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The main topic of this lecture1 is a deeper understanding of Hamiltonian systems

ṗ = −∇qH(p, q), q̇ = ∇pH(p, q). (1)

Here,p andq are vectors inRd, andH(p, q) is a scalar sufficiently differentiable
function. It is called the ‘Hamiltonian’ or the ‘total energy’.

1 Derivation from Lagrange’s equation

Suppose that the position of a mechanical system withd degrees of freedom is
described byq = (q1, . . . , qd)

T asgeneralized coordinates(this can be for exam-
ple Cartesian coordinates, angles, arc lengths along a curve, etc.). Consider the
Lagrangian

L = T − U, (2)

whereT = T (q, q̇) denotes the kinetic energy andU = U(q) the potential energy.
The motion of the system is described by Lagrange’s equation2

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
, (3)

1Most parts of this manuscript are taken from the monographGeometric Numerical Integration
by Hairer, Lubich & Wanner (2nd edition, Springer Verlag 2006).

2Lagrange,Applications de la ḿethode expośee dans le ḿemoire pŕećedent a la solution de
différents probl̀emes de dynamique, 1760, Oeuvres Vol. 1, 365–468.
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which are just the Euler–Lagrange equations of the variational problemS(q) =∫ b

a
L
(
q(t), q̇(t)

)
dt→ min.

Hamilton3 simplified the structure of Lagrange’s equations and turnedthem
into a form that has remarkable symmetry, by

∗ introducing Poisson’s variables, the conjugatemomenta

pk =
∂L

∂q̇k
(q, q̇) for k = 1, . . . , d, (4)

∗ considering theHamiltonian

H := pT q̇ − L(q, q̇) (5)

as a function ofp andq, i.e., takingH = H(p, q) obtained by expressinġq
as a function ofp andq via (4).

Here it is, of course, required that (4) defines, for everyq, a continuously differ-
entiable bijectionq̇ ↔ p. This map is called theLegendre transform.

Theorem 1 Lagrange’s equations (3) are equivalent to Hamilton’s equations

ṗk = −∂H
∂qk

(p, q), q̇k =
∂H

∂pk
(p, q), k = 1, . . . , d. (6)

Proof. The definitions (4) and (5) for the momentap and for the HamiltonianH
imply that

∂H

∂p
= q̇T + pT ∂q̇

∂p
− ∂L

∂q̇

∂q̇

∂p
= q̇T ,

∂H

∂q
= pT ∂q̇

∂q
− ∂L

∂q
− ∂L

∂q̇

∂q̇

∂q
= −∂L

∂q
.

The Lagrange equations (3) are therefore equivalent to (6).

3Sir W.R. Hamilton,On a general method in dynamics; by which the study of the motions of
all free systems of attracting or repelling points is reduced to the search and differentiation of
one central relation, or characteristic function, Phil. Trans. Roy. Soc. Part II for 1834, 247–308;
Math. Papers, Vol. II, 103–161.
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Case of quadratic kinetic energy. If T (q, q̇) = 1

2
q̇TM(q)q̇, whereM(q) is

a symmetric and positive definite matrix, we havep = M(q)q̇. Replacing the
variableq̇ byM(q)−1p in the definition (5) ofH(p, q), we obtain

H(p, q) = pTM(q)−1p− L
(
q,M(q)−1p

)

= pTM(q)−1p− 1

2
pTM(q)−1p+ U(q) =

1

2
pTM(q)−1p+ U(q)

and the Hamiltonian isH = T + U , which is thetotal energy.

2 Energy conservation and first integrals, examples

Definition 1 A non-constant functionI(y) is afirst integralof ẏ = f(y) if

I ′(y)f(y) = 0 for all y. (7)

This is equivalent to the property thateverysolutiony(t) of ẏ = f(y) satisfies
I
(
y(t)

)
= Const .

Example 1 (Conservation of the total energy)For Hamiltonian systems (1) the
Hamiltonian functionH(p, q) is a first integral.

Example 2 (Conservation of the total linear and angular momentum) We con-
sider a system ofN particles interacting pairwise with potential forces depending
on the distances of the particles. This is a Hamiltonian system with total energy

H(p, q) =
1

2

N∑

i=1

1

mi
pT

i pi +
N∑

i=2

i−1∑

j=1

Vij

(
‖qi − qj‖

)
.

