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Abstract

When projecting between nonmatching three dimensional lattices, one
needs to calculate the intersections of tetrahedra. An algorithm is pre-
sented here as the three dimensional extension of the authors’ two di-
mensional triangle-triangle intersection algorithm found in (nb: self cite).
Necessary modifications are made to adjust for the dimensionality. Con-
sistency errors are enumerated and their effects found to be limited. Thus,
the algorithm is shown to be robust to numerical error arising from float-
ing point arithmetic. An example problem is used to demonstrate its
effectiveness.

1 Introduction

When considering complex problems in three dimensional space it is sometimes
necessary to consider a secondary lattice overlapping a primary. While one hopes
these lattices align in some way, this is not guaranteed. It is then a problem
to project from one lattice onto the other. In such instances it is necessary
to intersect the lattices, observing how much two given volumes share a space.
The intersection between two tetrahedra must be calculated, ideally quickly and
robustly.

This article continues the work done in (nb: self cite). The authors’ previous
article presents an algorithm for triangle-triangle intersections in 2D. It goes on
to prove that the algorithm is robust in floating point arithmetic.

This algorithm is summarized here. It calculates the intersection between
two triangles U and V . Note that the sign(p) function used here is defined as

sign(p) =

{
0 p < 0,

1 p ≥ 0.

Step 1: Change of coordinates. Find an affine transformation such that the
three vertices of V are mapped to (0,0), (1,0) and (0,1), the vertices of a
reference triangle Y . Use this transformation to map U to the triangle X.
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Step 2: Select reference line. Choose a reference line of the reference trian-
gle Y . Apply another affine transformation (usually trivial) to the ver-
tices of X such that the edge of Y lies on {p, q | q ∈ [0, 1]} and Y ∈
{p, q | p ≥ 0}. The i–th vertex of X has coordinates (pi, qi).

2a: Intersections. Test if sign(pi) 6= sign(pj). If so, calculate the in-
tersection with the reference line and test if it lies on the reference
triangle. Repeat this step for all three pairs of vertices of X. At most
two intersections are found for each reference line, q1

0 and q2
0 . One

may remove duplicates at this stage but it is not necessary.

2b: Vertices of Y in X. Test if 0, 1 ∈ [q1
0 , q

2
0 ]. If either are in the inter-

val, the corresponding vertex of Y is determined to lie within X.

Repeat step 2 for each of the three reference lines.

Step 3: Vertices of X in Y . Multiply the three values of sign(pi) together
for each of the three vertices of X. The result will either be 0 or 1. If it
is 1, the vertex lies inside Y .

Step 4: Reverse change of coordinates. The positions of the vertices of U
and V are already known and so no additional calculations are required.
For the intersections one must apply the inverse affine transformations.

Since part of a tetrahedron-tetrahedron intersection involves intersections in
2D planes, this algorithm can be used as a subroutine. In truth, only two major
additions need to be made to make this algorithm work in 3D. Firstly, one needs
to calculate the intersections between the edges of a clipping tetrahedron U and
the planes extending from the faces of a subject tetrahedron V . Secondly, one
needs to carefully consider the shared edges of the faces of V .

2 Change of coordinates

To simplify calculations, transform the tetrahedron V into the reference tetra-
hedron Y with vertices at the positions (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).
The tetrahedron U is likewise transformed under the same affine transformation
into the tetrahedron X. To do so, one must determine the nature of the affine
transformation.

Represent the positions of the vertices of V by the matrix v01
>+
[
0 v1 v2 v3

]
,

where v0 is the position of the vertex to be mapped to the origin, v1, v2

and v3 are the vectors leading between v0 and the remaining vertices and
1> =

[
1 1 1 1

]
. Ideally, v1, v2 and v3 are orthogonal. The best choice

of v0 is one in which this is true, or nearly so.
The process of transforming from the vertices of V to the vertices of Y can

be written as an affine transformation:

A
(
v01

> +
[
0 v1 v2 v3

])
+ b1> =

0 1 0 0
0 0 1 0
0 0 0 1

 .
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The vector b is then −Av0 and the matrix A is the inverse of the matrix[
v1 v2 v3

]
.

This affine transformation must be applied to the ’subject’ tetrahedron U to
acquire its transformation X. As with V , the position of the vertices of U may
be represented by the matrix u01

> +
[
0 u1 u2 u3

]
. Let the i–th vertex

of X have position (xi, yi, zi). These values may then be found by solving the
system

[
v1 v2 v3

] x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

 = u01
> +

[
0 u1 u2 u3

]
− v01

>.

3 Corners of the intersection

The intersection between the tetrahedra X and Y is a polyhedron Z. There
are four types of corners to this polyhedron: vertices of X that lie inside Y ;
intersections between the edges of X and the faces of Y ; intersections between
the faces of X and the edges of Y and; vertices of Y that lie inside X. These
corners form a hierarchy, with each type informing the calculations of later
types. The levels of this hierarchy will be considered one at a time.

3.1 Vertices of X that lie inside Y

The reference tetrahedron Y is bounded by four infinite planes: Px = {x = 0},
Py = {y = 0}, Pz = {z = 0} and Pxyz = {x+ y + z = 1}. Each plane Pγ defines
a parameter pγ(x) that is positive or zero when the point x = (x, y, z) ∈ Y
and negative otherwise. For three of these planes this parameter is one of the
coordinates, pγ = γ for γ ∈ {x, y, z}. For the fourth plane, pxyz(x) = 1−x−y−z.
The i–th vertex of X, xi = (xi, yi, zi), lies in Y if and only if sign(pγ(xi)) = 1
for all γ.

