
1 Introduction

Application of stochastic network to contact tracing as measured by electronic
communication devices

2 Extended probability space

2.1 The ProbAdd Monoid

The probability of an event is a real number in the closed interval P = [0, 1].
We seek to equip this interval with the OR operation.

Consider two elements of this interval, p, q ∈ P. Define the probabilistic sum
of p and q as:

p ∨ q = p+ q − pq (1)

where pq is the standard multiplication of p and q.
The terms probadd, probaddition and probsum will indicate the use of the

probabilistic sum.
It is the t–conorm of the product t–norm, referred to as the AND operation

here. The product t–norm is a strict Archimedean t–norm.

Lemma 1. (P,∨) is a commutative monoid.

2.2 The ProbAdd Group

Consider p ∈ P. To construct a group out of the ProbAdd monoid, one must
find a probadd inverse of p. That is, we search for q such that

p ∨ q = 0.

It is straightforward to show that q = −p/(1− p).
To simplify notation, we represent the probadd inverse of p as †p. For p ∈ P

it is trivial to show that †p ∈ R− ∪ {−∞}. Define †P = P ∪ R− ∪ {−∞}.

Lemma 2. (†P,∨) is a commutative group.

2.3 The Probabilistic Semiring

In addition to the OR operation, one can equip P with the AND operation.
This operation is equivalent to standard multiplication and shall be referred to
as such.

Lemma 3. (P,∨, ·) is a commutative semiring.
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2.4 The Probabilistic Field

The probadd inverses have already been included in †P. The multiplicative
inverses that remain lie in (1,∞). Taken together, this forms the extended real
numbers, R∗.

Lemma 4. (R∗,∨, ·) is a field.

Proof. Not true, since the operations do not allow for distributivity.

2.5 The Probabilistic Inner Product Space

Since (R∗,∨, ·) is a field, the space (R∗n,R∗,∨, ·) is a vector space. -not true,
see proof of prev. lemma

Define the inner product over this vector space as

〈p,q〉 = p1q1 ∨ p2q2 ∨ · · · ∨ pnqn. (2)

Lemma 5. (R∗n,R∗,∨, ·, 〈·, ·〉) is an inner product space.

2.6 Probabilistic Matrices

To represent the linear transformations of probabilistic vectors, one can con-
struct matrices containing elements of R∗. One must then define a matrix-vector
product. This is made trivial by using the probabilistic inner product:

Ap =

a
>
1
...
a>n

p =

〈a1,p〉...
〈an,p〉

 .
3 Stochastic Networks

We define a stochastic network as a graph with vertices taking on a discrete
set of k values. The values of each vertex is unknown and has an associated
probability vector v ∈ Pk giving the probability distribution of the vertex.
Naturally, ‖v‖1 = 1.

As we are considering as an application the transmission of a virus, we
restrict ourselves to stochastic networks with the possibility of neighbouring
vertices affecting each other’s values. The edges of the graph then have asso-
ciated probabilities, corresponding to the likelihood of transforming one value
into another.

3.1 Static Networks

Suppose we examine the spread of an epidemic in a certain time frame. We have
measured exactly the contact structure of the population for this time frame,
giving a graph with known probabilities of transmission for each edge. For

2



simplicity, we suppose vertices are binary: 0 indicates no infection, 1 indicates
infection. We also suppose that a person infected during this time frame cannot
infect another in the same time frame.

At the start of this time frame each vertex has an associated probability of
being infected, ai ∈ P. Each vertex with a non-zero ai can pass the virus onto
its neighbour indexed by j with probability bi,j . The probability that vertex
j has the virus at the end of the time frame is the probabilistic sum over all
possible paths: bi,jai for all i and the probability that the vertex already has
the virus, aj . That is

aj → aj ∨ b1,ja1 ∨ · · · ∨ bN,jaN = 〈bj ,a〉. (3)

Based on the definition of probabilistic matrix-vector multiplication, the trans-
formation of the probabilities over this time frame may then be represented
by

a→ Ba (4)

where the elements of the matrix B are the transmission probabilities bi,j .
The properties of B depend on the assumptions of the model of the epi-

demic. We suppose an overly simple SI model: An individual is susceptible
until infected, at which point they remain infected indefinitely. In this case the
diagonal elements of B are 1. We also suppose that the probability of transmis-
sion is symmetric, then B is symmetric. Finally, we suppose that the number
of edges on this graph is small in comparison to the number of vertices. The
corresponding B is sparse.

