
x4y2 + x2y4

)
− 8

(
1− x2

) (
1− y2

)2 (
4 x3y2 + 2 xy4

)
x

− 4
(
1− x2

) (
1− y2

)2 (
x4y2 + x2y4

)
+
(
1− x2

)2 (
1− y2

)2 (
12 x2y2 + 2 y4

)
+ 8

(
1− x2

)2
y2
(
x4y2 + x2y4

)
− 8

(
1− x2

)2 (
1− y2

) (
2 x4y + 4 x2y3

)
y

− 4
(
1− x2

)2 (
1− y2

) (
x4y2 + x2y4

)
+
(
1− x2

)2 (
1− y2

)2 (
2 x4 + 12 x2y2

)
and then

∫ 1

−1

∫ 1

−1 Δψ6 ·Δψ6 dx dy = 3052404736
6898776885 . We can understand why Ritz did not

use this particular basis to demonstrate his method numerically. We, however, have
modern computers and find the system

53.49878 9.72705 2.13385 0.54039 0.63739 0.30484 1.13778
9.72705 21.94822 10.91868 1.74588 5.99358 1.25965 0.32508
2.13385 10.91868 9.63314 0.90947 7.10042 1.01770 0.10836
0.54039 1.74588 0.90947 0.47237 0.51468 0.39553 0.02322
0.63739 5.99358 7.10042 0.51468 6.32258 0.73117 0.04925
0.30484 1.25965 1.01770 0.39553 0.73117 0.44246 0.01548

(4.9)

If we set m = 1, only k11a1 = b1 has to be considered and we obtain by a simple
division

a1 = 1.13778/53.49878 = 0.021267.(4.10)

The solution w = a1ψ1 is drawn at the top of Figure 4.1 and has an error of 4%. If
we also include polynomial terms of degree 6, i.e., if we set m = 2, we have a linear
system of two equations to solve and obtain

a1 = 0.02020, a2 = 0.00586,(4.11)
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xxxx

yyyy

w1(x, y)

xxxx

yyyy

w2(x, y)

m = 1, errmax= 0.04

m = 2, errmax= 0.003

Fig. 4.1 Solutions of the plate problem for m = 1 and m = 2.

0 1 0 1 0 1 0 1

ξ1 ξ2 ξ3 ξ4

Fig. 4.2 One-dimensional elastic curves.

which reduces the error to 0.3% (bottom of Figure 4.1). Taking into account also
8th-degree terms (m = 4) leads to a relative error of 10−5 with precisely the same
graphical representation as for m = 2. For m = 6 the solutions are

a1 = 0.02025, a2 = 0.00521, a3 = 0.00028,
a4 = 0.00612, a5 = −0.00002, a6 = 0.00012 .

(4.12)

4.2. A Basis Using One-Dimensional Elastic Curves. As satisfactory as the
above numerical results are, they are not suitable for hand calculations. Instead of
these polynomials, Ritz suggested using the normal modes of the clamped rod:

ξ(4) = K4 · ξ, ξ(0) = ξ(1) = 0, ξ′(0) = ξ′(1) = 0.(4.13)

Ritz cited Lord Rayleigh [41], in The Theory of Sound, p. 174, for the formulas;
however, they had already been studied extensively by Euler in Additamentum I, De
curvis elasticis of [12], sections 68–97.

Standard methods for differential equations with constant coefficients lead, to-
gether with the first three boundary conditions, to the formula

ξn(x) = cosKnx− coshKnx− (sinKnx− sinhKnx)
cosKn − coshKn

sinKn − sinhKn
.(4.14)

The condition ξ′(1) = 0 then gives cosKn coshKn = 1, which determines the discrete
values of Kn as follows (see Figure 4.2):

K1 = 4.7300, K2 = 7.8532, K3 = 10.9956, K4 = 14.1372, . . . .(4.15)
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Because coshK tends to infinity very rapidly, Kn will also quickly approach the roots
of the cosine, i.e., Kn ≈ (n+ 1

2 )π.
Taking into account again the symmetry of the solution, we use the basis

ψ1(x, y) = ξ1(x)ξ1(y), ψ2(x, y) = ξ1(x)ξ3(y) + ξ3(x)ξ1(y),

ψ3(x, y) = ξ3(x)ξ3(y), ψ4(x, y) = ξ1(x)ξ5(y) + ξ5(x)ξ1(y), . . . .

The advantages of this basis are that
1. we only have one defining formula (4.14) for every n;
2. using integration by parts, the condition (4.13) leads to easy formulas for the

integrals (4.7); and
3. the linear system (4.8) becomes strongly diagonally dominant.

It can thus be solved easily (“der Rechenschieber angewandt werden kann. . .”) by a
sort of “Gauss–Seidel” iteration. (“Eine direkte Lösung durch Determinanten würde
5stellige Logarithmentafeln erfordern.”) In this way, Ritz obtained the solutions

w1(x, y) = 0.6620ξ1(x)ξ1(y),

w2(x, y) = 0.6727ξ1(x)ξ1(y) + 0.0307(ξ1(x)ξ3(y)
+ ξ3(x)ξ1(y)) + 0.0031ξ3(x)ξ3(y),

w3(x, y) = 0.6740ξ1(x)ξ1(y) + 0.0380(ξ1(x)ξ3(y) + ξ3(x)ξ1(y))
+ 0.0032ξ3(x)ξ3(y) + 0.0040(ξ1(x)ξ5(y) + ξ5(x)ξ1(y))
+ 0.0004(ξ3(x)ξ5(y) + ξ5(x)ξ3(y)) + 0.0000ξ5(x)ξ5(y),

whose graphical representation is not so different from those in Figure 4.1.
Theorem of Existence and Convergence. Based on
• a careful study of speed of convergence based on the asymptotic values of Kn,
allowing the exchange of differentiations and limits;

• Weierstrass’s approximation theorem; and
• a modification of a lemma from Hilbert’s proof (1901),

Ritz managed, in paragraphs 3, 4, and 5 of his paper, to prove rigorously that the
wm(x, y) converge to a function w(x, y) that solves the minimization problem.

4.3. Dirichlet’s Principle. In the second part of [38], Ritz applied his proofs to
Dirichlet’s problem (see section 2.2)

Δw = 0, w|∂Ω = F .

In order to have the boundary values equal to 0, we subtract F from w and obtain a
problem of the type

−Δw = f, w|∂Ω = 0 .(4.16)
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xxxx

yyyy

w1(x, y)

xxxx

yyyy

w2(x, y)

m = 1, errmax= 0.05

m = 2, errmax= 0.01

Fig. 4.3 Solutions for Dirichlet’s principle.

