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1 Introduction

Differentiation matrices are known to suffer from large round-off error, especially
for high orders and fine discretization [?]. They give rise to ill-conditioned sys-
tems for solving differential equations numerically. To combat the conditioning
of these systems one may precondition the problem through a number of means.
One such preconditioner is the pseudospectral integration matrix (PSIM) (nb:
cite Wang and myself), which performs integration on the differential equation
being solved.

Taking the ideas of the PSIM one can construct a preconditioning matrix
that acts as an inverse operator to the linear operator involved in the given
differential equation. This is equivalent to finding an approximation to the
inverse of the spectral collocation matrix representing said linear operator.

This paper will provide the equations to construct the inverse operator ma-
trix (IOM) for a general linear ODE. Several simplifications for constant coeffi-
cient linear operators will then be made. The focus of this paper is on Chebyshev
collocation methods. However, much of the theory is readily extendable to other
spectral methods.

1.1 Chebyshev collocation system

We begin by defining the basics of Chebyshev collocation. This method is used
to consider differential equations defined on the interval [-1,1]. To approximate
the equation discretely, a partition is used to consider the equations on a finite
number of points. This partition, defined here as X, is known as the Cheby-
shev nodes, Chebyshev points of the second kind, or Chebyshev-Gauss-Lobatto
(CGL) points:

X =

{
xk = cos

(
kπ

N

)}N
k=0

, 1 = x0 > x1 > · · · > xN = −1. (1)

Let the vector ~U represent the function u(x) evaluated at the CGL points.
Then the vector representing the derivative of u(x) can be found by multiplying
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~U by the Chebyshev differentiation matrix D, defined element-wise by [?]:

D00 =
2N2 + 1

6

Dkk = − xk
2(1− x2k)

, k 6= 0, N

Djk =
cj
ck

(−1)j+k

xj − xk
, k 6= j

DNN = −D00,

(2)

where

ck =

{
2 if k = 0, N

1 otherwise.
(3)

Higher order differentiation matrices can be found by multiplying D together:
D(m) = Dm. To reduce round-off error in calculations, one can use the ”negative
sum trick” [?]:

Dkk = −
∑
j 6=k

Dkj . (4)

Chebyshev collocation implicitly decomposes functions into linear combina-
tions of the Chebyshev polynomials, defined recursively by [?]:

T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x)− Tk−2(x), (5)

or in closed form by:
Tk(x) = cos(k arccos(x)). (6)

The N–th order Chebyshev polynomial has extrema at the CGL points (1) [?].
Consider the general m–th order linear differential operator:

Lu(x) = u(m)(x) +

m∑
n=1

qn(x)u(m−n)(x). (7)

Consider also m boundary conditions:

m∑
n=1

aknu
(m−n)(1) = Bku(1) = ak0 , k = 1, ..., k0,

m∑
n=1

aknu
(m−n)(−1) = Bku(−1) = ak0 , k = k0 + 1, ...,m.

(8)

The ordinary differential equation to solve is then:{
Lu(x) = f(x)

{Bku(±1) = ak0}mk=1

(9)

where f(x) is a continuous function.
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Let the matrix Ā represent the Chebyshev collocation matrix for this oper-
ator:

Ā = D(m) +

m∑
n=1

QnD
(m−n), Qn =

qn(x0)
. . .

qn(xN )

 . (10)

The rows for the boundary conditions can be represented in Chebyshev col-
location by taking linear combinations of the first and last rows of the various
differentiation matrices. Let Â be the matrix formed by the resulting rows, such
that the k–th condition is Âk, the k–th row of Â:

Â =



∑m
n=1 a

1
nD

(m−n)
0

...∑m
n=1 a

k0
n D

(m−n)
0∑m

n=1 a
k0+1
n D

(m−n)
N

...∑m
n=1 a

m
n D

(m−n)
N


(11)

where D
(j)
0 is the first row of the j–th order differentiation matrix, and D

(j)
N the

last row of the same matrix.
The Chebyshev collocation system for this equation is:

[
Ā

Â

]
~U =


~f
a10
...
am0

 (12)

where the elements of ~f are the values {f(xi)}.
The matrix Ā is singular: if the vector ~P represents any homogeneous so-

lution to the operator L evaluated at the CGL points, then Ā ~P = 0. Given
that an m–th order linear operator has m linearly independent homogeneous
solutions, the null space of Ā has dimension m. As such, m rows from Ā can be
removed and the remaining matrix will have the same rank.