Hereqi, pi ∈ R
3 represent the position and momentum of theith particle of mass

mi, andVij(r) (i > j) is the interaction potential between theith andjth particle.
The equations of motion read

q̇i =
1

mi
pi , ṗi =

N∑

j=1

νij (qi − qj)

where, fori > j, we haveνij = νji = −V ′

ij(rij)/rij with rij = ‖qi − qj‖. The
conservation of the total linear and angular momentum

P =

N∑

i=1

pi, L =

N∑

i=1

qi × pi

is a consequence of the symmetry relationνij = νji:
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m

cos q 1
q

Example 3 (Mathematical pendulum) The mathemati-
cal pendulum (massm = 1, massless rod of lengthℓ = 1,
gravitational accelerationg = 1) is a system with one de-
gree of freedom having the Hamiltonian

H(p, q) =
1

2
p2 − cos q,

so that the equations of motion (1) become

ṗ = − sin q, q̇ = p. (8)

Figure 3 below shows some level curves ofH(p, q). By Example 1, the solution
curves of the problem (8) lie on such level curves.

Fae

da

r

M

a

b

φE

Example 4 (Two-body problem or Kepler problem)
For computing the motion of two bodies (planet and
sun) which attract each other, we choose one of the
bodies (sun) as the centre of our coordinate system;
the motion will then stay in a plane and we can use
two-dimensional coordinatesq = (q1, q2) for the posi-
tion of the second body. Newton’s laws, with a suitable
normalization, then yield the following differential equations

q̈1 = − q1
(q2

1
+ q2

2
)3/2

, q̈2 = − q2
(q2

1
+ q2

2
)3/2

. (9)

This is equivalent to a Hamiltonian system with the Hamiltonian

H(p1, p2, q1, q2) =
1

2

(
p2

1
+ p2

2

)
− 1√

q2

1
+ q2

2

, pi = q̇i. (10)

The planet moves inelliptic orbits with the sun at one of the foci (Kepler’s4 first
law). With initial values

q1(0) = 1 − e, q2(0) = 0, q̇1(0) = 0, q̇2(0) =

√
1 + e

1 − e
(11)

the solution is an ellipse with eccentricitye (0 ≤ e < 1), a = 1, b =
√

1 − e2,
d = 1 − e2, and period2π. The total energy isH0 = −1/2, and the angular
momentum isL0 =

√
1 − e2.

4J. Kepler,Astronomia novaαιτιoλoγητ óς seu Physica celestis, traditia commentariis de
motibus stellae Martis, ex observationibus G. V. Tychonis Brahe, Prague 1609.
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Example 5 (Hénon–Heiles problem)The polynomial Hamiltonian in two de-
grees of freedom5

H(p, q) =
1

2
(p2

1
+ p2

2
) +

1

2
(q2

1
+ q2

2
) + q2

1
q2 − 1

3
q3

2
(12)

is a Hamiltonian differential equation that can have chaotic solutions. Figure 1
shows a regular behaviour of solutions when the value of the Hamiltonian is small,
and a chaotic behaviour for large Hamiltonian.
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Figure 1: Poincaré cuts forq1 = 0, p1 > 0 of the Hénon–Heiles model forH = 1

12

(6 orbits, left) andH = 1

8
(1 orbit, right).

3 Symplectic transformations

The basic objects to be studied are two-dimensional parallelograms lying inR
2d.

We suppose the parallelogram to be spanned by two vectors

ξ =

(
ξp

ξq

)
, η =

(
ηp

ηq

)

in the(p, q) space (ξp, ξq, ηp, ηq ∈ R
d) asP =

{
tξ + sη | 0 ≤ t ≤ 1, 0 ≤ s ≤ 1

}
.

In the cased = 1 we consider theoriented area

or.area(P ) = det

(
ξp ηp

ξq ηq

)
= ξpηq − ξqηp (13)

5M. Hénon & C. Heiles,The applicability of the third integral of motion : some numerical
experiments, Astron. J. 69 (1964) 73–79.
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(left picture of Fig. 2). In higher dimensions, we replace this by thesum of the
oriented areas of the projections ofP onto the coordinate planes(pi, qi), i.e., by

ω(ξ, η) :=

d∑

i=1

det

(
ξp
i ηp

i

ξq
i ηq

i

)
=

d∑

i=1

(ξp
i η

q
i − ξq

i η
p
i ). (14)

This defines a bilinear map acting on vectors ofR
2d, which will play a central role

for Hamiltonian systems. In matrix notation, this map has the form

ω(ξ, η) = ξTJη with J =

(
0 I
−I 0

)
(15)

whereI is the identity matrix of dimensiond.

