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Lecture 1: Hamiltonian systems
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The main topic of this lectutds a deeper understanding of Hamiltonian systems

p=-VyH(p,q), ¢ = Vy,H(p,q). (1)

Here,p andq are vectors irR?, and H (p, q) is a scalar sufficiently differentiable
function. It is called the ‘Hamiltonian’ or the ‘total ensgrg

1 Derivation from Lagrange’s equation

Suppose that the position of a mechanical system witlegrees of freedom is
described by, = (¢1, ..., q4)" asgeneralized coordinateshis can be for exam-
ple Cartesian coordinates, angles, arc lengths along & cate.). Consider the
Lagrangian
L=T-U, (2)
whereT = T'(q, ¢) denotes the kinetic energy abid= U(q) the potential energy.
The motion of the system is described by Lagrange’s equfation
d (0L oL
a5 ) =5 3)
dt \ 0q dq
IMost parts of this manuscript are taken from the monog@@bmetric Numerical Integration
by Hairer, Lubich & Wanner (2nd edition, Springer Verlag 8p0

2Lagrange Applications de la rathode expd=e dans le @moire pecedent a la solution de
differents probdmes de dynamiqu#&760, Oeuvres Vol. 1, 365-468.
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which are just the Euler—Lagrange equations of the vanatiproblemS(q) =
12 L(q(t),4(t)) dt — min.

Hamilton® simplified the structure of Lagrange’s equations and tuthedh
into a form that has remarkable symmetry, by

x Iintroducing Poisson’s variables, the conjugaiementa
oL
= —(q,4 for k=1,...,d 4
Pk 6(]k (Q7 Q) ) 5 Uy ( )

* considering thédamiltonian
H :=p"q— L(q,q) (5)

as a function op andg, i.e., takingH = H (p, q) obtained by expressing
as a function op andgq via (4).

Here it is, of course, required that (4) defines, for ewgrg continuously differ-
entiable bijectionj < p. This map is called theegendre transform

Theorem 1 Lagrange’s equations (3) are equivalent to Hamilton’s eijuss

OH OH
)y, — — —— s s = —— 5 5 kzl”d 6
=g (p:q) @ =g (p:q) (6)
Proof. The definitions (4) and (5) for the momentand for the Hamiltoniar{
imply that

oH . p0q¢ 0OLOq  .p
o~ T vgey
oH 04 OL _0Log _ 0L
9 — T oq 9 9i0g — " og
The Lagrange equations (3) are therefore equivalent to (6). 0

3Sir W.R. Hamilton,On a general method in dynamics; by which the study of theomshf
all free systems of attracting or repelling points is reddide the search and differentiation of
one central relation, or characteristic functipRhil. Trans. Roy. Soc. Part Il for 1834, 247-308;
Math. Papers, Vol. I, 103-161.



Case of quadratic kinetic energy. If T'(¢,¢) = 34" M(q)¢, whereM(q) is
a symmetric and positive definite matrix, we have= M (q)¢. Replacing the
variableg by M (q)~1p in the definition (5) offH (p, ¢), we obtain

H(p.q) = p"M(q)"'p— L(q. M(q)~"p)

= p"M(q) 'p— %pTM(Q)lp +U(q) = %pTM(Q)lp +U(q)

and the Hamiltonian i¢/ = T' + U, which is thetotal energy

2 Energy conservation and first integrals, examples

Definition 1 A non-constant functior(y) is afirst integralof y = f(y) if

I'(y)f(y)=0  forally. (7)

This is equivalent to the property thaverysolutiony(t) of y = f(y) satisfies
I(y(t)) = Const.

Example 1 (Conservation of the total energy)For Hamiltonian systems (1) the
Hamiltonian functionH (p, q) is a first integral.

Example 2 (Conservation of the total linear and angular momatum) We con-
sider a system a¥V particles interacting pairwise with potential forces depéng
on the distances of the particles. This is a Hamiltonianesysivith total energy

N N -1
1 1
Hp.) =53 vt 2> Va(lla—all)
i=1 i=2 j=1

Hereq;, p; € R? represent the position and momentum oftheparticle of mass
m;, andV;(r) (i > j)is the interaction potential between tfte and;th particle.
The equations of motion read

1 N
%ZEP@', pz‘Z;Vz‘j(Qi—Qj)
where, fori > 7, we have/l'j = Vj = —Y/Z-;-('r’l-j)/rij with rij = qu — q]” The

conservation of the total linear and angular momentum

N N
P=>"p, L=) axp
i=1 i=1

is a consequence of the symmetry relatign= v;;:



Example 3 (Mathematical pendulum) The mathemati-
cal pendulum (mass:. = 1, massless rod of length= 1,
gravitational acceleration = 1) is a system with one de-
gree of freedom having the Hamiltonian

cos q

1
H(p,q) = 5 p* — cosq,

so that the equations of motion (1) become
p=—sing,  ¢=p. (8)

Figure 3 below shows some level curvesifp, ¢). By Example 1, the solution
curves of the problem (8) lie on such level curves.