The signs of pγ(xi) indicate the number of intersections between the edges
of X and the plane Pγ to calculate. For example, the edge between the i–
th and j–th vertices of X intersects Pγ only if sign(pγ(xi)) 6= sign(pγ(xj)),
assuming neither value of pγ is equal to zero. The case where pγ(xi) = 0 is
considered in (nb: self-cite) and will be briefly summarized here. Moving xi an
imperceptible distance into Y does not change the shape of the polyhedron of
intersection. Thus, the degenerate case where pγ(xi) = 0 can be treated as the
non-degenerate case where pγ(xi) = ε/2.

Proposition 1. Only 0, 3 or 4 intersections may occur between the edges of X
and the plane Pγ .

Proof. For an intersection to exist, sign(pγ(xi)) and sign(pγ(xj)) must disagree.
There are four pγ(xi) (i = 1, ..., 4), and sign(pγ(xi)) may take one of two values.
There are only three ways to partition four objects (pγ(xi)) into two groups (ei-
ther 0 or 1), which may be proven by the partition function. These partitionings
are listed in Table 1.
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mA(a) mA(b) pairs(A)
4 0 0
3 1 3
2 2 4

Table 1: Ways to partition four elements into two parts.

Parameters x = 0 y = 0 z = 0 x+ y + z = 1
pγ x y z 1− x− y − z
qγ y z x x
rγ z x y y

Table 2: Parameterizations of the point (x, y, z) for the given plane.

The number of pairs of distinct elements of a multiset is equal to the sum of
the products of the multiplicities of two of the elements of the multiset. That
is, if A = {a1, ..., a1, a2, ..., an} then the number of pairs of distinct elements of
A is equal to:

pairs(A) =

n∑
i<j

mA(ai)mA(aj). (1)

(nb: prove in appendix?) Since there are only two types of objects (whether
sign(pγ(xi)) = 0 or 1) this reduces to multiplying the numbers in each group
together. The result is listed in the last column of Table 1, and represents the
number of intersections calculated.

This proposition tells us that the part of X that intersects the plane of Y
is a triangle, a quadrilateral, or does not exist. This allows us to consider the
intersection of these shapes with the face of Y that lies in the plane.

3.2 Intersections between edges of X and faces of Y

Suppose sign(pγ(xi)) 6= sign(pγ(xj)) for some γ. Then there is an intersection
between the edge of X lying between the i–th and j–th vertices and the plane
Pγ . This intersection lies in the plane Pγ and so its value of pγ is zero. There
remains two coordinates needed to ascertain its position in R3.

We parametrize the plane Pγ with the coordinates qγ and rγ . These are
chosen such that the face of Y lies between the lines qγ = 0, rγ = 0 and
qγ + rγ = 1. They are listed in Table 2.

(nb: introduce intersection formula?) The intersection between Pγ and the
edge between the i–th and j–th vertices of X, denoted the (ij)–th edge, has
values of qγ and rγ equal to

qijγ =
qγ(xj)pγ(xi)− qγ(xi)pγ(xj)

pγ(xi)− pγ(xj)
, rijγ =

rγ(xj)pγ(xi)− rγ(xi)pγ(xj)

pγ(xi)− pγ(xj)
. (2)
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Plane P Numerator of qijγ Numerator of rijγ Numerator of 1− qijγ − rijγ

x = 0

∣∣∣∣xi yi
xj yj

∣∣∣∣ ∣∣∣∣xi zi
xj zj

∣∣∣∣ ∣∣∣∣xi 1− yi − zi
xj 1− yj − zj

∣∣∣∣
y = 0

∣∣∣∣yi zi
yj zj

∣∣∣∣ ∣∣∣∣yi xi
yj xj

∣∣∣∣ ∣∣∣∣yi 1− xi − zi
yj 1− xj − zj

∣∣∣∣
z = 0

∣∣∣∣zi xi
zj xj

∣∣∣∣ ∣∣∣∣zi yi
zj yj

∣∣∣∣ ∣∣∣∣zi 1− xi − yi
zj 1− xj − yj

∣∣∣∣
x+ y + z = 1

∣∣∣∣1− yi − zi xi
1− yj − zj xj

∣∣∣∣ ∣∣∣∣1− xi − zi yi
1− xj − zj yj

∣∣∣∣ ∣∣∣∣1− xi − yi zi
1− xj − yj zj

∣∣∣∣
Table 3: Numerators of the relevant values for each plane of Y .

Face v1 v2 v3

x = 0 qijx rijx
y = 0 rijy qijy
z = 0 qijz rijz

x+ y + z = 1 qijxyz rijxyz 1− qijxyz − rijxyz

Table 4: Amount of vectors v1, v2 and v3 to add to v0 to arrive at the position
of intersection between the plane Pγ and the (ij)–th edge of X.

The numerators of these values are listed in Table 3 in the form of determinants.
The last row, for the plane Pxyz, has been simplified.