Each row in Ā is associated with a CGL point. Specifically, the i–th row
of Ā enforces the linear operator at the point xi ∈ X. To avoid any counting
errors, the rows of Ā are labelled from 0 to N . In this way, the first row, labelled
Ā0, is associated with the point x0 = 1 and the last row, labelled ĀN , with the
point xN = −1. Therefore, choosing rows to remove from Ā is equivalent to
choosing m points out of the CGL points X.

The choice of row removal is arbitrary, and provides an additional parameter
to adjust. To proceed with the construction, let m rows be removed by choosing
m CGL points. Let these m points form the set V = {vk}mk=1 such that vk =
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xj ∈ X for each k for some j ∈ {0, ..., N}. Then the j–th row of Ā will be

replaced by the k–th row of Â.
Let the matrix A represent the square Chebyshev collocation matrix for this

equation, defined by its rows:

Ai =

{
Āi xi /∈ V
Âk xi = vk ∈ V

. (13)

The right-hand side for this system is defined element-wise as:

Fi =

{
f(xi) xi /∈ V
ak0 xi = vk ∈ V

. (14)

The system to solve is then:
A~U = ~F . (15)

Note that it is not necessary to remove rows to make room for boundary
conditions. Rows can be added to A, creating an overdetermined system, and
the system solved by least squares. However, for matrices A with round-off error
the boundary conditions will no longer be satisfied exactly.

2 Inverse operators

We now seek to invert the matrix A defined in Section 1. Let L be the linear
differential operator defined by

Lu(x) = u(m)(x) +

m∑
n=1

qn(x)u(m−n)(x). (16)

This operator has a fundamental set of m solutions. That is, there exists a set
{Pk(x)}mk=1 such that LPk(x) = 0.

As seen in Section 1 the matrix A requires m boundary conditions to con-
struct an invertible matrix for the operator L. Let these boundary conditions
be represented by {Bk}mk=1, where Bk is a linear operator of at most degree
m − 1. The boundary conditions may then be written as Bku(±1) = ak0 . The
rows associated with the set V = {vk}mk=1 have been removed to make room in
the matrix A for the boundary conditions.

We represent the inverse of A by R. The j–th column of R is an N–th degree
polynomial Rj(x) evaluated at the Chebyshev points, such that the elements of
R are Ri,j = Rj(xi).

Lemma 1. AR = I, the identity matrix, if and only if Rj(x) satisfy:

LRj(xi) =

{
δij xj /∈ V
0 xj ∈ V

, xi /∈ V

BkRj(±1) =

{
0 xj 6= vk ∈ V
1 xj = vk ∈ V

.

(17)

4



Proof. The matrixA acts exactly onN–th degree polynomials. The j–th column
of the product AR is therefore the linear operator that A represents acted on
Rj(x). Recall from section 1 that the i–th row of A performs the operator at
the point xi ∈ X for xi /∈ V , and the k–th boundary condition for xi = vk ∈ V .
In this way, the matrix product AR can be represented element-wise by:

(AR)ij =

{
LRj(xi) xi /∈ V,
BkRj(±1) xi = vk ∈ V.

(18)

Therefore, AR = I is equivalent to the conditions in equation (19).

Theorem 1. The function Rj(x) may be written as

Rj(x) =

m∑
k=1

(Ck,j + βk,jGk,j(x))Pk(x) (19)

where

LPk(x) = 0, P
(l)
k (vk) =

{
0 l = 0, ...,m− 2,

1 l = m− 1,
(20)

Gk,j(x) =

N−1∑
n=0

2

cncjN

(
Tn(xj)−

TN (xj)

TN (vk)
Tn(vk)

)
∂−1x Tn(x), (21)

 P1(xj) . . . Pm(xj)
...

. . .
...

P
(m−1)
1 (xj) . . . P

(m−1)
m (xj)


β1,j...
βm,j

 =


0
...
0
1

 , (22)

and

m∑
l=1

Cl,jBnPl(±1) = −
m∑
k=1

βk,jGk,j(±1)BnPk(±1) ∀n = 1, . . . ,m (23)

for xj /∈ V and
m∑
l=1

Cl,jBnPl(±1) =

{
0 xj 6= vn,

1 xj = vn
(24)

for xj ∈ V .