Example 4 (Two-body problem or Kepler problem) b
For computing the motion of two bodies (planet ang
sun) which attract each other, we choose one of the
bodies (sun) as the centre of our coordinate system,;
the motion will then stay in a plane and we can us¢
two-dimensional coordinates= (¢, ¢») for the posi- ae
tion of the second body. Newton'’s laws, with a suitable
normalization, then yield the following differential edicans

=, = (9)
(af +q3)%* (af +a3)*?
This is equivalent to a Hamiltonian system with the Hamiiléon

1 1
H(p1,p2, q1,¢2) = 5 (p%er%) - Pi = Gi-
2 VG + 4

(10)
The planet moves ielliptic orbits with the sun at one of the foci (Keplet'§irst
law). With initial values

1+e
1_

@(0)=1—¢, @(0)=0, ¢(0)=0, ¢(0)= (11)
the solution is an ellipse with eccentricigy(0 < e < 1),a = 1,b = V1 — €2,
d = 1 — ¢%, and perio®2r. The total energy iff, = —1/2, and the angular
momentum i, = /1 — e2.

4]. Kepler,Astronomia novaxTioloynT6s seu Physica celestis, traditia commentariis de
motibus stellae Martis, ex observationibus G. V. TychonéhB Prague 1609.

4



Example 5 (Henon—Heiles problem) The polynomial Hamiltonian in two de-
grees of freedom

1 1 1
H(p,q) = 5(pi +p3) + 5 (@ + @) + ¢ie2 — 565 (12)

is a Hamiltonian differential equation that can have ctastlutions. Figure 1
shows a regular behaviour of solutions when the value of #mailonian is small,
and a chaotic behaviour for large Hamiltonian.

Figure 1: Poincaré cuts fgf = 0, p; > 0 of the HEnon—Heiles model fdi = 1—12
(6 orbits, left) andH = £ (1 orbit, right).

3 Symplectic transformations

The basic objects to be studied are two-dimensional péwghams lying inR2?.
We suppose the parallelogram to be spanned by two vectors

& U
= (gq ) n= n
inthe(p, ¢) spaced?, 4, P, n? € RY) asP = {té +sn|0<t <1, 0<s<1}.

In the casel = 1 we consider theriented area

or.areg P) = det (gz ZZ) i (13)

SM. Hénon & C. Heiles,The applicability of the third integral of motion: some nual
experimentsAstron. J. 69 (1964) 73-79.




(left picture of Fig. 2). In higher dimensions, we replaces thy thesum of the
oriented areas of the projections 6fonto the coordinate plan€9;, ¢;), i.e., by

d P P d
sl =D et (& 1) = (@t - gt a9
i=1 Lo i=1

This defines a bilinear map acting on vector®df, which will play a central role
for Hamiltonian systems. In matrix notation, this map hasftrm

wEm) =€ with J:(ﬂ Q (15)
where/ is the identity matrix of dimensioa.
Definition 2 A linear mappingA : R?? — R?! is calledsymplectidf
ATJA =T
or, equivalently, ifv(A¢, An) = w(&,n) forall £, n € R%,

AL
p

Figure 2: Symplecticity (area preservation) of a linear piag.

In the casel = 1, where the expressian&, n) represents the area of the paral-
lelogramP, symplecticity of a linear mapping is therefore tharea preservation
of A (see Fig. 2). In the general casex 1), symplecticity means that the sum of
the oriented areas of the projectionsfbonto (p;, ¢;) is the same as that for the
transformed parallelogram&( P).

Definition 3 (Symplectic mappings) A differentiable mapy : U — R?*¢ (where
U c R* is an open set) is callesymplecticif the Jacobian matrix/(p, q) is
everywhere symplectic, i.e., if

d.a)" Tgdwa)=J or  w(d(p.q)é g p.an) =wEn).