This intersection lies on Y if and only if qijγ ≥ 0, rijγ ≥ 0 and 1−qijγ −rijγ ≥ 0.
Otherwise, the intersection does not fall on a face of Y and is not a corner of
the polyhedron Z. Therefore, the sign of each of these must be found. This
is trivial for the first two, while the last involves an additional calculation. Its
numerator has been included in Table 3. Its denominator is the same as the
others, pγ(xi)− pγ(xj).

Each value in Table 3 appears twice. Thus, of twelve entries only six need
to be calculated. This improves efficiency and keeps calculations consistent.

If there is no intersection with one of the other planes then the signs of one
of qijγ , rijγ or 1−qijγ −rijγ has the same sign as pγ(xi) for this plane. For example,
if sign(py(xi)) = sign(py(xj)) = 1 then the (ij)–th edge does not intersect the
plane Py and any intersection between this edge and another plane of Y must
also be on the positive side of Py. In this case, qijx ≥ 0, rijz ≥ 0 and rijxyz ≥ 0.

If an intersection is found to lie on Y then we require its coordinates in the
original system. This position is equal to v0 +av1 + bv2 + cv3, where the values
of a, b and c depend on the face of Y the intersection lies. These values are
listed in Table 4.

By Proposition 1 there are either 0, 3 or 4 intersections between X and
the plane Pγ . Thus, these intersections, if they exist, form either a triangle or
a quadrilateral, denoted G, that may or may not intersect the face of Y . By
comparing the signs of qijγ , rijγ and 1 − qijγ − rijγ for different combinations of i
and j, which have already been found, we can determine which, if any, edges
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γ, η x y z γ, η x y z
y, z ty,z z, xyz 1− tz,xyz tz,xyz
x, z tx,z y, xyz ty,xyz 1− ty,xyz
x, y tx,y x, xyz 1− tx,xyz tx,xyz

Table 5: Coordinates of points along edges of Y parametrized by tγ,η.

of Y intersect the faces of X. Moreover, we can determine which faces of X
these edges of Y intersect by taking the triple formed by the two combinations
of i and j, noting that edges of G have one of these indices in common. For
example, if sign(qijγ ) 6= sign(qikγ ) then the line qγ = 0 intersects the plane formed
by the i–th, j–th and k–th vertices of X.

3.3 Intersections between faces of X and edges of Y

Intersections between edges of Y and faces of X may be treated as a 2D inter-
section problem between G, the intersection of X with a given plane of Y , and
the face of Y that lies in that plane. This may be done in the same manner as
(nb: self-cite).

Take, as an example, the intersection between the (ijk)–th plane of X with
the line qγ = 0 for some γ. Suppose there is an edge of G between its (ij)–th
and (ik)–th vertices. Then the intersection along qγ = 0 is

q0
γ =

rikγ q
ij
γ − rijγ qikγ
qijγ − qikγ

.

As mentioned in Section 3.2, this is calculated only if sign(qijγ ) 6= sign(qikγ ).
Given that the edges of G are straightforward to determine, this procedure

would find at most two intersections for each edge of a face of Y . However,
each edge is shared by two faces of Y . For each intersection there are then two
sets of calculations to produce it, with no guarantee that numerical error will
keep them the same. Thus, we seek a single formula for each intersection that
is independent of any particular face of Y .

Each edge of Y can be parametrized by a single value. We denote this
parameter by tγ,η where γ and η indicate the planes of Y that intersect at the
particular edge. This parameter is chosen such that the edge of Y lies between
tγ,η = 0 and tγ,η = 1. The (x, y, z)–coordinates of points along these edges are
listed in Table 5.

This table also provides the transformation of these points into the original
coordinate system in the same manner as Table 4. Starting from position v0,
add v1 times the x–coordinate, v2 times the y–coordinate and v3 times the
z–coordinate. For example, the position of a point along the edge indexed by
y, z is v0 + ty,zv1.
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Lemma 1. The value of the parameter tγ,η at the intersection between the
(ijk)–th plane of X and the line extending from the edge of Y indexed by γ, η is

tijky,z =

∣∣∣∣∣∣
xi yi zi
xj yj zj
xk yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
1 yi zi
1 yj zj
1 yk zk

∣∣∣∣∣∣
, tijkz,xyz =

∣∣∣∣∣∣
1− xi yi zi
1− xj yj zj
1− xk yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
1 xi + yi zi
1 xj + yj zj
1 xk + yk zk

∣∣∣∣∣∣
,

tijkx,z =

∣∣∣∣∣∣
xi yi zi
xj yj zj
xk yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi 1 zi
xj 1 zj
xk 1 zk

∣∣∣∣∣∣
, tijky,xyz =

∣∣∣∣∣∣
xi yi 1− zi
xj yj 1− zj
xk yk 1− zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi + zi yi 1
xj + zj yj 1
xk + zk yk 1

∣∣∣∣∣∣
,

tijkx,y =

∣∣∣∣∣∣
xi yi zi
xj yj zj
xk yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣
, tijkx,xyz =

∣∣∣∣∣∣
xi 1− yi zi
xj 1− yj zj
xk 1− yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi 1 yi + zi
xj 1 yj + zj
xk 1 yk + zk

∣∣∣∣∣∣
.