All of the mentioned probabilities exist solely in P. The propagation of
probability is then modeled by matrices B ∈ PN×N . As P is not a fullfledged
field when equiped with the appropriate operations, the vectors a exist in a
module.

3.1.1 Certainty and the Probabilistic Space

In addition to the propagation of the virus one must also model the effects
of accurate testing on the probabilities. Suppose that the i–th vertex, with
probability ai of being infected, tests positive for the virus. Assuming the test
is 100% accurate then the transformation of ai over the time frame in which the
test occurred is represented by

ai → 1

which may be represented by the multiplication of ai by its multiplicative in-
verse, 1/ai. If the i–th vertex tests negative, this becomes multiplication by
zero. Testing on the set of vertices may then be represented by multiplication
by a diagonal matrix D whose elements are either 0, 1 or multiplicative inverses.

(nb: need tikz picture of example graphs)
Let the i–th and j–th vertices be neighbours. During a given time frame

the probability of these vertices being infected are ai and aj , respectively, and
there is a probability of bi,j of transmitting the virus between them. Suppose
that after this time frame the j–th vertex tests positive for the virus. There are
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then two questions to answer: what is the probability that the i–th vertex was
infected, and; what is the probability that the i–th vertex is now infected?

Let us begin by answering the first of these questions. We apply Bayes’
formula to the problem.

P (i was infected|j is infected) =
P (j is infected|i was infected)P (i was infected)

P (j is infected)

= ai
aj ∨ bi,j ∨ xj
aj ∨ aibi,j ∨ xj

where xj is the probability of the j–th vertex being infected through an alter-
native path. This probability is greater than ai, and so certainty propagates as
multiplication by superlinear numbers.

We can also answer this question given that j is not infected in the same
way.

P (i was infected|j is not infected)

=
P (j is not infected|i was infected)P (i was infected)

P (j is not infected)

= ai
1− aj ∨ bi,j ∨ xj

1− aj ∨ aibi,j ∨ xj
.

This creates problems for the definitions of our spaces, as subtraction is not
properly defined yet. However, one can represent the negation of a probability
p ∈ P by

¬p =

(
†1

2

)
(p)(†p)−1 (5)

where (†p)−1 is the multiplicative inverse of †p and †1/2 = −1.

4 Retry

We are concerned with the propagation of probability over time through a
stochastic network. First we must define the stochastic network we are us-
ing. The network changes over time. While the set of nodes N = {1, ..., N}
remains constant, the set of weighted edges E(t) = {(i, j, w) | i, j ∈ N} is mea-
sured during each time frame.

Each edge may be represented by a single number bi,j(t) ∈ P, indicating
the probability of passing the infected condition from node i to node j, or vice
versa. A value of zero indicates no edge between the two nodes. The network
at time t is then defined by the symmetric matrix

B(t) =


1 b1,2(t) . . . b1,N (t)

b1,2(t) 1
...

...
. . . bN−1,N (t)

b1,N (t) . . . bN−1,N (t) 1

 . (6)
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Note that the diagonal elements are specified by the model. In our case, we
suppose that an infected node remains infected.

The time frames are discrete units, and so the variable t is a natural number.
The network is then a matrix-valued single variable function, B : N→ PN×N .

The probability that node i is infected at time t is represented by pi(t), with
pi : N→ PN . The probability vector for the network is then the vector of these
numbers:

P(t) =

 p1(t)
...

pN (t)

 . (7)

Consider the probability of node i being infected at time t+ 1. There are a
number of possible ways for the node to have the infection. Chiefly, it can have
been infected at a previous time (pi(t)). Secondly, it can be infected during
time frame t by node j (bi,j(t)pj(t)).