Since a2-dimensional sub-manifold/ of the 2d-dimensional set/ can be
approximated by a union of small parallelograms, the abossgrvation property
carries over to nonlinear manifolds.



4 Theorem of Poincae

We are now able to prove the main re8udf this lecture. We use the notation
y = (p, q), and we write the Hamiltonian system (6) in the form

y=J"'VH(y), (16)

whereJ is the matrix of (15) and/ H (y) = H'(y)".

Recall that the flowp, : U — R?? of a Hamiltonian system is the mapping
that advances the solution by timei.e., v.(po, %) = (p(t, Po, @), ¢(t, Po, 90)),
wherep(t, po, q0), q(t, po, qo) is the solution of the system corresponding to initial
valuesp(0) = po, ¢(0) = qo.

Theorem 2 (Poincag 1899) Let H(p, ¢) be a twice continuously differentiable
function onU C R??. Then, for each fixet] the flowy, is a symplectic transfor-
mation wherever it is defined.

Proof. The derivativedy, /dyy (With yo = (po, o)) is @ solution of the vari-
ational equation which, for the Hamiltonian system (16)pishe form ¥ =
J'V2H (¢4(y0)) ¥, whereV2H (p, q) is the Hessian matrix o (p, ¢) (V2H (p, q)
is symmetric). We therefore obtain

il Gn) 7 Ga)) = G ™o o)+ () ()

= (22 52 (o)) 7 (22 + (22 92 () (224 =0,

Yo Yo Yo Yo
because/” = —J andJTJ = —I. Since the relation
89015 T 89015
— ) J|l=)=J 17
(8y0> (8y0> (17

is satisfied for = 0 (i is the identity map), it is satisfied for alland all(py, ¢o),
as long as the solution remains in the domain of definitiof of O

We illustrate this theorem with the pendulum problem (ExEn®) using the
normalizationm = ¢ = g = 1. We havey = «, p = &, and the Hamiltonian is
given by

H(p,q) = p*/2 — cosq.

5H. Poincarées Methodes Nouvelles de laédanique @leste. Tome l)IGauthiers-Villars,
Paris, 1899.
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Figure 3: Area preservation of the flow of Hamiltonian system

Figure 3 shows level curves of this function, and it alscsiltates the area preser-
vation of the flowy,. Indeed, by Theorem 2, the areasAfand;(A) as well
as those ofB and y,(B) are the same, although their appearance is completely
different.

We next show that symplecticity of the flow is a characterigtioperty for
Hamiltonian systems. We call a differential equatipn- f(y) locally Hamilto-

nian, if for everyy, € U there exists a neighbourhood whefite)) = J 'V H (y)
for some functiond .

Theorem 3 Let f : U — R?? be continuously differentiable. Thein= f(y) is

locally Hamiltonian if and only if its flowp,(y) is symplectic for ally € U and
for all sufficiently smalk.

Proof. The necessity follows from Theorem 2. We therefore assumaditle flow
AT symplectic and we have to prove the local existence ofetfon / (y) such

that f(y) = J~'VH(y). Differentiating (17) and using the fact thap, /0y, is a
solution of the variational equatioh = /(¢ (y0)) ¥, we obtain

(G T(52)) = (G2 (et 97 (o)) (52) = .

Puttingt = 0, it follows from J = —JT that.J f'(y,) is a symmetric matrix for

all yo. The Integrability Lemma below shows thaf (y) can be written as the

gradient of a functiorf (y). O



Lemma 1 (Integrability Lemma) Let D C R™ be open andf : D — R" be
continuously differentiable, and assume that the Jacolfiém) is symmetric for
all y € D. Then, for every, € D there exists a neighbourhood and a function
H(y) such that

fly) =VH(y) (18)

on this neighbourhood.

Proof. Assumey, = 0, and consider a ball around which is contained inD.
On this ball we define

H(y) = /0 y' f(ty) dt + Const.

Differentiation with respect tg;,,, and using the symmetry assumptiof) /dy; =
Ofy/0y; yields

L= [ (o) + " 2L ) e = [ & (o) o= )

which proves the statement. O

For D = R2? or for star-shaped regions, the above proof shows that the
function H of Lemma 1 is globally defined. Hence the Hamiltonian of TleeoB
is also globally defined in this case. This remains valid fonpdy connected
setsD.

5 Generating functions

Like Hamiltonian systems are described by only one scalactian (the total
energy or Hamiltonian), also symplectic mappings can berdssd by only one
scalar function (the generating function).