Inserting (4.4) into (2.7), we obtain

kij=

∫ 1

−1

∫ 1

−1

(
∂ψi

∂x

∂ψj

∂x
+
∂ψi

∂y

∂ψj

∂y

)
dx dy , bi =

∫ 1

−1

∫ 1

−1

ψi · f dx dy,(4.17)

instead of (4.7). Ritz then proceeded to prove once again the existence and conver-
gence of his method, but he did not show numerical examples; for the square they
would have been too simple.

Let us show them here, by modifying the basis functions according to the new
boundary condition as

ψ1(x, y) = (1− x2)(1 − y2),

ψ2(x, y) = (1− x2)(1 − y2)(x2 + y2),

ψ3(x, y) = (1− x2)(1 − y2)(x4 + y4),

ψ4(x, y) = (1− x2)(1 − y2)x2y2,

ψ5(x, y) = (1− x2)(1 − y2)(x6 + y6),

ψ6(x, y) = (1− x2)(1 − y2)(x4y2 + x2y4) . . . ,

and obtain, proceeding as above, the solutions

for m = 1 : a1 = 0.3125;

for m = 2 : a1 = 0.2922, a2 = 0.05923 .
(4.18)

These solutions are drawn in Figure 4.3. Again, the higher order terms have little effect
on the graphic representation of the function. One observes that for each increase of
the degree by a factor of 2, the error decreases by a factor of 4.

5. Ritz Computes Chladni Figures. In 1787, Ernst Florence Friedrich Chladni,
a musician and physicist from Wittenberg close to Leipzig, made an extraordinary
discovery [5]: he noticed that when he tried to excite a metal plate with the bow of
his violin, he could make sounds of different pitch, depending on where he touched the
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Fig. 5.1 Ernst Florens Friedrich Chladni and his famous experiment. On the right, the drawings
by Chladni of the figures he managed to create using his violin bow to excite an iron plate
with some sand on it.

plate with the bow; see the experimental setup shown in the bottom left of Figure 5.1.
The plate itself was fixed only in the center, and when there was some dust or sand
on the plate, for each pitch a beautiful pattern appeared. Chladni carefully collected
all the figures he was able to create, and made drawings of each and every one; see
Figure 5.1 on the right. These figures, now called Chladni figures after their inventor,
attracted great attention among scientists and laymen alike, because of their intriguing
beauty. We show in Figure 5.2 more recent high-tech experiments from Munich and
San Diego, which recreate Chladni’s experiments with very high accuracy. We invite
the reader to compare those results with the historical drawings of Chladni to find
similarities and differences.

5.1. The Mathematical Model for Chladni Figures. For the vibrating plate,
the equations (3.1) and (3.2) of Kirchhoff [25] (1850) are modified as follows. Chladni
figures on a square plate correspond to eigenpairs (eigenvalues and corresponding
eigenfunctions) of the biharmonic operator

Δ2w = λw in Ω := (−1, 1)2,(5.1)

with the free boundary conditions

∂

∂x

(
∂2w

∂x2
+ (2 − μ)

∂2w

∂y2

)
= 0,

∂2w

∂x2
+ μ

∂2w

∂y2
= 0, x = {−1, 1},

∂

∂x

(
∂2w

∂y2
+ (2 − μ)

∂2w

∂x2

)
= 0, ∂2w

∂y2 + μ∂2w
∂x2 = 0, y = {−1, 1},

(5.2)
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Fig. 5.2 Creation of Chladni figures in a modern laboratory environment in Munich and San Diego.

where μ here is the elasticity constant. Even before the correct mathematical model
had been established, Wheatstone [50] had tried in 1833 to approximate Chladni
figures using sine and cosine functions.8 Kirchhoff, who came up with the correct
mathematical model in 1850, also managed to solve the Chladni problem for the
special case of a circular plate, which, due to symmetry, is much easier to handle.
For other configurations, the partial differential eigenvalue problem (5.1) with the
free boundary conditions (5.2) simply proved to be too difficult to solve.9 There were
even erroneous attempts: based on experiments performed by the master violin maker
König [26] in 1864, which suggested that Chladni figures can only contain straight
lines, Tanaka tried in 1887 to obtain solutions by integration starting from straight

8Ritz: “. . . dass es sich hier nur um einen in besonderen Fällen anwendbaren Kunstgriff handelt.”
9Ritz: “Die von Kirchhoff erhaltene partielle Differentialgleichung ist vierter Ordnung, und es

müssen am Rande zwei Differentialausdrücke dritter und zweiter Ordnung verschwinden, die von einer
Elastizitätskonstante[n] abhängen. Die grosse hieraus sich ergebende Komplikation des Problems
erklärt es hinreichend, dass die Lösung bis jetzt nur im Falle des Kreises (Kirchhoff) gefunden wurde,
wobei sich ein sehr befriedigender Anschluss an die Erfahrung ergab. Die Klangfiguren bestehen hier
nur aus konzentrischen Kreisen und aus Radien.”



FROM EULER, RITZ, AND GALERKIN TO MODERN COMPUTING 19

lines.10 In the case of clamped boundaries, the problem greatly simplifies, and Voigt
[48] found the general solution in 1893 for a rectangular plate with two or four clamped
boundaries by elementary integration. Toward the end of the 19th century, the great
expert in sound, John William Strutt, later Baron Rayleigh, summarized the situation
in [41]: “The Problem of a rectangular plate, whose edges are free, is one of great
difficulty, and has for the most part resisted attack.”

5.2. Ritz’s Computation of Chladni Figures. In his second groundbreaking pa-
per [39], Walther Ritz presents and analyzes his own method in order to compute
Chladni figures: instead of trying to solve the partial differential eigenvalue problem
(5.1)–(5.2) directly, he proposes to use the principle of energy minimization, from
which the equations were derived,11 and thus he considers the functional

J(w) :=

∫ 1

−1

∫ 1

−1

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2

+ 2μ
∂2w

∂x2
∂2w

∂y2
+ 2(1− μ)

(
∂2w

∂x∂y

)2
]
.(5.3)

According to the minimization principle, the solution w of (5.1)–(5.2) is a minimum
of the constrained problem

J(w) → min,

∫ 1

−1

∫ 1

−1

w2 dx dy = const.,(5.4)

and, from this minimization problem, one can again obtain the partial differential
eigenvalue problem by simply using the central highway of variational calculus.