The value of 1− tijkγ,η is

1− tijky,z =

∣∣∣∣∣∣
1− xi yi zi
1− xj yj zj
1− xk yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
1 yi zi
1 yj zj
1 yk zk

∣∣∣∣∣∣
, 1− tijkz,xyz = −

∣∣∣∣∣∣
xi 1− yi zi
xj 1− yj zj
xk 1− yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
1 xi + yi zi
1 xj + yj zj
1 xk + yk zk

∣∣∣∣∣∣
,

1− tijkx,z =

∣∣∣∣∣∣
xi 1− yi zi
xj 1− yj zj
xk 1− yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi 1 zi
xj 1 zj
xk 1 zk

∣∣∣∣∣∣
, 1− tijky,xyz = −

∣∣∣∣∣∣
1− xi yi zi
1− xj yj zj
1− xk yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi + zi yi 1
xj + zj yj 1
xk + zk yk 1

∣∣∣∣∣∣
,

1− tijkx,y =

∣∣∣∣∣∣
xi yi 1− zi
xj yj 1− zj
xk yk 1− zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣
, 1− tijkx,xyz = −

∣∣∣∣∣∣
xi yi 1− zi
xj yj 1− zj
xk yk 1− zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi 1 yi + zi
xj 1 yj + zj
xk 1 yk + zk

∣∣∣∣∣∣
.

Proof. Consider the (ijk)–th face of X. This face defines a plane, ax+by+cz =
d. The intersection between this plane and the line y, z, where y = z = 0, is
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(d/a, 0, 0). Likewise, for the lines x, z and x, y the intersections are (0, d/b, 0)
and (0, 0, d/c), respectively.

Consider the intersection between this plane and the line x, xyz. This inter-
section is the solution to the linear system1 0 0

1 1 1
a b c

x =

0
1
d


which is (0,−(c−d)/(b−c), (b−d)/(b−c)). The intersections between the plane
and the lines y, xyz and z, xyz can be found in the same manner.

The values of a, b and c can be found by solving the linear systemxi yi zi
xj yj zj
xk yk zk

ab
c

 = d

1
1
1

 .
Cramer’s rule (nb: cite?) gives the solution as

a

d
=

∣∣∣∣∣∣
1 yi zi
1 yj zj
1 yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi yi zi
xj yj zj
xk yk zk

∣∣∣∣∣∣
,

b

d
=

∣∣∣∣∣∣
xi 1 zi
xj 1 zj
xk 1 zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi yi zi
xj yj zj
xk yk zk

∣∣∣∣∣∣
,

c

d
=

∣∣∣∣∣∣
xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣∣∣∣∣∣∣
xi yi zi
xj yj zj
xk yk zk

∣∣∣∣∣∣
.

The values of tijky,z , t
ijk
x,z and tijkx,y are then the inverses of these fractions. The

values of 1−tijky,z , 1−tijkx,z and 1−tijkx,y are trivial to simplify using known properties
of the determinant.

The value of tijkx,xyz is

tijkx,xyz =
b− d
b− c

=
b
d − 1
b
d −

c
d

=

∣∣∣∣∣∣
xi 1 zi
xj 1 zj
xk 1 zk

∣∣∣∣∣∣−
∣∣∣∣∣∣
xi yi zi
xj yj zj
xk yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi 1 zi
xj 1 zj
xk 1 zk

∣∣∣∣∣∣−
∣∣∣∣∣∣
xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣

=

∣∣∣∣∣∣
xi 1− yi zi
xj 1− yj zj
xk 1− yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi 1 zi
xj 1 zj
xk 1 zk

∣∣∣∣∣∣+

∣∣∣∣∣∣
xi 1 yi
xj 1 yj
xk 1 yk

∣∣∣∣∣∣
=

∣∣∣∣∣∣
xi 1− yi zi
xj 1− yj zj
xk 1− yk zk

∣∣∣∣∣∣∣∣∣∣∣∣
xi 1 yi + zi
xj 1 yj + zj
xk 1 yk + zk

∣∣∣∣∣∣
.

The value of 1 − tijkx,xyz has already been shown to be −(c − d)/(b − c) and
a similar expression as above can be found by following the same steps. The
remaining values of tijkγ,η and 1− tijkγ,η are also found in this manner.
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If tijkγ,η is between 0 and 1 then the corresponding intersection lies on the

corresponding edge of Y . Note that the values of 1 − tijkγ,η do not need to be
calculated explicitly as only their signs are important.

In the case where sign(rijγ ) = sign(rikγ ) the sign of tijkγ,η can be determined
without additional calculations. Since the line connecting the (ij)–th intersec-
tion to the (ik)–th intersection lies entirely on one side of the line rγ = 0 the
sign of tijkγ,η must be equal to both sign(rijγ ) and sign(rikγ ). For some edges rγ
is replaced by qγ or 1 − qγ − rγ and tγ,η by 1 − tγ,η. In this way, the sign of
tijkγ,η needs to be independently calculated only when the (ijk)–th plane of X
intersects three lines extending from the edges of Y .

Each numerator appears in Lemma 1 three times. Each denominator appears
twice. The numerators are connected by the vertices of Y : All edges extending
from a given vertex of Y share the numerator of either tijkγ,η or 1 − tijkγ,η. The
denominators are specific to each edge. These denominators have common signs
with the numerators of Table 3.