As there are N nodes in the network, there are N possible ways of being
infected. Naturally, pi(t) is the negation of the probability that none of the
ways have occured:

pi(t) = 1−
N∏
j=1

(1− bi,j(t)pj(t)).

This may also be represented by a probsum, and defines an inner product:

pi(t) = bi,1(t)p1(t) ∨ · · · ∨ bi,N (t)pN (t) = bi(t)
>P(t). (8)

The values of P(t+ 1) can be written as

P(t+ 1) =

b1(t)>P(t)
...

bN (t)>P(t)

 . (9)

This helps define a new matrix-vector product, represented by⊗ : PN×N×PN →
PN . This product simplifies the notation on the propagation of probability
through the network:

B(t)⊗P(t) =

b1(t)>

...
bN (t)>

⊗P(t) =

b1(t)>P(t)
...

bN (t)>P(t)

 = P(t+ 1). (10)

4.1 Results of testing

Suppose at time t that node i is tested for infection. We suppose that this test is
perfect. The question then is what effect does this test have on the probabilities
of the network. For this, we use Bayes’ formula. Consider an event A and a
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second event B that has some dependence on event A. The probability that
event A occured given that event B occurs is given by

P (A|B) =
P (B|A)P (A)

P (B)
. (11)

Let p∗j (t0) represent the probability that node j is infected at time t0 after
it becomes known that node i is infected at time t. By Bayes’ formula, this
number is equal to

p∗j (t0) =
pj(t0)

pi(t)
P (i(t)|j(t0)). (12)

The last term, the probability that node i is infected at time t given that j is
infected at time t0, is found by supposing that pj(t0) = 1 and propagating this
information through the network to time t. Since our model assumes persistence
of the virus, P (i(t)|i(t0)) = 1 and p∗i (t0) = pi(t0)/pi(t).

In theory, only those paths dictated by B(t) that connect nodes i and j need
be considered, but the selection of these paths may prove more computationally
expensive than the use of the ⊗ operator. However, this must be done for
all time frames and all nodes not equal to i. In applications, it will likely be
necessary to consider only recent time frames and short paths.

In the case of a single time frame (ignoring propagating the new probabilities
forward, which I don’t think apply) the value of p∗j (t− 1) may be expressed as

p∗j (t− 1) =
pj(t− 1)

pi(t)
bi(t− 1)>



p1(t− 1)
...
1
...

pN (t− 1)


=
pj(t− 1)

pi(t)
b>i (t− 1)P∗j (t− 1)

=
pj(t− 1)

pi(t)
(pi(t) ∨ †(bi,j(t− 1)pj(t− 1)) ∨ bi,j(t− 1)) .

The vector on the second line, P∗j (t − 1), is equal to the vector P(t − 1) with
the j–th element replaced by 1. The third line indicates that p∗j (t− 1) may be
found by removing the probability created by pj(t− 1) on pi(t) and replacing it
with that created by an infected node j at time t− 1.

5 Exhaustive spread with removal

As an infection spreads through a network it moves in a single direction. The
infection cannot re-infect previous nodes. In a stochastic network probability
can move in all directions. Probability can spread back to previous nodes.
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To properly model this unidirectional spread, the probability needs to also
move unidirectonally. The spread of probability can be written as paths from
one infected node to other nodes. These are walks through a network that do
not form loops (loop-erased random walks). The spread of probability is then
the collection of all such walks.

Constructing these walks as they form can be done by spreading the infection
one node at a time through networks with nodes already on the path removed.
Let the contact structure be represented by the symmetric matrix B(t) with
elements bi,j(t). The probability of the network is represented by a list of
probabilities indexed by node and path:

P (t) = {pi,A | i ∈ N ,A ⊂ N} . (13)

For a given element of P (t), pi,A, we take all elements bi,j(t) such that j /∈ A
and create new elements for each. Therefore, {bi,j(t)pi,A | j /∈ A} ⊂ P (t+ 1).