Even though Ritz explains his new method using the concrete example of Chladni
figures on a square plate, he points out that his new method is completely general and
could be applied to plates of arbitrary shapes, provided the basis functions are well
chosen.12 The fundamental idea of Ritz’s new method was to search for an approx-
imate solution of the problem as a combination of well-chosen so-called coordinate
functions (“Grundfunktionen”) of the form

ws =

s∑
m=0

Amwm(x, y).(5.5)

If a simple solution is sought, for example, the lowest pitch, Ritz points out that
one could simply choose polynomials for the basis functions wm(x, y).13 For higher
eigenmodes, a better choice that leads to more accuracy is to use the same coordinate

10Ritz: “. . . Tanaka glaubt, allgemeinere und strengere Formeln zu erhalten. Dies ist aber schon
deswegen nicht der Fall, weil übersehen ist, dass eine Randbedingung die Lösung gar nicht bestimmt.”

11Ritz: “Das wesentliche der neuen Methode besteht darin, dass nicht von den Differentialgle-
ichungen und Randbedingungen des Problems, sondern direkt vom Prinzip der kleinsten Wirkung
ausgegangen wird, aus welchem ja durch Variation jene Gleichungen und Bedingungen gewonnen
werden können.”

12Ritz: “Im folgenden entwickle ich am Beispiel der quadratischen Platten mit freien Rändern eine
neue Integrationsmethode, die ohne wesentliche Änderungen auch auf rechteckige Platten angewandt
werden kann, sei es mit freien, sei es auch mit teilweise oder ganz eingespannten oder gestützten
Rändern. Theoretisch ist die Lösung in ähnlicher Weise sogar für eine beliebige Gestalt der Platte
möglich; eine genaue Berechnung einer grösseren Anzahl von Klangfiguren, wie sie im folgenden für
den klassischen Fall der quadratischen Scheibe durchgeführt ist, wird aber nur bei geeigneter Wahl
der Grundfunktionen, nach welchen entwickelt wird, praktisch ausführbar.”

13Ritz: “Für den Grundton, wofern grosse Genauigkeit nicht gefordert wird, führt das Verfahren
für die meisten Platten durch den Ansatz von Polynomen zum Ziel.”
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functions as in the previous section:14

wmn = um(x)un(y) + um(y)un(x),

w′
mn = um(x)un(y)− um(y)un(x),

where um(x) are the known eigenfunctions of a free one-dimensional bar,

d4um
dx4

= k4mum, with
d2um
dx2

= 0,
d3um
dx3

= 0 at x = {−1, 1}.

These conditions lead to the functions

um =

⎧⎪⎨⎪⎩
cosh km cos kmx+cos km cosh kmx√

cosh2 km+cos2 km

, tan km + tanh km = 0, m even,

sinh km sin kmx+sin km sinhkmx√
sinh2 km−sin2 km

, tan km − tanhkm = 0, m odd.
(5.6)

Ritz approximation of the solution then takes the form

ws :=

s∑
m=0

s∑
n=0

Amnum(x)un(y).(5.7)

In order to determine the coefficients Amn, we again insert this solution into the
functional (5.3), and we require that the resulting functional∫ 1

−1

∫ 1

−1

[(
∂2ws

∂x2

)2

+

(
∂2ws

∂y2

)2

+ 2μ
∂2ws

∂x2
∂2ws

∂y2
+ 2(1− μ)

(
∂2ws

∂x∂y

)2
]
dx dy(5.8)

is minimal15 under the constraint

U(ws) :=

∫ 1

−1

∫ 1

−1

w2
s dx dy = const. =: C.(5.9)

In this approximate problem, we only need to determine a finite number of coefficients
Amn.

In order to express the functional J(ws) in terms of the coefficients Amn, we have
to evaluate several integral terms. The first one is

∫ 1

−1

∫ 1

−1

(
∂2ws

∂x2

)2
dx dy =

∫ 1

−1

∫ 1

−1

(
∂2
∑

m,nAmnum(x)un(y)

∂x2

)2

dx dy

=
∑
m,n

∑
p,q

AmnApq

∫ 1

−1

∫ 1

−1

∂2um(x)

∂x2
un(y)

∂2up(x)

∂x2
uq(y) dx dy︸ ︷︷ ︸

c1mnpq:=

.(5.10)

Since un is known, it suffices to evaluate the integrals numerically to obtain the
coefficients c1mnpq. Similarly, one can also evaluate all the other terms in (5.8) to

14Ritz: “Sämtliche Eigentöne der Platte lassen sich bis auf einige Prozent darstellen durch die
Formeln. . . .”

15Ritz: “Es liegt nahe, als Masstab des Gesamtfehlers die Abweichung der potentiellen Energie
von ihrem exakten Wert beim wirklichen Vorgang zu wählen.”
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obtain ∫ 1

−1

∫ 1

−1

(
∂2ws

∂y2

)2

dx dy =
∑
m,n

∑
p,q

AmnApqc
2
mnpq,∫ 1

−1

∫ 1

−1

2μ
∂2ws

∂x2
∂2ws

∂y2
dx dy =

∑
m,n

∑
p,q

AmnApqc
3
mnpq,∫ 1

−1

∫ 1

−1

(1− μ)

(
∂2ws

∂x∂y

)2

dx dy =
∑
m,n

∑
p,q

AmnApqc
4
mnpq,∫ 1

−1

∫ 1

−1

w2
s dx dy =

∑
m,n

A2
mn by orthogonality,

where all the coefficients c2mnpq, c
3
mnpq, and c

4
mnpq are defined by concrete integrals,

as in (5.10). Using a Lagrange multiplier λ, we now need to minimize

J(ws)− λ(U(ws)− C) −→ min,

which is equivalent to minimizing the finite-dimensional problem

Js(a) := aT K̃a− λ(aTa− C) −→ min(5.11)

with respect to a, where we define the vector

a := [A00, A01, A10, . . .]

and the matrix

K̃ :=

⎡⎢⎢⎢⎢⎣
α00
00 α00

01 α00
10 . . .

α01
00 α01

01 α01
10 . . .

α10
00 α10

01 α10
10 . . .

...
...

...
. . .

⎤⎥⎥⎥⎥⎦ ,

with αpq
mn := c1mnpq + c2mnpq + c3mnpq + c4mnpq, using Ritz’s original notation.