Lemma 2. Suppose the (ijk)–th face of X intersects the line γ, η of Y . Suppose
sign(pγ(xi)) 6= sign(pγ(xj)) = sign(pγ(xk)). If the line γ, η coincides with qγ =
0 then

sign

∣∣∣∣∣∣
1 pγ(xi) qγ(xi)
1 pγ(xj) qγ(xj)
1 pγ(xk) qγ(xk)

∣∣∣∣∣∣
 = sign

(∣∣∣∣pγ(xi) qγ(xi)
pγ(xj) qγ(xj)

∣∣∣∣) .
If the line coincides with qγ + rγ = 1 then

sign

∣∣∣∣∣∣
1 qγ(xi) + rγ(xi) pγ(xi)
1 qγ(xj) + rγ(xj) pγ(xj)
1 qγ(xk) + rγ(xk) pγ(xk)

∣∣∣∣∣∣
 = sign

(∣∣∣∣pγ(xi) 1− qγ(xi)− rγ(xi)
pγ(xj) 1− qγ(xj)− rγ(xj)

∣∣∣∣) .
Proof. The intersection along qγ = 0 has already been given and involves divi-
sion by qijγ − qikγ . Since this intersection exists only if sign(qijγ ) 6= sign(qikγ ) this

denominator has the same sign as qijγ , which itself has the same sign as∣∣∣∣pγ(xi) qγ(xi)
pγ(xj) qγ(xj)

∣∣∣∣ pγ(xi).

The value of this denominator is

qijγ − qikγ =

∣∣∣∣pγ(xi) qγ(xi)
pγ(xj) qγ(xj)

∣∣∣∣
pγ(xi)− pγ(xj)

−

∣∣∣∣pγ(xi) qγ(xi)
pγ(xk) qγ(xk)

∣∣∣∣
pγ(xi)− pγ(xk)

...

=

pγ(xi)

∣∣∣∣∣∣
1 pγ(xi) qγ(xi)
1 pγ(xj) qγ(xj)
1 pγ(xk) qγ(xk)

∣∣∣∣∣∣
(pγ(xi)− pγ(xj)) (pγ(xi)− pγ(xk))

.
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By comparing these signs it is clear that

sign

∣∣∣∣∣∣
1 pγ(xi) qγ(xi)
1 pγ(xj) qγ(xj)
1 pγ(xk) qγ(xk)

∣∣∣∣∣∣
 = sign

(∣∣∣∣pγ(xi) qγ(xi)
pγ(xj) qγ(xj)

∣∣∣∣) .
The intersection along qγ + rγ = 1 involves division by (1 − qijγ − rijγ ) −

(1− qikγ − rikγ ). Again, this only exists if these two terms differ in sign and this

denominator has the same sign as 1− qijγ − rijγ , which is

sign

(∣∣∣∣pγ(xi) 1− qγ(xi)− rγ(xi)
pγ(xj) 1− qγ(xj)− rγ(xj)

∣∣∣∣ pγ(xi)

)
.

The value of the denominator can be found by replacing qγ by 1 − qγ − rγ in
the formulas above. To arrive at the form in the statement of the lemma one
must simplify the determinant∣∣∣∣∣∣
1 pγ(xi) 1− qγ(xi)− rγ(xi)
1 pγ(xj) 1− qγ(xj)− rγ(xj)
1 pγ(xk) 1− qγ(xk)− rγ(xk)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 pγ(xi) 1
1 pγ(xj) 1
1 pγ(xk) 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
1 pγ(xi) qγ(xi) + rγ(xi)
1 pγ(xj) qγ(xj) + rγ(xj)
1 pγ(xk) qγ(xk) + rγ(xk)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 qγ(xi) + rγ(xi) pγ(xi)
1 qγ(xj) + rγ(xj) pγ(xj)
1 qγ(xk) + rγ(xk) pγ(xk)

∣∣∣∣∣∣ .
Comparison with the known sign of this denominator results in the statement
of the lemma.

This connects the denominators of Lemma 1 with the numerators of Table
3. Depending on the indices and the particular qγ and pγ some row and column
swapping may be necessary. Each swap incurs a sign change. Note also that qγ
will be replaced by rγ in some instances. Since each edge of Y is shared by two
of its faces there is no need to use γ = xyz to connect these signs.

3.4 Vertices of Y that lie inside X

Each edge of Y has two vertices attached to it. These are located at tγ,η = 0
and tγ,η = 1. Either two or zero faces of X intersect this edge, resulting in tijkγ,η
and tijlγ,η. If the signs of these values are different then the vertex at tγ,η = 0

must lie inside X. The same is true of 1−tijkγ,η, 1−tijlγ,η and the vertex at tγ,η = 1.
Each vertex of Y has three edges extending from it. This test can therefore

occur up to three times. If the algorithm is consistent it needs only to occur
once. The remaining edges would then agree on the results. Using the edges of
the plane Pxyz for these tests removes the need to test the signs of 1 − tijkγ,η as
each of these edges has a separate vertex of Y at tγ,xyz = 0. The final vertex of
Y , at the origin, can use any of the remaining edges, as they all have this vertex
at tγ,η = 0.
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Type of corner Shorthand Test
Vertex of X inside Y X–in–Y Πp sign(pi) = 1

Intersection, edge of X and face of Y X–with–Y Πs sign(si) = 1
Intersection, edge of Y and face of X Y –with–X T1, T2 ∈ [0, 1]

Vertex of Y inside X Y –in–X 0, 1 ∈ [T1, T2]

Table 6: Hierarchy of corners of the polyhedron of intersection.