Proof. The functions Gk,j(x) (28) are taken from Wang et al. (nb: cite) and
McCoid and Trummer (nb: cite). They have the properties

G′k,j(xi) =

{
1 xi = xj ,

0 xi 6= xj , vk.
(25)
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The functions Pk(x) (30) are a particular set of homogeneous solutions to
the linear operator. Based on equations (32) and (27) we have the following
conditions:

m∑
k=1

βk,jG
′
k,j(xj)P

(l)
k (xj) =

{
1 l = m− 1,

0 l = 0, ...,m− 2.

To ensure the function Rj(x) defined in equation (??) satisfies the conditions
of equation (19) we must apply L to it. For this, we need its derivatives evaluated
at the Chebyshev points. We begin with the first derivative:

R′j(xi) =

m∑
k=1

βk,jG
′
k,j(xi)Pk(xi) + (Ck,j + βk,jGk,j(xi))P

′
k(xi)

=

m∑
k=1

(Ck,j + βk,jGk,j(xi))P
′
k(xi),

since G′k,j(xi) = 0 for i 6= j, Pk(vk) = 0 and
∑m
k=1 βk,jG

′
k,j(xj)Pk(xj) = 0. In

fact, this is the case for the first m − 1 derivatives of Rj(x) evaluated on the
Chebyshev points:

R
(l)
j (xi) =

m∑
k=1

βk,jG
′
k,j(xi)P

(l−1)
k (xi) + (Ck,j + βk,jGk,j(xi))P

(l)
k (xi)

=

m∑
k=1

(Ck,j + βk,jGk,j(xi))P
(l)
k (xi), l = 1, . . . ,m− 1.

Therefore, for xj /∈ V ,

LRj(xi) = R
(m)
j (xi) +

m∑
n=1

qn(xi)R
(m−n)
j (xi)

=

m∑
k=1

βk,jG
′
k,j(xi)P

(m−1)
k (xi) + (Ck,j + βk,jGk,j(xi))LPk(xi)

=

m∑
k=1

βk,jG
′
k,j(xi)P

(m−1)
k (xi)

=

{
0 i 6= j,

1 i = j,
xi /∈ V.

(26)

For xj ∈ V equations (28) and (32) guarantee that βk,jGk,j(x) = 0 and
LRj(xi) = 0 for all xi /∈ V . Thus, Rj(x) satisfies the first half of equation
(19).

Moreover,

BlRj(±1) =

m∑
k=1

(Ck,j + βk,jGk,j(±1))BlPk(±1). (27)
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Enforcing the second half of equation (19) gives immediately the two m × m
systems described in equations (34) and (??).

While we now have a form for the function Rj(x), it is not necessarily
straightforward to construct the individual components. In particular, find-
ing the specific homogeneous solutions that satisfy equation (30) may prove
computationally intensive.

Suppose, instead, that we have a different set of homogeneous solutions,{
P̂k(x)

∣∣∣ LP̂k(x) = 0 ∀k = 1, . . . ,m
}

. It is always possible to construct a par-

ticular set of homogeneous solutions from a given set: Pk(x) =
∑m
n=1 γk,nP̂n(x).

The value of γk,n can be found by solving the system

 P̂1(vk) . . . P̂m(vk)
...

. . .
...

P̂
(m−1)
1 (vk) . . . P̂

(m−1)
m (vk)


 γk,1...
γk,m

 =


0
...
0
1

 . (28)

The matrix of this system is identical in form to that of equation (32). This
form is called the fundamental matrix of a set of equations, and its inverse is
well-known (nb: cite?). Using this knowledge we may write down the solutions
to equations (32) and (??):

βk,j = (−1)k+m
W
(
{Pn}n 6=k ;xj

)
W ({Pn} ;xj)

, (29)

γk,n = (−1)n+m
W

({
P̂j

}
j 6=n

; vk

)
W
({
P̂j

}
; vk

) (30)

where W ({fk} ;x) is the determinant of the fundamental matrix of the functions
{fk} evaluated at the point x, called the Wronskian.