Definition 2 A linear mappingA : R
2d → R

2d is calledsymplecticif

ATJA = J

or, equivalently, ifω(Aξ,Aη) = ω(ξ, η) for all ξ, η ∈ R
2d.

p

q

ξ

η

p

q

Aξ

Aη
A

Figure 2: Symplecticity (area preservation) of a linear mapping.

In the cased = 1, where the expressionω(ξ, η) represents the area of the paral-
lelogramP , symplecticity of a linear mappingA is therefore thearea preservation
of A (see Fig. 2). In the general case (d > 1), symplecticity means that the sum of
the oriented areas of the projections ofP onto (pi, qi) is the same as that for the
transformed parallelogramsA(P ).

Definition 3 (Symplectic mappings) A differentiable mapg : U → R
2d (where

U ⊂ R
2d is an open set) is calledsymplecticif the Jacobian matrixg′(p, q) is

everywhere symplectic, i.e., if

g′(p, q)TJ g′(p, q) = J or ω(g′(p, q)ξ, g′(p, q)η) = ω(ξ, η).

Since a2-dimensional sub-manifoldM of the 2d-dimensional setU can be
approximated by a union of small parallelograms, the above preservation property
carries over to nonlinear manifolds.

6



4 Theorem of Poincaŕe

We are now able to prove the main result6 of this lecture. We use the notation
y = (p, q), and we write the Hamiltonian system (6) in the form

ẏ = J−1∇H(y), (16)

whereJ is the matrix of (15) and∇H(y) = H ′(y)T .
Recall that the flowϕt : U → R

2d of a Hamiltonian system is the mapping
that advances the solution by timet, i.e., ϕt(p0, q0) = (p(t, p0, q0), q(t, p0, q0)),
wherep(t, p0, q0), q(t, p0, q0) is the solution of the system corresponding to initial
valuesp(0) = p0, q(0) = q0.

Theorem 2 (Poincaŕe 1899) Let H(p, q) be a twice continuously differentiable
function onU ⊂ R

2d. Then, for each fixedt, the flowϕt is a symplectic transfor-
mation wherever it is defined.

Proof. The derivative∂ϕt/∂y0 (with y0 = (p0, q0)) is a solution of the vari-
ational equation which, for the Hamiltonian system (16), isof the form Ψ̇ =
J−1∇2H

(
ϕt(y0)

)
Ψ, where∇2H(p, q) is the Hessian matrix ofH(p, q) (∇2H(p, q)

is symmetric). We therefore obtain

d

dt

((∂ϕt

∂y0

)T

J
(∂ϕt

∂y0

))
=

(∂ϕt

∂y0

)
′T

J
(∂ϕt

∂y0

)
+

(∂ϕt

∂y0

)T

J
(∂ϕt

∂y0

)
′

=
(∂ϕt

∂y0

)T

∇2H
(
ϕt(y0)

)
J−TJ

(∂ϕt

∂y0

)
+

(∂ϕt

∂y0

)T

∇2H
(
ϕt(y0)

)(∂ϕt

∂y0

)
= 0,

becauseJT = −J andJ−TJ = −I. Since the relation
(∂ϕt

∂y0

)T

J
(∂ϕt

∂y0

)
= J (17)

is satisfied fort = 0 (ϕ0 is the identity map), it is satisfied for allt and all(p0, q0),
as long as the solution remains in the domain of definition ofH.

We illustrate this theorem with the pendulum problem (Example 3) using the
normalizationm = ℓ = g = 1. We haveq = α, p = α̇, and the Hamiltonian is
given by

H(p, q) = p2/2 − cos q.

6H. Poincaré,Les Ḿethodes Nouvelles de la Mécanique Ćeleste. Tome III, Gauthiers-Villars,
Paris, 1899.
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Figure 3: Area preservation of the flow of Hamiltonian systems

Figure 3 shows level curves of this function, and it also illustrates the area preser-
vation of the flowϕt. Indeed, by Theorem 2, the areas ofA andϕt(A) as well
as those ofB andϕt(B) are the same, although their appearance is completely
different.