4 Algorithm

There are four types of points to find to construct the polyhedron of intersection.
They are presented in Table 6.

Step 1: Change of coordinates. As described in Section 2, V is transformed
into Y and U into X.

Step 2: Select plane of Y , P . Calculate pi, qi and ri for all vertices of X.

Step 2a: Intersections between P and edges of X. Test if sign(pi) 6=
sign(pj). If so, calculate the intersection between p = 0 and the edge
connecting the i–th and j–th vertices of X. Repeat for all pairs of i
and j.

Step 2b: Intersection between G and F . Select a reference line of the
right angle triangle F . Calculate si and ti for all vertices of G.

Step 2bi: Intersections between edges of Y and faces of X.
Test if sign(si) 6= sign(sj). If so, calculate the intersection be-
tween this edge of G and s = 0. Repeat for all pairs of i and j.
Let tmin be the smallest value of t found in this way, and tmax

the largest.

Repeat step 2b for each reference line of F .

Step 2c: Intersections between F and edges of X If sign(si) = 1
for all reference lines of F then the i–th vertex of G is an intersection
between F and an edge of X.

Repeat step 2 for each face of Y .

Step 3: Vertices of X in Y . Compare all values of pi for the i–th vertex of
X. If sign(pi) = 1 for all P then the i–th vertex lies inside Y .

Step 4: Edges of Y . Select an edge of Y . Let T1 be the smallest value of tmin

found for this edge, and T2 the largest value of tmax. If either T1, T2 ∈ [0, 1]
then the corresponding point is an intersection between this edge of Y and
a face of X. If either 0, 1 ∈ [T1, T2] then the corresponding vertex of Y
lies inside X.
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Edge v1 v2 v3

y = 0, z = 0 t
x = 0, z = 0 t
x = 0, y = 0 t

z = 0, x+ y + z = 1 1− t t
y = 0, x+ y + z = 1 t 1− t
x = 0, x+ y + z = 1 1− t t

Table 7: Position of the intersection (0, t) between an edge of Y and a face of
X in original coordinates as functions of (s, t)–coordinates.

Step 5: Undo change of coordinates. Transform the intersections between
edges of X and faces of Y (2c) and those between edges of Y and faces of
X (4) into the original coordinates. The transformations between (s, t)–
coordinates and (p, q, r)–coordinates are found in Tables 4 and 7. Take
the numbers listed in the tables, multiply by the respective vectors vi,
sum the results and add v0 for the positions in original coordinates.

5 Consistency errors

If the algorithm is to be robust, an error on the order of machine epsilon can
only cause a change in the volume of the polyhedron of intersection on the
same order of magnitude. The polyhedron is defined by its corners. The types
of corners are listed in Table 6. There are two types of corners arising from
intersections, which may have error in their position, and two types of corners
arising from vertices of the tetrahedra, which may have error in their inclusion
in the polyhedron.

5.1 X–in–Y errors

The vertices of the tetrahedron Y are fixed. The vertices of the tetrahedron X
are determined by an affine transformation. This transformation may introduce
some error in their position but as only the original positions of the vertices
are used to construct the polyhedron this only affects the determination of its
inclusion as an X–in–Y corner and the position of any intersections calculated
based on these vertices.

Should a vertex of X cross a plane of Y it is crucial that the number of X–
with–Y points in the plane changes accordingly. If this were not the case, the
resulting polyhedron of intersection may not represent a realistic intersection.
For example, if the exact intersection has four corners, three X–with–Y points
and an X–in–Y vertex, the movement of the vertex over the plane will result in
a 2D intersection of 3D objects.

Lemma 3. Let xi be the position of the i–th vertex and x̃i be its position as
calculated by the algorithm. Suppose the i–th vertex of X lies outside Y but the

12



Figure 1: The five possible configurations of X with respect to a plane of Y .
An X–in–Y error in a single vertex of X may cause a shift from one of these to
either neighbour.

algorithm determines it to lie inside Y . The line segment between xi and x̃i
necessarily intersects at least one plane Pγ . The line segment between x̃i and
xj intersects Pγ if and only if the (ij)–th edge of X does not.

Proof. By assumption, sign(pγ(xi)) = 0 and sign (x̃i) = 1. Then either

sign(pγ(xj)) 6= sign(pγ(xi))

or
sign(pγ(xj)) 6= sign (pγ (x̃i)) .

The former indicates the (ij)–th edge of X intersects Pγ and the line segment
between x̃i and xj does not. The latter indicates the reverse.

The number of intersections with the plane after the error depends on the
number of vertices of X on each side of the plane. We consider the five possible
arrangements of the vertices with respect to the plane and indicate the change
in the number of intersections found when an error causes transition from one
to another, see Figure 1. These transitions correspond to moving between the
rows of Table 1.

Errors in X–in–Y points then cause errors in the number of X–with–Y
points. However, these errors provide consistency between these types of points,
so that the ultimate configuration remains an intersection between tetrahedra.