In order to minimize (5.11), we compute the gradient with respect to a and set

it to zero, to obtain with K := 1
2 (K̃ + K̃T )

Ka = λa,(5.12)

a discrete eigenvalue problem. For each eigenvalue λ�, we get an eigenvector a� =
[A�

00, A
�
01, . . .] and the corresponding eigenfunction

w�
s =

s∑
m=0

s∑
n=0

A�
mnum(x)un(y).

Note the similarity with the underlying continuous eigenvalue problem

Δ2w = λw

we started with in (5.1).
The infinite partial differential eigenvalue problem has been reduced to the nu-

merical evaluation of several integrals in order to obtain the matrix K and then to the
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solution of an eigenvalue problem using a numerical linear algebra package; both tasks
are easy nowadays, if one has a computer available. However, at the time of Ritz, no
such tools were available, and Ritz had the daunting tasks of computing approxima-
tions of all the integrals by hand and then solving the eigenvalue problem, also by
hand. For the integrals, Ritz had to first approximate the one-dimensional basis func-
tions (5.6), which contain in their definition the solution of transcendental equations.
Here he noticed that only the first few values of km need to be computed,16 since they
quickly become close to mπ/2 − π/4; he then approximated the basis functions for
even m by17

um = cos

(
m

2
− 1

4

)
πx+

(−1)
m
2 cosh(m2 − 1

4 )πx√
2 cosh(m2 − 1

4 )π

(by neglecting cos km in the denominator of the defining formula (5.6) compared to
coshkm) and by a similar expression for odd m. Further approximations were needed
throughout (“Begnügt man sich mit vier genauen Ziffern . . . ,” “Mit einer Genauigkeit
von mindestens 2 Prozent . . . ,” “Zur Vereinfachung wird man die aus der Symmetrie
der Lösung sich ergebenden Beziehungen zwischen den Amn sogleich einführen. . . ”),
before Ritz finally transformed the theoretical eigenvalue problem

into the concrete numerical one, which contains six coefficients A0, . . . , A5 to be de-
termined for a particular symmetry in the eigenfunction:

Nowadays, the symbolic calculator Maple can easily perform all these operations! We
first define the solution of the transcendental functions defining km in (5.6) using the
command

16Because tanh km approaches 1 very rapidly; Ritz: “Die Wurzeln von tan km + tanh km = 0
unterscheiden sich nur wenig von mπ/2− π/4.”

17Ritz: “Für m > 2 ist auf vier Stellen genau für gerade m.”
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k:=m->if type(m,even) then

fsolve(tan(x)+tanh(x)=0,x=m*Pi/2-Pi/4)

else

fsolve(tan(x)-tanh(x)=0,x=(m-1/2)*Pi/2)

end if;

With km available, we can now define the one-dimensional eigenfunctions um used by
Ritz to construct his coordinate functions, using the Maple command

u:=(m,x)->if m=0 then

1/sqrt(2)

elif m=1 then

sqrt(3/2)*x

elif type(m,even) then

(cosh(k(m))*cos(k(m)*x)+cos(k(m))*cosh(k(m)*x))/

sqrt((cosh(k(m)))^2+(cos(k(m)))^2)

else

(sinh(k(m))*sin(k(m)*x)+sin(k(m))*sinh(k(m)*x))/

sqrt((sinh(k(m)))^2-(sin(k(m)))^2)

end if;

We now simply have to evaluate numerically the integrals in order to obtain the matrix
entries:

mu:=0.225;

for m from 1 to 5 by 2 do

for n from 1 to 5 by 2 do

for p from 1 to 5 by 2 do

for q from 1 to 5 by 2 do

K(m,n,p,q):=evalf(Int(Int(diff(u(m,x),x,x)*u(n,y)*diff(u(p,x),x,x)*u(q,y),

x=-1..1),y=-1..1)

+Int(Int(diff(u(n,y),y,y)*u(m,x)*diff(u(q,y),y,y)*u(p,x),

x=-1..1),y=-1..1)

+2*mu*Int(Int(diff(u(m,x),x,x)*u(n,y)*diff(u(q,y),y,y)*u(p,x),

x=-1..1),y=-1..1)

+2*(1-mu)*Int(Int(diff(u(m,x),x)*diff(u(n,y),y)*diff(u(p,x),x)*diff(u(q,y),y),

x=-1..1),y=-1..1));

od;

od;

od;

od;

Then we put the entries into a matrix,18

Ke:=matrix([[K(1,1,1,1),K(1,1,1,3)+K(1,1,3,1),K(1,1,3,3),K(1,1,1,5)

+K(1,1,5,1),K(1,1,3,5)+K(1,1,5,3),K(1,1,5,5)],

[(K(1,3,1,1)+K(3,1,1,1))/2,(K(1,3,1,3)+K(1,3,3,1)+K(3,1,3,1)+K(3,1,1,3))/2,

(K(1,3,3,3)+K(3,1,3,3))/2,(K(1,3,1,5)+K(1,3,5,1)+K(3,1,1,5)+K(3,1,5,1))/2,

(K(1,3,3,5)+K(1,3,5,3)+K(3,1,3,5)+K(3,1,5,3))/2,(K(1,3,5,5)+K(3,1,5,5))/2],

[K(3,3,1,1),K(3,3,1,3)+K(3,3,3,1),K(3,3,3,3),K(3,3,1,5)+K(3,3,5,1),

K(3,3,3,5)+K(3,3,5,3),K(3,3,5,5)],

[(K(1,5,1,1)+K(5,1,1,1))/2,(K(1,5,1,3)+K(1,5,3,1)+K(5,1,3,1)+K(5,1,1,3))/2,

(K(1,5,3,3)+K(5,1,3,3))/2,(K(1,5,1,5)+K(1,5,5,1)+K(5,1,1,5)+K(5,1,5,1))/2,

(K(1,5,3,5)+K(1,5,5,3)+K(5,1,3,5)+K(5,1,5,3))/2,(K(1,5,5,5)+K(5,1,5,5))/2],

[(K(5,3,1,1)+K(3,5,1,1))/2,(K(5,3,1,3)+K(5,3,3,1)+K(3,5,3,1)+K(3,5,1,3))/2,

(K(5,3,3,3)+K(3,5,3,3))/2,(K(5,3,1,5)+K(5,3,5,1)+K(3,5,1,5)+K(3,5,5,1))/2,

(K(5,3,3,5)+K(5,3,5,3)+K(3,5,3,5)+K(3,5,5,3))/2,(K(5,3,5,5)+K(3,5,5,5))/2],

[K(5,5,1,1),K(5,5,1,3)+K(5,5,3,1),K(5,5,3,3),K(5,5,1,5)+K(5,5,5,1),

K(5,5,3,5)+K(5,5,5,3),K(5,5,5,5)]]);

18The particular combinations are due to the symmetries Ritz used.
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Fig. 5.3 High accuracy of the results of Ritz.