The following results are conveniently formulated in theation of differen-
tial forms. For a functiorf'(y) we denote byl F' = dF'(y) its (Fréchet) derivative.
It is the linear mapping

dF(y)(€) = F'(y)¢ = Zayz

For the special casé’'(y) = y, we denote the derivative byy,, so that
dyrp (&) = & is the projection to théth component. Withly = (dy,, ..., dy,)"
we thus havelF’ = >~ | ay E(y) dy;.




For a functionS(p, ¢) we use the notation

4. /08 a5
dS(p,q) = dS = Spdp + Sqdq = Z(a—p(p, q)dp; + 8—q(p, q)dqz),

=1

where we use the notatid), .S, for the row vectors consisting of partial deriva-
tives, anddp = (dp, ..., dpa)", dg = (dqi, ..., dga)".

Theorem 4 Amappinge : (p,q) — (P, Q) is symplectic if and only if there exists
locally a functionS(p, ¢) such that

PTdQ — p"dg = dS. (19)
This means thaP"'dQ — p'dq is a total differential.

Proof. We split the Jacobian @f into the natural x 2 block matrix
AP.Q) (Pp Pq)
A(p. q) @ @y
Inserting this into (17) and multiplying out shows that these conditions
Png:QZ;Ppa PpTQq_[:QZ;an Qz;Pq:PqTQq (20)

are equivalent to symplecticity. We now inset) = @, dp + @, dq into the
left-hand side of (19) and obtain

dp\ [ QP \' (dp
(7 P1Q0=1") (dQ> _<QZP—p) (dQ)'

To apply the Integrability Lemma 1, we just have to verify gyanmetry of the
Jacobian of the coefficient vector,

TPp I{Pq 0%Q;
(Q?fép -1 quPq) " Z h d(p, Q)Q. 1)

Since the Hessians @j; are symmetric anyway, it is immediately clear that the

symmetry of the matrix (21) is equivalent to the sympletgiconditions (20).0

Mixed-Variable Generating Functions. The relation (19) suggests to uge @)
as independent coordinates of the mapgindVhen working with mappings that
are close to the identity (numerical integrators), it is enconvenient to use mixed

variables like( P, q) or (p, Q) or ((P +p)/2,(Q + q)/2).
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Theorem 5 Let(p, ¢) — (P, Q) be a smooth transformation, close to the identity.
It is symplectic if and only if one of the following conditsoimolds locally:

e Q'dP +p'dq=d(PTq+ S') for some functiors*(P, q);
o PTdQ+q"dp=d(p"Q — S?) for some functiors?(p, Q);

o (Q—q)'d(P+p)—(P—p)TdQ+q)=2dS"
for some functiors® (P + p)/2, (Q + q)/2).

Proof. The first characterization follows from(QTP) = QTdP + PTdQ and
(19), if we putS! such thatPTq+S* = QTP — S. For the second characterization
we used(p'q) = p'dq + q"dp and the same arguments as before. The last one
follows from the fact that (19) is equivalenttQ —q)"d(P+p) — (P —p)"d(Q +

q) = d((P+p)"(Q — q) — 25). 0

The generating functions!, S?, andS® have been chosen such that we obtain
the identity mapping when they are replaced with zero. Camgahe coefficient
functions ofdg anddP in the first characterization of Theorem 5, we obtain

p=P+V,S"Pq), Q=q+VeS'(Pq). (22)

Whatever the scalar functiofi'(P, ¢) is, the relation (22) defines a symplectic
transformatior(p, ¢) — (P, Q). Similar relations are obtained from the other two
characterizations.

6 Hamilton—Jacobi partial differential equation

We know from Theorem 2 that the exact flow of a Hamiltonianed#htial equa-
tion

p=—VeH(p.q),  ¢=VpH(p,q). (23)
is a symplectic transformation. With the notatiétit) = P(t,p,q), Q(t) =
Q(t, p, q) for the solution corresponding to initial valugs ¢) att = 0, we known
from Theorem 5 that there exists a scalar functidP, ¢,¢) such that the flow
(P(t), Q(t)) is a solution of the equations

p=P(t)+ VS (P(t),q.t), Qt)=q+VpS'(P(t),q,t).  (24)

11



Our aim is to find the generating functistt (P, ¢, t) directly from H(p, q). The
result is the Hamilton—Jacobi differential equatidns.