The Wronskians are themselves functions and are related to the linear op-
erator for which the set {fk} is the fundamental solution set. Naturally, if the
set is linearly dependent then the Wronskian is zero. Since we know the linear

operator for which {Pk} and
{
P̂n

}
are fundamental solution sets, we can use

Abel’s identity (nb: cite) to write down a new expression for the Wronskians:

W ({Pk} ;x) = W ({Pk} ; 0) exp

(
−
∫ x

0

q1(s)ds

)
,

W
({
P̂
}

;x
)

= W
({
P̂k

}
; 0
)

exp

(
−
∫ x

0

q1(s)ds

)
.

Sadly, in general the linear operator for the set {Pk}k 6=j is not self-evident and
Abel’s identity cannot be used.
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Some simplification can be made to equation (32) if the values of γk,n are
known. Let Γ be the matrix with entries Γk,n = γk,n. Then P1(xj) . . . Pm(xj)

...
. . .

...

P
(m−1)
1 (xj) . . . P

(m−1)
m (xj)


β1,j...
βm,j

 =

 P̂1(xj) . . . P̂m(xj)
...

. . .
...

P̂
(m−1)
1 (xj) . . . P̂

(m−1)
m (xj)

Γ

β1,j...
βm,j

 =


0
...
0
1

 =⇒

Γ

β1,j...
βm,j

 =
(−1)m

W
({
P̂n

}
;xj

)


−W
({

P̂n

}
n 6=1

;xj

)
W

({
P̂n

}
n 6=2

;xj

)
...

(−1)mW

({
P̂n

}
n 6=m

;xj

)


.

The values γk,n are themselves evaluations of the Wronskians of
{
P̂n

}
on the set

V . Therefore, to find the values of βk,j one needs the value of the Wronskians
of a given fundamental solution set on all the Chebyshev points and then solve
an m × m system of equations. The Wronskians of the specific fundamental
solution set are not required.

3 Constant coefficients

The inverse operator matrix (IOM) R constructed in the previous section re-
quires a fundamental solution set to the linear operator L. This precludes using
the IOM as a black box preconditioner for a general problem. Instead, we focus
on a narrower range of problems, where the coefficients of the linear operator
are constant,

Lu(x) = u(m)(x) +

m∑
j=1

aju
(m−j)(x).

There is a polynomial associated with this operator, p(x) = xm+
∑m
j=1 ajx

m−j .

This polynomial has roots {λk}Mk=1 and each root has multipliciity mk, such that∑M
k=1mk = m. The linear operator then has homogeneous solutions

E =

{
xj

j!
eλkx

∣∣∣∣ 1 ≤ k ≤M, 0 ≤ j < mk

}
.

It is useful at this stage to define the matrices Ωk, Λ and Λk,j . The element

in the i–th row and j–th column of Ωk is equal to
(
i

j−1
)
λ
i−(j−1)
k , using the
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conventions
(
i

j−1
)

= 0 if j − 1 > i and 00 = 1. The matrix Ωk has m rows and
mk columns. This has the appearance of

Ωk =



1

λk
. . .

... 1

...
...

λnk . . .
(

n
m1−1

)
λ
n−(mk−1)
k

...
...

λmk . . .
(

m
m1−1

)
λ
m−(mk−1)
k


. (31)

Note that if mk = 1 then Ωk is a column vector, and that if λk = 0 then Ωk is
a diagonal matrix of 1’s.

The matrix Λ is the concatenation of the matrices Ωk, Λ =
[
Ω1 Ω2 . . . ΩM

]
.

If M = 1 then Λ is a lower triangular matrix equal to Ω1. If M = m then Λ
is full with columns Ωk. Let Λk,j−1 be the submatrix of Λ formed by removing
the last row and the j–th column of Ωk.

Theorem 2 (Wronskians for constant coefficient operators). Let E be the set
of homogeneous solutions to the linear operator L with constant coefficients. Let

Ek,j be the set E \
{
xj

j! e
−λkx

}
. Then

W (Ek,j ;x)

W (E;x)
=
e−λkx

|Λ|

mk−1−j∑
n=0

xn

n!
|Λk,n+j | .

Proof. Take the portion of the determinant W (E;x) that is associated with the
root λk. This root has multiplicity mk. We examine the first two columns of
this portion:∣∣∣∣∣∣∣∣∣

. . . eλkx xeλkx . . .
λke

λkx xλke
λkx + eλkx

...
...