We next show that symplecticity of the flow is a characteristic property for
Hamiltonian systems. We call a differential equationẏ = f(y) locally Hamilto-
nian, if for everyy0 ∈ U there exists a neighbourhood wheref(y) = J−1∇H(y)
for some functionH.

Theorem 3 Let f : U → R
2d be continuously differentiable. Then,ẏ = f(y) is

locally Hamiltonian if and only if its flowϕt(y) is symplectic for ally ∈ U and
for all sufficiently smallt.

Proof. The necessity follows from Theorem 2. We therefore assume that the flow
ϕt is symplectic, and we have to prove the local existence of a functionH(y) such
thatf(y) = J−1∇H(y). Differentiating (17) and using the fact that∂ϕt/∂y0 is a
solution of the variational equatioṅΨ = f ′

(
ϕt(y0)

)
Ψ, we obtain

d

dt

((∂ϕt

∂y0

)T

J
(∂ϕt

∂y0

))
=

(∂ϕt

∂y0

)(
f ′

(
ϕt(y0)

)T
J + Jf ′

(
ϕt(y0)

))(∂ϕt

∂y0

)
= 0.

Puttingt = 0, it follows from J = −JT thatJf ′(y0) is a symmetric matrix for
all y0. The Integrability Lemma below shows thatJf(y) can be written as the
gradient of a functionH(y).
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Lemma 1 (Integrability Lemma) Let D ⊂ R
n be open andf : D → R

n be
continuously differentiable, and assume that the Jacobianf ′(y) is symmetric for
all y ∈ D. Then, for everyy0 ∈ D there exists a neighbourhood and a function
H(y) such that

f(y) = ∇H(y) (18)

on this neighbourhood.

Proof. Assumey0 = 0, and consider a ball aroundy0 which is contained inD.
On this ball we define

H(y) =

∫
1

0

yTf(ty) dt+ Const .

Differentiation with respect toyk, and using the symmetry assumption∂fi/∂yk =
∂fk/∂yi yields

∂H

∂yk
(y) =

∫
1

0

(
fk(ty) + yT ∂f

∂yk
(ty)t

)
dt =

∫
1

0

d

dt

(
tfk(ty)

)
dt = fk(y),

which proves the statement.

For D = R
2d or for star-shaped regionsD, the above proof shows that the

functionH of Lemma 1 is globally defined. Hence the Hamiltonian of Theorem 3
is also globally defined in this case. This remains valid for simply connected
setsD.

5 Generating functions

Like Hamiltonian systems are described by only one scalar function (the total
energy or Hamiltonian), also symplectic mappings can be described by only one
scalar function (the generating function).

The following results are conveniently formulated in the notation of differen-
tial forms. For a functionF (y) we denote bydF = dF (y) its (Fréchet) derivative.
It is the linear mapping

dF (y)(ξ) = F ′(y)ξ =

n∑

i=1

∂F

∂yi
(y) ξi

For the special caseF (y) = yk we denote the derivative bydyk, so that
dyk(ξ) = ξk is the projection to thekth component. Withdy = (dy1, . . . , dyn)

T

we thus havedF =
∑n

i=1

∂F
∂yi

(y) dyi.

9



For a functionS(p, q) we use the notation

dS(p, q) = dS = Spdp+ Sqdq =
d∑

i=1

( ∂S
∂pi

(p, q)dpi +
∂S

∂qi
(p, q)dqi

)
,

where we use the notationSp, Sq for the row vectors consisting of partial deriva-
tives, anddp = (dp1, . . . , dpd)

T, dq = (dq1, . . . , dqd)
T.

Theorem 4 A mappingϕ : (p, q) 7→ (P,Q) is symplectic if and only if there exists
locally a functionS(p, q) such that

PTdQ− pTdq = dS. (19)

This means thatPTdQ− pTdq is a total differential.

Proof. We split the Jacobian ofϕ into the natural2 × 2 block matrix

∂(P,Q)

∂(p, q)
=

(
Pp Pq

Qp Qq

)
.

Inserting this into (17) and multiplying out shows that the three conditions

P T
p Qp = QT

p Pp, P T
p Qq − I = QT

p Pq, QT
q Pq = P T

q Qq (20)

are equivalent to symplecticity. We now insertdQ = Qp dp + Qq dq into the
left-hand side of (19) and obtain

(
P TQp, P

TQq − pT
)(

dp
dq

)
=

(
QT

p P
QT

q P − p

)T (
dp
dq

)
.