Theorem 6 If S*(P, ¢, t) is a solution of the partial differential equation

oS! oS!
- (Pt) = H(Pg+ S5 (Pat),  S(Pa0)=0,  (25)

then the mappingp, ¢) — (P(t),Q(t)), defined by (24), is the exact flow of the
Hamiltonian system (23).

Proof. Let S1(P,q,t) be given by the Hamilton—-Jacobi equation (25), and as-
sume thatp,q) — (P,Q) = (P(t),Q(t)) is the transformation given by (24).
Differentiation of the first relation of (24) with respect time ¢ and using (25)
yield$

525! . e 525! OH
(”apa <P’q’t)>P = o0 D1l = (I+8P8Q<P )>8Q<P Q).

Differentiation of the second relation of (24) gives

925! 925!
20 D00+ 5

OH 025!t OH
= 5p(P.Q + 5z (Pat) (5a(PQ) + P).

Q = (P,q,t)P

ConsequentlypP = ~%(P.Q) and@ = 2Z(P,Q), so that(P(t),Q(¢)) is the
exact flow of the Hamiltonian system. 0

Other choices of independent variables lead to differentchasely related
Hamilton—Jacobi differential equations.

’Sir W.R. Hamilton,On a general method in dynamics; by which the study of theomsf
all free systems of attracting or repelling points is reddide the search and differentiation of
one central relation, or characteristic functipRhil. Trans. Roy. Soc. Part Il for 1834, 247-308;
Math. Papers, Vol. I, 103-161.

C.G.J. Jacobiorlesungeriiber Dynamil{1842-43), Reimer, Berlin 1884.

8Due to an inconsistent notation of the partial derivati% ‘98—5: as column or row vec-
tors, this formula may be difficult to read. Use indices iast®f matrices in order to check its
correctness.
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A formal solution of the Hamilton—Jacobi partial differeattequation can be
obtained by inserting the ansatz

Sl(P7Q7t) = tGl(Pa(D +t2G2(P7Q> +t3G3(P7Q) +.. (26)
into (25), and by comparing like powers ©fThis yields
Gl(P7Q) = H PaQ)a

1
®(Pa) = 5(55 7

1/0*°H j/0H\2 0*H OHOH 0O*H ;/0H\?
Gs(Pra) = 6<ap2 (37) *3pagap 3, * 37 (op) )<P’Q>

If we use a truncated series of (26) in the relations (24),réselting mapping
(p,q) — (P(t),Q(t)), which is symplectic by Theorem 5, defines an excellent
approximation to the exact solution of the Hamiltonian eyst

7 Exercises

1. Leta and/ be the generalized coordinates of the doubl
pendulum, whose kinetic and potential energies are
my . . mso . .
T = 7(1‘% +97) + 7(1‘3 +93)
U = migyr + magys.

Determine the generalized momenta of the correspond-m2
ing Hamiltonian system.

2. Prove that a linear transformatighn: R? — R? is symplectic, if and only if
det A = 1.

3. Consider the transformatidn, ¢) — (p, q), defined by
p=1(r)jcosp,  qg=1(r)sing.
For which functiony () is it a symplectic transformation?

4. Consider the Hamiltonian systejn= J 'V H(y) and a variable transfor-
mationy = ¢(z). Prove that, for a symplectic transformatigfz), the
system in the:-coordinates is again Hamiltonian wifffi(z) = H (¢(z)).

13



5. Write Kepler’'s problem with Hamiltonian

1 1
H — Z(p? 2y -

in polar coordinateg; = rcosy, g = rsinp. What are the conjugated
generalized momenta., p,? What is the Hamiltonian in the new coordi-
nates.

6. Let@ = x(¢) be a change of position coordinates. Show that the mapping
(p,q) — (P, Q) is symplecticifp = x'(q)" P.
Hint. Consider the mixed-variable generating functi&i®, q) = P"x(q).

7. Onthe set/ = {(p,q); p* + ¢* > 0} consider the differential equation

P 1 P
L = ) 27
(Q) P>+ ¢ (Q) @)
Prove that

a) its flow is symplectic everywhere @rn;

b) on every simply-connected subsetlothe vector field (27) is Hamilto-
nian (with H (p, q) = Im log(p 4+ iq) + Const);

c) it is not possible to find a differentiable functidh : U — R such that
(27) is equal toJ "'V H(p, q) for all (p,q) € U.

Remark.The vector field (27) is locally (but not globally) Hamiltam.

8. Find the Hamilton—Jacobi equation (cf. Theorem 6) forgéeerating func-
tion S?(p, Q) of Theorem 5.
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