...
. . . λm−1k eλkx xλm−1k eλkx + (m− 1)λm−2k eλkx . . .

∣∣∣∣∣∣∣∣∣ .
First note that both columns are multiplied by eλkx. This can be brought to
the outside of the determinant:

e2λkx

∣∣∣∣∣∣∣∣∣
. . . 1 x . . .

λk xλk + 1
...

...
. . . λm−1k xλm−1k + (m− 1)λm−2k . . .

∣∣∣∣∣∣∣∣∣ .
The first column is exactly the first column of Ωk. The second column is the

sum of the first column of Ωk times x and the second column of Ωk. Represent
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the j–th column of Ωk by ωk,j . Then the determinant may be written more
compactly as∣∣. . . ωk,1 xωk,1 + ωk,2 . . .

∣∣ =∣∣. . . ωk,1 xωk,1 . . .
∣∣+
∣∣. . . ωk,1 ωk,2 . . .

∣∣
=
∣∣. . . ωk,1 ωk,2 . . .

∣∣ .
This procedure can be repeated to leave the determinant in the form of |Λ|.

First, note that the l–th derivative of xj

j! e
λkx is

(
xj

j!
eλkx

)(l)

=

j∑
n=0

(
l

n

)
λl−nk

xj−n

(j − n)!
eλkx.

The terms
(
l
n

)
λl−nk are exactly those appearing in ωk,n+1. Thus, the associated

column of the fundamental matrix for a set that includes this function is equal

to eλkx
∑j
n=0

xj−n

(j−n)!ωk,n+1.

The portion of the determinant W (E;x) associated with λk may then be
written as

emkλkx| . . . ωk,1 xωk,1 + ωk,2 . . .

mk−1∑
n=0

xmk−1−n

(mk − 1− n)!
ωk,n+1 . . . |

= emkλkx| . . . ωk,1 ωk,2 . . .

mk−1∑
n=1

xmk−1−n

(mk − 1− n)!
ωk,n+1 . . . |

...

= emkλkx| . . . ωk,1 ωk,2 . . . ωk,mk
. . . |

= emkλkx| . . . Ωk . . .|.

This procedure was done for an arbitrary value of k. It may therefore be

repeated for all values of k, so that W (E;x) = exp
(
x
∑M
k=1mkλk

)
|Λ|.

As a corollary,

W (Ek,mk−1;x) = exp

(
x

(
M∑
i=1

miλi − λk

))∣∣Λk,mk−1
∣∣ ,

since the set Ek,mk−1 has all the same properties as E but with m and mk

reduced by 1. By dividing W (Ek,mk−1;x) by W (E;x) one proves the statement
of the theorem for j = mk − 1.

Consider, now, W (Ek,j ;x); The portion of the determinant associated with
the other roots, λi with i 6= k, are unchanged from the formulation presented
above. We need only consider the effects on that portion pertaining to λk:

W (Ek,j ;x) = ex(
∑M

i=1miλi−λk) ∣∣. . . Ωk−1 Ω̃k,j Ωk+1 . . .
∣∣ .
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The columns found in Ω̃k,j are

Ω̃k,j =
[
ωk,1 xωk,1 + ωk,2 . . .

]
.

As before, remove those parts of subsequent columns that are parallel with ωk,1
and ωk,2 and so on up to ωk,j+1, so that∣∣. . . Ω̃k,j . . .∣∣ =

∣∣. . . ωk,1 ωk,2 . . . ωk,j xωk,j+1 + ωk,j+2 . . .
∣∣ ,

since the column associated with xj

j! e
λkx is the (j + 1)–th column of Ωk, where

ωk,j+1 first appears.
The next step is to split the determinant into two parts along the (j+ 1)–th

column of Ω̃k,j :∣∣. . . Ω̃k,j . . .∣∣ =
∣∣. . . ωk,j xωk,j+1 + ωk,j+2 . . .

∣∣
=
∣∣. . . ωk,j xωk,j+1 xωk,j+2 + ωk,j+3 . . .

∣∣
+
∣∣∣. . . ωk,j ωk,j+2

x2

2! ωk,j+1 + ωk,j+3 . . .
∣∣∣

=x
∣∣. . . Ω̃k,j+1 . . .