To apply the Integrability Lemma 1, we just have to verify thesymmetry of the
Jacobian of the coefficient vector,

(
QT

p Pp QT
p Pq

QT
q Pp − I QT

q Pq

)
+

∑

i

Pi
∂2Qi

∂(p, q)2
. (21)

Since the Hessians ofQi are symmetric anyway, it is immediately clear that the
symmetry of the matrix (21) is equivalent to the symplecticity conditions (20).

Mixed-Variable Generating Functions. The relation (19) suggests to use(q, Q)
as independent coordinates of the mappingS. When working with mappings that
are close to the identity (numerical integrators), it is more convenient to use mixed
variables like(P, q) or (p,Q) or

(
(P + p)/2, (Q+ q)/2

)
.

10



Theorem 5 Let(p, q) 7→ (P,Q) be a smooth transformation, close to the identity.
It is symplectic if and only if one of the following conditions holds locally:

• QTdP + pTdq = d(PTq + S1) for some functionS1(P, q);

• PTdQ+ qTdp = d(pTQ− S2) for some functionS2(p,Q);

• (Q− q)Td(P + p) − (P − p)Td(Q+ q) = 2 dS3

for some functionS3
(
(P + p)/2, (Q+ q)/2

)
.

Proof. The first characterization follows fromd(QTP ) = QTdP + PTdQ and
(19), if we putS1 such thatPTq+S1 = QTP−S. For the second characterization
we used(pTq) = pTdq + qTdp and the same arguments as before. The last one
follows from the fact that (19) is equivalent to(Q−q)Td(P +p)−(P −p)Td(Q+
q) = d

(
(P + p)T(Q− q) − 2S

)
.

The generating functionsS1, S2, andS3 have been chosen such that we obtain
the identity mapping when they are replaced with zero. Comparing the coefficient
functions ofdq anddP in the first characterization of Theorem 5, we obtain

p = P + ∇qS
1(P, q), Q = q + ∇PS

1(P, q). (22)

Whatever the scalar functionS1(P, q) is, the relation (22) defines a symplectic
transformation(p, q) 7→ (P,Q). Similar relations are obtained from the other two
characterizations.

6 Hamilton–Jacobi partial differential equation

We know from Theorem 2 that the exact flow of a Hamiltonian differential equa-
tion

ṗ = −∇qH(p, q), q̇ = ∇pH(p, q). (23)

is a symplectic transformation. With the notationP (t) = P (t, p, q), Q(t) =
Q(t, p, q) for the solution corresponding to initial values(p, q) att = 0, we known
from Theorem 5 that there exists a scalar functionS1(P, q, t) such that the flow(
P (t), Q(t)

)
is a solution of the equations

p = P (t) + ∇qS
1
(
P (t), q, t

)
, Q(t) = q + ∇PS

1
(
P (t), q, t

)
. (24)

11



Our aim is to find the generating functionS1(P, q, t) directly fromH(p, q). The
result is the Hamilton–Jacobi differential equations.7

Theorem 6 If S1(P, q, t) is a solution of the partial differential equation

∂S1

∂t
(P, q, t) = H

(
P, q +

∂S1

∂P
(P, q, t)

)
, S1(P, q, 0) = 0, (25)

then the mapping(p, q) 7→
(
P (t), Q(t)

)
, defined by (24), is the exact flow of the

Hamiltonian system (23).

Proof. Let S1(P, q, t) be given by the Hamilton–Jacobi equation (25), and as-
sume that(p, q) 7→ (P,Q) =

(
P (t), Q(t)

)
is the transformation given by (24).

Differentiation of the first relation of (24) with respect totime t and using (25)
yields8

(
I +

∂2S1

∂P∂q
(P, q, t)

)
Ṗ = −∂

2S1

∂t∂q
(P, q, t) = −

(
I +

∂2S1

∂P∂q
(P, q, t)

)∂H
∂Q

(P,Q).

Differentiation of the second relation of (24) gives

Q̇ =
∂2S1

∂t∂P
(P, q, t) +

∂2S1

∂P 2
(P, q, t)Ṗ

=
∂H

∂P
(P,Q) +

∂2S1

∂P 2
(P, q, t)

(∂H
∂Q

(P,Q) + Ṗ
)
.