This leads to the matrix
⎡
⎢⎢⎢⎢⎢⎢⎣

13.95000000 −32.21614500 18.60000000 32.21614504 −37.20000000 18.60000002
−16.10807250 406.1196695 −119.9256010 −133.5499734 172.0806028 −83.55402336
18.60000000 −239.8512019 1684.464298 217.9828187 −1136.623991 329.5350388
16.10807252 −133.5499735 108.9914093 2945.466708 −427.1327599 179.2413502

−18.60000000 172.0806029 −568.3119956 −427.1327599 6325.441344 −1441.531357
18.60000002 −167.1080467 329.5350388 358.4827005 −2883.062714 13672.20612

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Comparing this result, computed accurately to about ten significant figures in Maple,
with the results obtained by Ritz, who had to approximate not only the roots of the
transcendental functions and the functions themselves, but also intermediate results
during the computation, we are stunned by the accuracy of Ritz’s results: we show
in Figure 5.3 the original results of Ritz, highlighting in red the digits which would
need to be modified if Ritz had performed his computations to 10 digits accuracy, but
with his approximations used for the functions, and in green the digits which would
need to be further modified if no approximations to the functions had been made. We
can see two likely misprints, the sign of the coefficient A3 in the third equation and
the sign of the coefficient of A2 in the last equation, and maybe one real error, the
coefficients in front of A5 in the second equation and A1 in the last equation; in this
case, one should be the double of the other, and both are consistently incorrect by a
large margin.

Once Ritz had obtained the discrete eigenvalue problem, he still needed to solve it
in order to obtain eigenvalues and eigenvectors, which then allowed him to reconstruct
the vibrational modes of the plate using the coordinate functions. At his time, there
were no numerical methods available to compute eigenvalues and eigenvectors of a
matrix, but again he proved to be far ahead of his time: instead of trying to compute
the eigenvalues using the characteristic polynomial, a disastrous approach as we know
today for numerical purposes, he invented an iterative method, an approach which
has now become standard for both eigenvalue problems and linear systems, and for
which very powerful methods are available today. Ritz first fixed one component of
the eigenvector, namely, A0 = 1, and took as an approximation to the eigenvalue the
first diagonal entry. Then the remaining last five equations were used to determine an
approximation to the other components Aj of the eigenvector (“. . . setzen wir A0 = 1,
und in erster Annäherung λ0 = 13.95. Dann ergeben die fünf letzten Gleichungen die
übrigen Ai”). But again, solving this linear system of five equations is too much work
by hand, so Ritz proposed to just invert the diagonal of the matrix, in what we would
today call a Jacobi step (“Wir berechnen für die Ai eine erste Approximation, indem
wir alle Glieder rechts vernachlässigen neben den Diagonalgliedern . . .”). Having
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this approximation for the eigenvector, one can now compute a correction to the
eigenvalue using the first equation, and, according to Ritz, one or two successive
iterations suffice in order to obtain about four digits of accuracy (“Ein oder zwei
sukzessive Korrektionen genügen meist, um die vierte Stelle bis auf wenige Einheiten
festzustellen”). It is worthwhile to write this algorithm in today’s notation: solving
the eigenvalue problem

Ka = λa

for a := (a0, a1, . . . , an) and λ is equivalent to solving the nonlinear system of equa-
tions

f(λ, a1, . . . , an) := Ka− λa = 0,

where we have fixed, like Ritz, one component of the eigenvector, a0 := 1. Ritz’s
algorithm now starts with λ0 = 13.95 and (a01, . . . , a

0
n) = 0, and computes for iteration

index k = 0, 1, . . .

fj(λ
k, ak1 , . . . , a

k
j−1, a

k+1
j , akj+1, . . . , a

k
n) = 0, j = 1, 2, . . . , n,(5.13)

and then solves for a new approximation of the eigenvalue λk+1

f0(λ
k+1, ak+1

1 , . . . , ak+1
n ) = 0.

Note that in each step of the algorithm, only a scalar linear equation needs to be
solved. Implementing this method in MATLAB gives the following short program:

K=[13.95 -32.08 18.60 32.08 -37.20 18.60

-16.04 411.8 -120.0 -133.6 166.8 140

18.60 -240.0 1686 -218.0 -1134 330

16.04 -133.6 109.0 2945 -424 179

-18.6 166.8 -567 -424 6303 -1437

18.6 280 -330 358 -2874 13674];

Kr=K(2:end,2:end); % last 5 equations

Kd=diag(Kr); % Jacobi splitting for Ritz’

Ko=Kr-diag(diag(Kr)); % eigenvalue iteration

la=K(1,1) % first eigenvalue and

a=zeros(1,size(K,2)); a(1)=1; % eigenvector approximation

for j=1:6 % Ritz iteration

b=-K(2:end,1); % rhs of the system

bj=b-Ko*a(2:end)’; % rhs for Jacobi step

a(2:6)=bj./(Kd-la) % Jacobi step

la=K(1,1)+K(1,2:end)*a(2:6)’ % new eigenvalue approximation

end

whose output is
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la =

13.9500

a =

1.0000 0.0403 -0.0111 -0.0055 0.0030 -0.0014

la =

12.1388

a =

1.0000 0.0342 -0.0038 -0.0027 0.0002 -0.0017

la =

12.6565

a =

1.0000 0.0387 -0.0061 -0.0036 0.0011 -0.0020

la =

12.3996

a =

1.0000 0.0374 -0.0049 -0.0032 0.0007 -0.0020

la =

12.4972

a =

1.0000 0.0380 -0.0053 -0.0034 0.0009 -0.0020

la =

12.4525

a =

1.0000 0.0378 -0.0051 -0.0033 0.0008 -0.0020

la =

12.4711

We see that the dominant eigenvector component is the first one, corresponding to
the diagonal element, and the eigenvalue indeed seems to converge. In order to obtain
the exact eigenvalue of Ritz’s matrix, we can use the MATLAB commands

>> ev=sort(eig(K));

>> ev(1)

ans =

12.4653

which first computes all eigenvalues, sorts them, and then shows the first one. We see
that about four iterations are needed in this case in order to determine the first three
digits. It is also interesting to check whether the approximations chosen by Ritz have
a significant influence on the eigenvalues. We therefore computed the eigenvalues of
Ritz’s matrix, the matrix obtained when computing exactly using Ritz’s approxima-
tions of the quantities in the matrix, and those of the exact matrix. We obtain for
the eigenvalues

12.47 12.49 12.49
379.85 379.14 379.34
1579.79 1556.84 1559.28
2887.06 2899.82 2899.93
5969.67 5957.80 5961.32

14204.92 14233.73 14235.30

which shows that even with the small error in Ritz’s computation in the elements,
the approximation has little influence on the final result.