∣∣+
∣∣∣. . . ωk,j ωk,j+2

x2

2! ωk,j+1 + ωk,j+3 . . .
∣∣∣ .

The second determinant may be split again in the (j + 2)–th column. This
procedure may be repeated until all options have been exhausted. To see how,
we perform an induction step.

Suppose the procedure is at step n, such that the determinant can be split
into two at the (j + n)–th column. Then∣∣∣. . . xn

n! ωk,j+1 + ωk,j+n+1
xn+1

(n+1)!ωk,j+1 + xωk,j+n+1 + ωk,j+n+2 . . .
∣∣∣

=
∣∣. . . xn

n! ωk,j+1 xωk,j+n+1 + ωk,j+n+2 . . .
∣∣

+
∣∣∣. . . ωk,j+n+1

xn+1

(n+1)!ωk,j+1 + ωk,j+n+2 . . .
∣∣∣

=(−1)n+1x
n

n!

∣∣. . . Ω̃k,j+n . . .∣∣+
∣∣∣. . . ωk,j+n+1

xn+1

(n+1)!ωk,j+1 + ωk,j+n+2 . . .
∣∣∣ ,

where the term (−1)n+1 indicates n+ 1 column interchanges so as to maintain
a consistent form of Ω̃k,j+n.

The determinant can now be written out in full:∣∣. . . Ω̃k,j . . .∣∣ =

mk−1−j∑
n=1

(−1)n+1x
n

n!

∣∣. . . Ω̃k,j+n . . .∣∣+
∣∣. . . ωk,j ωk,j+2 . . .

∣∣ .
This determinant can be used as part of the larger determinant W (Ek,j ;x), as
none of the work has precluded the presence of additional columns:

W (Ek,j ;x) = exp

(
x

(
M∑
i=1

miλi − λk

))∣∣Λk,j∣∣
+

mk−1−j∑
n=1

(−1)n+1x
n

n!
W (Ek,j+n;x) .
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Dividing by W (E;x) one arrives at

W (Ek,j ;x)

W (E;x)
=

e−λkx

∣∣Λk,j∣∣∣∣Λ∣∣ +

mk−1−j∑
n=1

(−1)n+1x
n

n!

W (Ek,j+n;x)

W (E;x)
.

(32)

We may then proceed by induction over the finite set j = 0, . . . ,mk − 1.
The base case, j = mk − 1, has already been proven. Suppose that the

statement of the theorem is true for l < j ≤ mk−1. That is, for l < j ≤ mk−1,

W (Ek,j ;x)

W (E;x)
=
e−λkx∣∣Λ∣∣

mk−1−j∑
n=0

xn

n!

∣∣Λk,n+j∣∣ .
We then prove the statement for j = l using equation (??):

W (Ek,l;x)

W (E;x)
=

e−λkx

∣∣Λk,l∣∣∣∣Λ∣∣ +

mk−1−l∑
i=1

(−1)i+1x
i

i!

e−λkx∣∣Λ∣∣
mk−1−l−i∑

n=0

xn

n!

∣∣Λk,n+l+i∣∣
=
e−λkx∣∣Λ∣∣

[∣∣Λk,l∣∣+

mk−1−l∑
i=1

mk−1−l−i∑
n=0

(−1)i+1 xi+n

(i+ n)!

(
i+ n

i

) ∣∣Λk,n+l+i∣∣]

=
e−λkx∣∣Λ∣∣

[∣∣Λk,l∣∣+

mk−1−l∑
i=1

mk−1−l∑
n=i

(−1)i+1x
n

n!

(
n

i

) ∣∣Λk,n+l∣∣]

=
e−λkx∣∣Λ∣∣

[∣∣Λk,l∣∣+

mk−1−l∑
n=1

n∑
i=1

(−1)i+1x
n

n!

(
n

i

) ∣∣Λk,n+l∣∣]

=
e−λkx∣∣Λ∣∣

[∣∣Λk,l∣∣+

mk−1−l∑
n=1

xn

n!

∣∣Λk,n+l∣∣ n∑
i=1

(−1)i+1

(
n

i

)]

=
e−λkx∣∣Λ∣∣

[∣∣Λk,l∣∣+

mk−1−l∑
n=1

xn

n!

∣∣Λk,n+l∣∣] =
e−λkx∣∣Λ∣∣

mk−1−l∑
n=0

xn

n!