Consequently,Ṗ = −∂H
∂Q

(P,Q) andQ̇ = ∂H
∂P

(P,Q), so that
(
P (t), Q(t)

)
is the

exact flow of the Hamiltonian system.

Other choices of independent variables lead to different but closely related
Hamilton–Jacobi differential equations.

7Sir W.R. Hamilton,On a general method in dynamics; by which the study of the motions of
all free systems of attracting or repelling points is reduced to the search and differentiation of
one central relation, or characteristic function, Phil. Trans. Roy. Soc. Part II for 1834, 247–308;
Math. Papers, Vol. II, 103–161.

C.G.J. Jacobi,Vorlesungen̈uber Dynamik(1842-43), Reimer, Berlin 1884.
8Due to an inconsistent notation of the partial derivatives∂H

∂Q
, ∂S1

∂q
as column or row vec-

tors, this formula may be difficult to read. Use indices instead of matrices in order to check its
correctness.
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A formal solution of the Hamilton–Jacobi partial differential equation can be
obtained by inserting the ansatz

S1(P, q, t) = tG1(P, q) + t2G2(P, q) + t3 G3(P, q) + . . . (26)

into (25), and by comparing like powers oft. This yields

G1(P, q) = H(P, q),

G2(P, q) =
1

2

(∂H
∂P

∂H

∂q

)
(P, q),

G3(P, q) =
1

6

(
∂2H

∂P 2

(∂H
∂q

)2

+
∂2H

∂P∂q

∂H

∂P

∂H

∂q
+
∂2H

∂q2

(∂H
∂P

)2
)

(P, q).

If we use a truncated series of (26) in the relations (24), theresulting mapping
(p, q) 7→

(
P (t), Q(t)

)
, which is symplectic by Theorem 5, defines an excellent

approximation to the exact solution of the Hamiltonian system.

7 Exercises

1. Letα andβ be the generalized coordinates of the double
pendulum, whose kinetic and potential energies are

T =
m1

2
(ẋ2

1
+ ẏ2

1
) +

m2

2
(ẋ2

2
+ ẏ2

2
)

U = m1gy1 +m2gy2.

Determine the generalized momenta of the correspond-
ing Hamiltonian system.

m1

ℓ1α

m2

ℓ2 β

2. Prove that a linear transformationA : R
2 → R

2 is symplectic, if and only if
detA = 1.

3. Consider the transformation(r, ϕ) 7→ (p, q), defined by

p = ψ(r) cosϕ, q = ψ(r) sinϕ.

For which functionψ(r) is it a symplectic transformation?

4. Consider the Hamiltonian systeṁy = J−1∇H(y) and a variable transfor-
mationy = ϕ(z). Prove that, for a symplectic transformationϕ(z), the
system in thez-coordinates is again Hamiltonian with̃H(z) = H

(
ϕ(z)

)
.
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5. Write Kepler’s problem with Hamiltonian

H(p, q) =
1

2
(p2

1
+ p2

2
) − 1√

q2

1
+ q2

2

in polar coordinatesq1 = r cosϕ, q2 = r sinϕ. What are the conjugated
generalized momentapr, pϕ? What is the Hamiltonian in the new coordi-
nates.

6. LetQ = χ(q) be a change of position coordinates. Show that the mapping
(p, q) 7→ (P,Q) is symplectic ifp = χ′(q)TP .

Hint. Consider the mixed-variable generating functionS(P, q) = PTχ(q).

7. On the setU = {(p, q) ; p2 + q2 > 0} consider the differential equation
(
ṗ
q̇

)
=

1

p2 + q2

(
p
q

)
. (27)

Prove that
a) its flow is symplectic everywhere onU ;
b) on every simply-connected subset ofU the vector field (27) is Hamilto-
nian (withH(p, q) = Im log(p+ i q) + Const);
c) it is not possible to find a differentiable functionH : U → R such that
(27) is equal toJ−1∇H(p, q) for all (p, q) ∈ U .

Remark.The vector field (27) is locally (but not globally) Hamiltonian.

8. Find the Hamilton–Jacobi equation (cf. Theorem 6) for thegenerating func-
tion S2(p,Q) of Theorem 5.
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