Having obtained these numerical results, all by hand calculations, Ritz went on
to compare his results to the physical experiments performed by Chladni. We show
in Figure 5.4 the results for the first type of symmetry Ritz computed. We see that
in case II, there is excellent agreement between the theoretical and experimental
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Fig. 5.4 Comparison done by Ritz of his computational results with physical experiments, for the
first few cases.
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Fig. 5.5 Table of frequencies obtained by Ritz for the pitch of the sound of the plate, compared to
the results measured by Chladni.

results (trivially in case I). In case III, there were no measurements available. Case
VI was not obtained by Chladni, and we see in Figure 5.4 that fairly complicated
patterns arise for the later cases. Ritz also used his method to estimate the pitch
of the sound and compared his result with the pitch measured by Chladni. Due to
the enormous demand made by the computations, however, Ritz only used his full
method of approximation with several terms in the expansion for the first 9 notes,
marked with a star in the original table given in Figure 5.5. For the remaining notes,
he only used the first term in the expansion. It is remarkable how well Ritz’s results
agree with the physical experiments of Chladni!

5.3. First Reactions to Ritz’s Work in Western Europe. In Göttingen, where
Ritz spent the last years of his life and which was then the principal center of math-
ematical research, the importance of Ritz’s invention was not immediately accepted.
None of the many doctoral and habilitation theses written under Hilbert in these years
on the Dirichlet Principle makes any reference to Ritz’s work. The only exception
is the paper by König [27], who just says that Ritz had simplified somewhere some
lines of Hilbert’s proof. Ten years later, we read in a footnote in the famous book of
Hurwitz and Courant [24] (see Figure 5.6) the following:

The actual, for this proof of existence unimportant [italics by us], construc-

tion of minimal sequences causes no problems in principle. For example

if G is a finite domain, bounded by curves C without multiple points, we
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Fig. 5.6 Footnote in the first edition of the book by Hurwitz and Courant [24].

imagine that G is covered by a triangular grid Tj , whose triangles become

smaller when j increases. We consider now only functions ϕ or φ = ϕ−S,

where the difference ϕ− x
x2+y2 in each Triangle of Tj is a linear function.

The function φj is then the function associated with Tj , such that D[φ]

has as small a value as possible. The requirement that D[φ] = Min is now

a problem of minimization with a finite number of variables, namely the

integrals, understood in dependence of the values of ϕ in the nodes of the

triangular mesh; this problem can certainly be solved, as one can easily

see, with linear equations. The fact that the functions so created form

a minimization sequence follows immediately from the easy to prove fact

that one can approximate each admissible function φ and the correspond-

ing Dirichlet integral with the help of our construction with sufficiently

large j to arbitrary accuracy.

We see that Courant had little interest in Ritz’s method and did not mention Ritz at
all. His low esteem for practical questions at that time even led him to remove this
footnote from the second edition (1925) of the book. He removed, at the same time,
the historically first description of what later became one of the most important tools
for scientific computation, the finite element method. We will come back to this in
section 7.

Even more sad was the fact that the famous, and by then old, Lord Rayleigh
published an article [42] in which he accused Ritz of plagiarism and claimed that all
of Ritz’s ideas were already present in his own prior work. This led to the name of
“Rayleigh–Ritz” for this method, accepted by many scientists. A very careful study
of all the original papers carried out by Leissa [30] made it clear that this claim is not
at all justified.

6. Immediate Use of Ritz’s Method in Russia. Unlike in Western Europe, Ritz’s
method was immediately put to use in Russia, in order to solve hard engineering
problems.
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Fig. 6.1 “Shveitsarskogo uchenogo Val’tera Rittsa,” as Timoshenko refers to the inventor of the
method in his original publication in Russian.

Structural Mechanics of Shipbuilding
[Part concerning the theory of shells]

Fig. 6.2 Ivan Bubnov (1872–1919) and the title of his monumental manual for the construction of
ships.

6.1. Timoshenko. S. P.Timoshenko (1878–1972), a professor then working at
the Politekhnicheskyi Institut of Kiev, later in St. Petersburg, and still later at Stan-
ford, was the first to realize the importance of Ritz’s invention for applications [45]:

Nous ne nous arrêterons plus sur le côté mathématique de cette ques-

tion: un ouvrage remarquable du savant suisse, M. Walter Ritz, a été

consacré à ce sujet. En ramenant l’intégration des équations à la recherche

des intégrales, M. W. Ritz a montré que pour une classe très vaste de

problèmes, en augmentant le nombre de paramètres a1, a2, a3, . . . , on ar-

rive à la solution exacte du problème. Pour le cycle de problèmes dont nous

nous occuperons dans la suite, il n’existe pas de pareille démonstration,

mais l’application de la méthode approximative aux problèmes pour lesquels

on possède déjà des solutions exactes, montre que la méthode donne de très

bons résultats et pratiquement on n’a pas besoin de chercher plus de deux

approximations19

We also show the “shveitsarskogo uchenogo Val’tera Rittsa,” of this quote in the origi-
nal Russian publication in Figure 6.1. Timoshenko then showed how many interesting
problems can immediately be solved approximately, using Ritz’s method.