∣∣Λk,n+l∣∣ .
A detailled explanation of each step follows.

Continuing from equation (??), the index n there is replaced by i, j by l and
the fraction of Wronskians by the induction hypothesis, using n as a counting
variable to remain consistent with the statement of the theorem. The product
of the polynomials, xi+n, is made to adhere to the prescribed form by the
introduction of the factorial (i+n)!. This factorial also simplifies the remaining
factorials into binomial coefficients.

Next, the counting variable n is reduced by i (n → n − i) to simplify the
polynomial, binomial coefficient, limit of the summation and index of Λk,n+l+i.

12



The two summations are then exchanged. This allows those elements that do
not contain reference to i to be removed from that summation.

The summation over i is now equal to 1 thanks to an identity of the binomial
coefficients (nb: cite),

n∑
i=0

(−1)i
(
n

i

)
= 0 =⇒

n∑
i=1

(−1)i
(
n

i

)
= −(−1)0

(
n

0

)
= −1.

Lastly, the term for n = 0 is simply x0

0!

∣∣Λk,l+0

∣∣ and so
∣∣Λk,l∣∣ is subsumed

into the summation as the term for n = 0. Thus concludes the proof.

There are a number of special cases of this theorem, providing the Wron-
skians for polynomials, exponentials, and their products.

Corollary 1 (Special cases of Theorem (nb: ref)). If M = m then

W
(
E \

{
eλkx

}
;x
)

W (E;x)
= e−λkx

∣∣Λk,0∣∣∣∣Λ∣∣ . (33)

If M = 1 then

W
(
E \

{
xj

j! e
λx
}

;x
)

W (E;x)
= e−λx

xm−1−j

(m− 1− j)!
. (34)

This remains true for λ = 0.

Proof. If M = m then mk = 1 for all k = 1, . . . ,M . As such, the summation in
Theorem (nb: ref) reduces to the first term.

For M = 1 the matrix Λ is a lower triangular matrix with 1’s along the
diagonal. Therefore,

∣∣Λ∣∣ = 1. Moreover,
∣∣Λ1,k

∣∣ = δk,m−1. Thus, the sum in
Theorem (nb: ref) reduces to the term for n+ j = m− 1.

It is therefore possible to give exact formulae for the values of γk,n. In prac-
tice, however, these may prove cumbersome to calculate. Instead, the system
found in equation (??) can be simplified for constant coefficients.

First, let Fk(x) represent the fundamental matrix for the set of polynomials{
xj

j!

∣∣∣ 0 ≤ j ≤ mk − 1
}

. That is,

Fk(x) =


1 x . . . xmk−1

(mk−1)!

1 xmk−2

(mk−2)!
. . .

...
1

 = exp

x


0 1
. . .

1
0


 .

Thanks to the second form of this matrix, its inverse is trivial to write down:

F−1k (x) = exp

−x


0 1
. . .

1
0


 =


1 −x . . . (−1)mk−1 xmk−1

(mk−1)!

1 (−1)mk−2 xmk−2

(mk−2)!
. . .

...
1

 .
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Based on the proof of Theorem (nb: ref) equation (??) can be written as

Λ


eλ1vkF1(vk)

eλ2vkF2(vk)
. . .

eλMvkFM (vk)


 γk,1...
γk,m

 =


0
...
0
1

 .
The vector of γk,n can then be expressed as

 γk,1...
γk,m

 =


e−λ1vkF−11 (vk)

e−λ2vkF−12 (vk)
. . .

e−λMvkF−1M (vk)

Λ−1


0
...
0
1

 .
The inverses of Fj(vk) are known and are of size mj×mj . Each F−1j (vk) is a

principal submatrix of F−1i (vk) where mi = max1≤j≤M mj . The only remaining
unknown is Λ−1. However, this is constant for all values of x and so need only
be done once for a given problem. Moreover, only the last column of this inverse
is needed, further reducing computational costs.

The vector of βn,j can likewise be expressed asβ1,j...
βm,j

 =

Γ−1


e−λ1xjF−11 (xj)

e−λ2xjF−12 (xj)
. . .

e−λMxjF−1M (xj)

Λ−1


0
...
0
1

 .
Recall that Γ is the matrix whose entries are γk,n. Like Λ, the inverse of Γ is
unknown but constant for all x.