5.2 X–with–Y errors

The corners denoted as X–with–Y are intersections between edges of X and
faces of Y . An X–with–Y corner on the polyhedron Z is an intersection between
an edge of X and a plane Pγ that lies between the lines qγ = 0, rγ = 0 and
qγ + rγ = 1. A consistency error involving one of these corners then places
one of these intersections on the wrong side of one of these lines. To maintain
consistency this must cause commensurate errors on other planes.

An X–with–Y corner is determined by testing if the values of qijγ , rijγ and

1− qijγ − rijγ are positive. The numerators of these values are found in Table 3.
Change in the sign of one of these values is a change in the sign of the respective
numerator. As this numerator is shared with another plane for the same edge of
X this causes a second error. Should an error occur with an X–with–Y corner
it is important that the number of Y –with–X corners remains consistent.
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Lemma 4. Suppose there is an error in the sign of qijγ independently of any

errors in sign(pγ(xi)) and sign(pγ(xj)). Then a value of tijkγ,η is calculated if and
only if the (ijk)–th plane of X does not intersect the γ, η edge of Y .

Proof. If the sign of qijγ is in error then so is that of rijη . If no value of rijη is
calculated then pη(xi) and pη(xj) have the same sign. The (ij)–th edge of X
then does not intersect the plane Pη and the sign of qijγ cannot be in error.

By Lemma 3 there are two or three other intersections with the plane Pγ .
The same is true for the plane Pη. One of these intersections has indices k and
either i or j. Both qikγ and qjkγ cannot be calculated as sign(pγ(xk)) must equal
either sign(pγ(xi)) or sign(pγ(xj)).

Without loss of generality we suppose there is a value of qikγ and a value of rjkη .

Before the error, both pairs of (qijγ , q
ik
γ ) and (rijη , r

jk
η ) either agreed or disagreed

on their signs. After the error, the signs of both qijγ and rijη have flipped. Both
pairs now have the opposite relationship between their signs. That is, if the
pairs agreed on their signs before the error they now disagree after the error,
and vice versa. Since agreement indicates no intersection between the γ, η edge
of Y and the (ijk)–th plane of X and disagreement the reverse this concludes
the proof.

If γ = xyz then rijη must be replaced by 1 − qijx − rijx in the statement of

Lemma 4. The lemma is also true when replacing qijγ with rijγ or 1− qijγ − rijγ ,

making commenserate changes to rijη where applicable. The end result ensures
that an appropriate number of Y –with–X points are calculated based on the
distribution of X–with–Y points, themselves ensured by the X vertices and
their values of sign(pγ(xi)).

Given that each edge of X has two faces attached to it the effects of Lemma
4 occur twice. If neither face intersects the line γ, η then after the error both
do. If one face intersects the line and the other does not the intersection moves
from one face to the other. If both faces intersect the line then after the error
neither do. Figure 2 shows these three possible results of an X–with–Y error.

This indicates that an X–with–Y error can only create two, destroy two or
move one Y –with–X point(s). In a tetrahedral intersection Y –with–X points
must come in pairs, as each line must enter then exit a convex object. Thus,
X–with–Y errors maintain this parity.

In the absence of an intersection between this edge of X and the second
plane of Y the sign of qijγ , rijγ or 1 − qijγ − rijγ is determined by the signs of
pη (xi) and pη (xj), where Pη is the second plane sharing the numerator of the
relevant value.

5.3 Y –with–X errors and Y –in–X errors

A Y –with–X corner is an intersection between an edge of Y and a face of X.
In this algorithm it is represented by 0 ≤ tijkγ,η ≤ 1. A consistency error for this

type of corner is then an error in the sign of tijkγ,η or 1− tijkγ,η.
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Figure 2: Possible X–with–Y errors. Blue planes are two planes of Y , Pγ and
Pη. The blue lines trace out the intersections between X and the given plane.
Blue dots represent X–with–Y points affected by error, black dots Y –with–X
points altered by this error and black circles Y –with–X points unaffected.
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To maintain consistency an error in sign(tijkγ,η) must affect the number of
vertices of Y that are found inside X. That is, a Y –with–X error must cause a
Y –in–X error.

Lemma 5. Suppose there is an error in the sign of tijkγ,η. Then the vertex of Y
at tγ,η = 0 is determined to lie within X if and only if it does not.

Proof. If the sign of tijkγ,η is in error then so is that of tijkγ,ν and tijkν,η . If one or more

of these values does not exist then there can be no error in the sign of tijkγ,η. For

example, if tijkγ,ν is not calculated then sign(rijγ ) = sign(rikγ ) = sign(tijkγ,η). Some
parameters and indices may need to be changed for this example to apply.

By (nb: earlier work needed here) one of the other faces of X intersects
the line γ, η of Y . This is true also for the lines γ, ν and ν, η. Denote the
intersections between these lines and the other faces of X as t∗γ,η, t∗γ,ν and t∗ν,η.

Before the error in the sign of tijkγ,η the three pairs of (tijk, t∗) shared a relation

between sign(tijk) and sign(t∗). That is, either sign(tijk) = sign(t∗) for all three
lines or sign(tijk) 6= sign(t∗). After the error this relation switched, changing
from agreement in sign to disagreement or the reverse. In the case of the former,
the vertex of Y at the intersection of these three lines does not lie in X but is
determined to do so by the algorithm. In the latter, the vertex lies in X but
the algorithm does not place it there.