6.2. Bubnov. Ivan Bubnov (1872–1919; see Figure 6.2), was a structural engineer
specialized in the construction of ships, in particular, submarines. Like Timoshenko,
he was also working at the Polytechnical Institute of St. Petersburg, and he needed
to calculate the behavior of shells for the construction of submarines. Fascinated by

19“We will not address the mathematical aspects of this method: a remarkable publication of
a Swiss scientist, Mr. Walter Ritz, was dedicated to this subject. Transforming the problem of
integrating the equations into a problem of evaluating integrals, Mr. W. Ritz has shown for a large
class of problems, that by increasing the parameters a1, a2, a3, . . . , one can find the exact solution
of the problem. For the problems we are interested in here, however, such a proof does not exist,
but the application of the method to problems for which we know an exact solution shows that
the method gives very good results and in practice one does not need to compute more than two
approximations.”
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Beams and Plates

Using Series for some problems in
the elastic equilibrium of rods and plates

(Petrograd, 1915)

Fig. 6.3 Boris Grigor’evich Galerkin and the famous paper which is now quoted in the literature as
containing the invention of the “Galerkin.” method.

the work of Timoshenko (Bubnov does not cite the work of Ritz directly), especially
the simplicity of the approach and the accuracy of the results, he developed an entire
battery of problems with approximate solutions in his manual on ship building [4]. A
main contribution of Bubnov to the development of the finite element method is that
he realized in [3], after studying the Zhuranskyi prize-winning work of Timoshenko,
that

. . . extremely simple solutions can also be obtained in the usual way, i.e.,

without resorting to a consideration of the energy of the system [ . . . ] we

simply substitute the expansion for w in the general differential expression

for equilibrium, multiply the expression obtained by ϕk dx dy and integrate

over the entire volume of the body, then we obtain an equation relating

the coefficient ak with all others [ . . . ] and will be identical to those found

by Prof. Timoshenko.

This remark simplified the construction of linear systems for the computation of the
coefficients by giving an easy-to-remember recipe. Bubnov also required the coordi-
nate functions to be orthogonal in his remark, without giving a justification. He used,
in general, trigonometric functions for ϕk.

6.3. Galerkin. Boris Grigor’evich Galerkin (1871–1945; see Figure 6.3) came
from a poor family and had to start working at the age of twelve as a calligrapher.
Nevertheless, he managed to study in the Mechanics Department of the St. Petersburg
Technological Institute, and then he worked for the Russian Steam-Locomotive Union
and the China Far East Railway. He was also interested in politics, and was arrested
in 1905 for political activities and put into prison for one and a half years. This com-
pletely changed his interests, and it was while in prison that he decided to devote the
rest of his life to science. Galerkin went on an extensive scientific trip through Europe
in 1909 and visited Switzerland, among other countries. We do not know whether he
met Walter Ritz on this trip, but Galerkin makes precise references to both papers of
Ritz in his most famous publication [15], which is now usually quoted when referring
to the Galerkin method; Galerkin himself called this method the Ritz method; see
Figure 6.4. In this paper, Galerkin introduces Ritz’s method on the first few pages,
and then goes on to show how the method can be used to solve approximately many
interesting and difficult problems arising from applications. Galerkin noticed that
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· · ·

· · ·

Fig. 6.4 Galerkin himself called the method which today carries his name the “Ritz Method,” and
he cited all of Ritz’s papers, as well as the work by Bubnov and Timoshenko.

the coordinate functions do not need to be orthogonal; one simply gets an additional
matrix, which is today called the mass matrix. However, the main contribution of
Galerkin in this paper was to realize that one does not even need a minimization
principle in order to construct a finite-dimensional system following the recipe given
by Bubnov. One can only speculate as to why the method is nowadays generally
called the Galerkin method; maybe Galerkin’s numerous examples from applications
were more appreciated than the theoretical analysis of Ritz. Most readers did not
even notice the name of the method in Galerkin’s introduction, and went straight to
the examples that form the bulk of Galerkin’s paper.

7. Late Recognition of Ritz’s Work in Western Countries and the Birth of
Finite Element Methods. Inspired by Hilbert’s ideas, a tremendous number of pure
mathematicians applied what became known as direct methods of variational calculus
in order to prove various existence theorems. An overview of these developments is
given in the paper by Richard Courant [10]. In this paper, Courant gives credit to
Walther Ritz for the method of finding the coefficients.20

Almost three decades after Ritz’s tragic death, Richard Courant became really
interested in practical applications and gave an address to the American Mathematics
Society on May 3, 1941 [11], which he began with the text shown in Figure 7.1. In
this address, Courant greatly praised the work of Ritz:

At first, the theoretical interest in existence proofs dominated, and only

much later were practical applications envisaged by two physicists, Lord

Rayleigh and Walther Ritz. They independently conceived the idea of uti-

lizing this equivalence for numerical calculation of the solutions, by sub-

stituting for the variational problems simpler approximating extremum

problems in which but a finite number of parameters need be determined

But only the spectacular success of Walther Ritz and its tragic circum-

stances caught the general interest. In two publications of 1908 and 1909,

20“. . . einer vielfach auch praktisch angewandten allgemeinen Methode, welche nach Walther Ritz
benannt wird.”
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As Henri Poincaré once remarked, “solution of a
mathematical problem” is a phrase of indefinite
meaning. Pure mathematicians sometimes are sat-
isfied with showing that the nonexistence of a solu-
tion implies a logical contradiction, while engineers
might consider a numerical result as the only rea-
sonable goal. Such one-sided views seem to reflect
human limitations rather than objective values.

Fig. 7.1 Richard Courant and the beginning of his address to the American Mathematical Society
in 1941, marking a turning point in his appreciation of Ritz’s work.

Ritz, conscious of his imminent death from consumption, gave a masterly

account of the theory, and at the same time applied his method to the

calculation of the nodal lines of vibrating plates, a problem of classical

physics that previously had not been satisfactorily treated.

Clearly, the tide had turned, and Ritz’s work was now held in high esteem by Courant.
In addition, Courant now also realized the importance of the footnote from the first
volume of his book with Hurwitz [24]:

However, the difficulty that challenges the inventive skill of the applied

mathematician is to find suitable coordinate functions.

Instead of the eigenfunctions used by Ritz as coordinate functions and the trigono-
metric functions employed by Bubnov and Galerkin, Courant now suggested the use
of what are nowadays called hat functions ; see Figure 7.2. In two dimensions, the
piecewise linear functions Courant had in mind are most easily defined on a triangular
mesh, in contrast to the up-to-then dominant finite difference method on a rectangu-
lar grid:

Instead of starting with a quadratic or rectangular net we may consider

from the outset any polyhedral surfaces with edges over an arbitrarily cho-

sen (preferably triangular) net.

We show a few examples of such hat functions in Figure 7.3. In his address, Courant
presented the first finite element calculation that we were able to find, shown in
Figure 7.4. Courant chose as a model problem a square domain with a hole (see
Figure 7.4 on the left), and wanted to minimize the functional∫ ∫ (

(∇u)2 + 2u
)
dx dy −→ min,

with u = 0 on the outer boundary and u = c, an unknown constant, on the inner
boundary. He then compared the results obtained for c and the total stiffness

S := −
∫ ∫

u dx dy

with different coordinate functions:
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Ritz’s choice:
Eigenfunctions of the
one-dimensional beam, or
polynomials

Bubnov/Galerkin:
Use trigonometric
functions or polynomials

Courant’s choice:
Use hat functions, or
polynomials on elements

Fig. 7.2 Different choices for the coordinate functions.

x

y

u ϕi

ϕj

ϕk

Fig. 7.3 Examples of hat functions in two dimensions.