4 Application and experiments

4.1 Example

To illustrate the application of this work we consider a problem with m = 4 and
two roots, each with multiplicity two. This gives E = {eλ1x, xeλ1x, eλ2x, xeλ2x}.
From Abel’s identity and lemma 1 we know

W (E;x) =

∣∣∣∣∣∣∣∣
1 0 1 0
λ1 1 λ2 1
λ21 2λ1 λ22 2λ2
λ31 3λ21 λ32 3λ22

∣∣∣∣∣∣∣∣ e
(2λ1+2λ2)x.
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To calculate the IOM we need the functions W (E \ Ek,j ;x), of which there are
four:

W (E \ E1,0;x) e−(λ1+2λ2)x =

∣∣∣∣∣∣
0 1 0
1 λ2 1

2λ1 λ22 2λ2

∣∣∣∣∣∣+ x

∣∣∣∣∣∣
1 1 0
λ1 λ2 1
λ21 λ22 2λ2

∣∣∣∣∣∣ ,
W (E \ E1,1;x) e−(λ1+2λ2)x =

∣∣∣∣∣∣
1 1 0
λ1 λ2 1
λ21 λ22 2λ2

∣∣∣∣∣∣ ,
W (E \ E2,0;x) e−(2λ1+λ2)x =

∣∣∣∣∣∣
1 0 0
λ1 1 1
λ21 λ1 λ2

∣∣∣∣∣∣+ x

∣∣∣∣∣∣
1 0 1
λ1 1 λ2
λ21 2λ1 λ22

∣∣∣∣∣∣ ,
W (E \ E2,1;x) e−(2λ1+λ2)x =

∣∣∣∣∣∣
1 0 1
λ1 1 λ2
λ21 2λ1 λ22

∣∣∣∣∣∣ .
Note that all of the 3×3 determinants could be calculated as part of calculating
the 4×4 determinant of W (E;x) if one expands along the bottom row. As such,
calculating the other four Wronskians should be no more than O (m) additional
operations.

4.2 Algorithm for IOM for constant coefficients

Step 1: Identify the roots and their multiplicities {λk;mk}Mk=1 of the polyno-
mial associated with the linear operator. Order them such that m1 is the
largest of the mk.

Step 2: Construct the matrix Ω. This may be done by constructing Pascal’s
triangle with m rows and a lower triangular m × mk Toeplitz matrix
with each diagonal corresponding to a power of λk. Take the Hadamard
product of Pascal’s triangle with each of the M matrices so constructed
and concatenate these products.

Step 3: Form F−11 (x) for all x. This is a mk×mk×N+1 size object, each page
of which is an upper triangular Toeplitz matrix with each diagonal cor-

responding to (−1)j x
j

j! . The polynomials may be calculated sequentially
then used to construct the matrices.

Step 4: Calculate ω(x) for all x. This creates a m × N + 1 matrix. This is

done by first solving Ωz =
[
0 . . . 0 1

]>
then multiplying the first m1

rows of z by F−11 (x)e−λ1x. Next, multiply the next m2 rows of z by the
m2 × m2 principal submatrix of F−11 (x)e−λ2x. Continue in this fashion
for k = 1, ...,M .

Step 5: Let Γ be the matrix formed by taking the columns of ω(x) correspond-
ing to the points in V . Calculate the coefficients βk,j by solving the system

15



Γβ = ω(x), where β is the m × N + 1 matrix containing the coefficients
βk,j .

Step 6: Form the fundamental solution set. The best solution here seems to
be to use a Hadamard product of a matrix of the exponential functions
layered with their multiplicities in mind with a matrix of the polynomials,
the information for which may be extracted from F−11 (x) calculated in
step 3. Right multiply this Hadamard product by Γ.

Step 7: Form the Birkhoff interpolantsGk,j(x). One must first form the Cheby-
shev polynomials and their integrals. Once this is done, they may be
calculated with the formulas given in equation (28).

Step 8: Find Ckj and combine ingredients to form the IOM. The system for
the Ckj requires storing the derivatives of the fundamental solution set at
x = 1 and −1, done by multiplying Ω, e±λk , Fk(±1) and Γ. The right
hand side requires the same as well as Gk,j(±1).
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