The total probability that the i–th node at time t is infected is the proba-
bilistic sum of pi,A for all A. Let this be represented by pi = ∨Api,A.

5.1 Bayesian inference and testing

Suppose node i is tested for the virus. This necessarily affects the probabilities
of all nodes on the path before and after it.

Suppose the i–th node tests positive for the virus. That is, the event pre-
dicted with the probability pi occurs. This necessarily means that at least one
of pi,A has occured. Using Bayes’ formula, the new probability of pi,A is

pi,A →
pi,A
pi

.

Naturally this change affects any probabilities further along the path. Con-
sider the j–th node with a path B that contains A as a subset. While the i–th
node is found to be infected, the particular path is unknown. Since pi,A has
been updated, pj,B must be as well:

pj,B →
pj,B
pi

.

Bayes’ formula is needed for probabilities appearing earlier on the path.
Consider the k–th node with a path C that is a subset of at least one path A
that includes the node i. The probability of the i–th node being infected along
path A given that the k–th node is infected along path C is the probabilities
along the path A \ C, which is simply pi,A/pk,C . For Bayes’ formula, one must
take the probabilistic sum over all such A \ C and those that do not include C.
Bayes’ formula then gives the following update to the probability pk,C :

pk,C →

( ∨∑
A⊃C

pi,A
pk,C

)
∨

 ∨∑
A6⊃C

pi,A

 pk,C
pi

=
γ(i, k, C)

pi
pk,C .
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Consider the l–th node along a path D that contains the path C as a subset.
Since the probabilities along a path are linked only by multiplication, the update
to pl,D is the same multiplier applied to pk,C :

pl,D →
γ(i, k, C)

pi
pl,D.

Note that the path between nodes l and k does not contain any previously
updated node–path combinations. This exhausts all types of updates to proba-
bilities.

The calculation of γ(i, k, C) can be done by starting from pi rather than
constructing it piecemeal.

γ(i, k, C) =

( ∨∑
A⊃C

pi,A
pk,C

)
∨

 ∨∑
A6⊃C

pi,A


= pi ∨

( ∨∑
A⊃C
†pi,A

)
∨

( ∨∑
A⊃C

pi,A
pk,C

)

= pi ∨

( ∨∑
A⊃C
†pi,A ∨

pi,A
pk,C

)

= pi ∨

( ∨∑
A⊃C

pi,A(1− pk,C)
pk,C(1− pi,A)

)
.

Depending on the number of relevant paths A this second method may prove
faster.

Suppose instead that the i–th node tests negative for the virus. This neces-
sarily means that none of pi,A have occurred. Their probabilities are therefore
zero. All paths B ⊃ A now have probability zero.

pi,A → 0, pj,B → 0.

To update the k–th and l–th node as we did before we again use Bayes’
formula. The probability that the i–th node is not infected given that the k–th
node along path C is infected is the negation of γ(i, k, C).

pk,C →
1− γ(i, k, C)

1− pi
pk,C , pl,D →

1− γ(i, k, C)
1− pi

pl,D.

A Notes

This model includes the possibility of self-infection through loops in the network.
If node i has a probability of infection then this probability may spread to node
j. If node j comes into contact with node i, some of the probability it transfers
will have originated in i.

Ideally, the propagation of probability would work only on loop-erased ran-
dom walks or self-avoiding walks (not sure which).
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Figure 1: Example relation of nodes i, j, k and l, with paths A, B, C and D.

pi → 1 0
pi,A → pi,A

pi
0

pj,B → pj,B
pi

0

pk,C → γ(i,k,C)
pi

pk,C
1−γ(i,k,C)

1−pi pk,C

pl,D → γ(i,k,C)
pi

pl,D
1−γ(i,k,C)

1−pi pl,D

Table 1: Updates of probability based on the results of testing and Bayes’
formula. The paths follow the relationship D ⊃ C ⊂ A ⊂ B.
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