Polynomials (“with negligible amount of numerical labor”):

ϕ1 := a(1− x), S = 0.339, c = −0.11,

ϕ2 := a(1− x)

[
1 + α

(
x− 3

4

)
y

]
, S = 0.340, c = −0.109.

Finite Elements (“the results, easily obtainable, were”):

Case (a): S = 0.344, c = −0.11.

Case (b): S = 0.352, c = −0.11.

Case (c): S = 0.353, c = −0.11.

Case (d): S = 0.353, c = −0.11.
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Fig. 7.4 The first finite element computation we were able to find, by Richard Courant.

Courant concludes that “these results show in themselves and by comparison that the
generalized method of triangular nets seems to have advantages.”

The development of what was to become the finite element method proceeded on
many fronts: on the mathematical side, Trefftz [46] proposed in 1926 to use local basis
functions in the Ritz method. In Russia, Petrov [34] proposed to use approximation
spaces different from the test spaces, which led to the now-called Petrov–Galerkin
family of methods.21 A little later, Polya [35] gave an interpretation of the finite dif-
ference method using piecewise polynomial approximations, and Argyris [1] combined
system theory available at that time with variational approximation in a fundamental
step toward a true finite element methodology. Tending to the engineering side, Hren-
nikoff [23] used local approximations in the form of bars, beams, and spring elements
in order to treat plane elasticity problems, and McHenry [32] developed his “lattice
analogy.” Over the same time, Kron developed his tensor analysis of networks using
a method of tearing (see [28, 29]), and Levy developed the direct stiffness method
for aircraft simulation [31]. The term finite element method was then coined by Ray
Clough in [6], who had started to work with Jon Turner from Boeing on structural
dynamics, and this work led to the first published description of the finite element
method, still without its name, in [47]; see also the historical note by Ray Clough [7].

8. An Application. We now leave the sunny Swiss Alps mentioned at the begin-
ning of this article (see Figure 1.1) and turn to the cold Canadian winter, to illustrate

21Petrov wrote “Metod Galerkina” for Galerkin’s “Metod Ritza.” On the other hand,
S. L. Sobolev, in the first edition of his textbook The Equations of Mathematical Physics from 1947,
dedicated an entire chapter to “Metod Ritza.” Kantorvich and Krylov in their book Approximation
Methods in Numerical Analysis (Moscow 1952) have a section titled “Metod Ritza i Metod B.G.
Galerkina.”
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Fig. 8.1 Triangulation and decomposition of the apartment in Montreal; in the middle is the first
Schwarz iteration, and at the bottom is the converged temperature distribution.

how Ritz’s method, as well as Schwarz’s method (see (2.10)), are used today in scien-
tific computing. We compute the temperature distribution in a heated, but not well
insulated apartment on Durocher Street in Montreal, shown in Figure 8.1. The walls
are shown in blue, the windows in black on top, and there are also doors in black at
the bottom and on the right-hand side. We assume that the windows are at −20◦C
and the doors at 15◦C. The steady-state heat equation is

−Δu = f in the apartment,
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where the heat source term f is nonzero at the heater locations, which are close to
the window for the two big rooms on the left and the right and on the left wall in the
third room from the left; there is no heater in the second room from the left.

We use a Schwarz domain decomposition method, in which the apartment is
decomposed into separate rooms, as shown by the red partitions in Figure 8.1, and
a finite element discretization of the problem with linear triangular finite elements,
as shown by the mesh in the figure. The “Grundfunktionen” of the Ritz method are
therefore simple linear hat functions. In the middle of Figure 8.1 we show the first
iteration of the Schwarz method, where one can clearly see the isolated effect of the
heaters and warm doors in each subdomain. At the bottom we show the final result
of the simulation, which is now continuous. This result is interesting: one can see
that while the heaters in the living room on the left and the bedroom on the right
are well placed to block the cold from the windows, the heater on the left wall in the
bathroom is not effective to keep the room warm, a fact the occupant strongly felt in
winter. Also, the kitchen is not heated and stays cold, except when cooking.

9. Conclusions. We have tried to give as complete a description as possible of
the development which led from the variational calculus to Ritz’s work and the finite
element method. There are other descriptions of these historical developments in the
literature; see, for example, the nice article by Oden [33], which also contains the
history of the development of the mathematical theory, the review of the Courant
element by Babuška [2], the short description by Taylor [43], and the longer study
by Leissa [30]. An extensive “glimpse” of the literature of variational calculus can be
found at the end of Volume II of Giaquinta and Hildebrandt [18].

9.1. Back to Euler—the Last Surprise. After all these controversies (should
the method be called the Rayleigh method? Rayleigh–Ritz? Ritz method? Ritz–
Galerkin? Bubnov–Galerkin? Timoshenko–Bubnov–Galerkin? Galerkin method?),
let’s have a fresh look at Euler’s original work from 1744. We described earlier that
Euler published in 1744 the differential equations (1.3) for the variational problem
(1.2), and that the standard proof for this equation was found much later. The
natural question is thus: how did Euler himself find “his” differential equation for a
variational problem? We observe in Caput II of E65 [12] the following procedure:

1. Approx. curve by polygon

2. Approx. integral by sum

3. Differentiate with resp. to ν where
N = ∂Z

∂y ,

P = ∂Z
∂p

4. Set this derivative to zero,
apply Euler’s method inversely .

What did Euler do? In step 1 he discretized the curve by a finite-dimensional
object, which is precisely from the hat function finite element space applied to the
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one-dimensional case. In step 3 he solved directly the finite-dimensional problem
which he had obtained after discretizing the integral in step 2. This direct solution
by a discretized finite element approximation was the only thing he could do, before
“his” differential equation in step 4 had been found.

Fig. 9.1 The two-dimensional triangular finite element space in Schellbach, 1852, [40].

9.2. Another surprise. The two-dimensional triangular finite element approx-
imations can also be found in the older literature, in the publication of Schellbach
[40] from 1852, who proposed to solve many problems of variational calculus in the
spirit of Euler. For his treatment of the minimal surface problem in section 30, see
Figure 9.1.
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