There are four possible configurations of the three Y –with–X points sur-
rounding a vertex of Y . This error transforms these configurations between
each other, see Figure 3.

5.4 Conclusions on consistency

Each of the errors described in this section can be represented by a change in
the position of one or more of the vertices of X. This change is geometric.
Therefore, the result remains an intersection between two tetrahedra.

The X–in–Y errors are already represented as the movement of vertices of
X. Lemma 3 ensures the correct number of intersections with each of the planes
Pγ are calculated.

For an X–with–Y error, the two intersections that change position lie along
the same edge. This error can then be represented by the movement of the two
vertices of X connected by this edge. Lemma 4 gives the three possible changes
that result from this shift of an edge of X.

Finally, the three intersections altered by Y –with–X errors fall on the same
face of X. The error is therefore equivalent to the shift of the three vertices of
X connected by this face. Lemma 5 provides the four changes in configuration
arising from the movement of a face of X.

Thus, the errors are equivalent to shifts in vertices, edges and faces of X.
After these errors, X is still a tetrahedron and the result of the algorithm an
intersection between two tetrahedra.
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Figure 3: The four configurations of a face of X and a vertex of Y . A Y –with–X
error transforms these configurations. The double-headed arrows indicate the
directions of the transformations.

6 Higher dimensions

Having considered the intersection of triangles in (nb: self-cite) and the in-
tersection of tetrahedra in the present paper we can now consider the general
intersection of two n–simplices in n–dimensional space. Each simplex has n+ 1
vertices. Each pair of vertices on a given simplex defines an edge, each triple a
plane, and so on.

As before we align one of the simplices to the reference simplex with vertices
at the origin and eγ for γ = 1, . . . , n. (nb: work out transformation)

A vertex of X, xi, lies inside Y only if xi · eγ ≥ 0 for all γ. It is also
necessary that 1 − xi · 1 ≥ 0, where 1 =

∑
eγ . For the sake of notation we

denote xi · e0 = 1− xi · 1.
The (ij)–th edge of X intersects an (n − 1)–dimensional hyperplane of Y ,

defined as Pγ = {x ∈ Rn | x · eγ = δ0} or P0 = {x ∈ R | x · 1 = 1}, if sign(xi ·
eγ) 6= sign(xj · eγ). Proposition 1 can be extended to this general dimension.

Proposition 2. Let X be an n–simplex intersecting an (n− 1)–hyperplane P .
At least n edges of X intersect P . At most d(n+ 1)/2eb(n+ 1)/2c edges of X
intersect P .

Proof. Let the hyperplane P be defined by p = 0 for some linear function p. An
n–simplex has n+ 1 vertices. Each vertex has a value of sign(pi) equal to either
0 or 1. There are d(n+ 1)/2e ways to partition n + 1 objects into two groups.
Those partitionings with the largest and smallest value of pairs(A) are listed in
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mA(a) mA(b) pairs(A)
n+ 1 0 0
n 1 n
...

...
...

d(n+ 1)/2e b(n+ 1)/2c d(n+ 1)/2eb(n+ 1)/2c

Table 8: Ways to partition n+ 1 elements into two parts.

Table 8. As it is assumed that X intersects P it must be that the number of
edges that intersect P is between n and d(n+ 1)/2eb(n+ 1)/2c.

Suppose we are m steps through this algorithm and we are considering the
intersection between the (m− 1)–dimensional hyperplane defined by m vertices
of X and the (n−m)–dimensional hyperplane defined by m (n−1)–dimensional
hyperplanes Pγ .

Lemma 6. Suppose the m–face of X between the set of m+1 vertices {xi | i ∈ J}
intersects the (n − m)–hyperplane defined as the intersection of the m hyper-
planes {Pγ | γ ∈ Γ}. Denote this intersection as h(J |Γ). If 0 /∈ Γ then

h(J |Γ) · eη =

∣∣∣∣∣∣∣
xi0 · eη xi0 · eγ1 . . . xi0 · eγm

...
...

...
xim · eη xim · eγ1 . . . xim · eγm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 xi0 · eγ1 . . . xi0 · eγm
...

...
...

1 xim · eγ1 . . . xim · eγm

∣∣∣∣∣∣∣
and if 0 ∈ Γ then

h(J |Γ) · eη =

∣∣∣∣∣∣∣
xi0 · eη xi0 · eγ1 . . . 1−

∑
γ /∈Γ xi0 · eγ

...
...

...
xim · eη xim · eγ1 . . . 1−

∑
γ /∈Γ xim · eγ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 xi0 · eγ1 . . . 1−

∑
γ /∈Γ xi0 · eγ

...
...

...
1 xim · eγ1 . . . 1−

∑
γ /∈Γ xim · eγ

∣∣∣∣∣∣∣
.

Proof. Without loss of generality, suppose J = {1, . . . ,m+ 1}. The m–face can
be defined by {g({ai}) | 0 ≤ ai ≤ 1}, where

g({a1, . . . , am}) =

m∑
i=1

ai (xi − xm+1) + xm+1

=

m∑
i=1

aixi +

(
1−

m∑
i=1

ai

)
xm+1.
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The intersection h(J |Γ) = g(A) depends on Γ. If Γ does not contain 0 then
we seek the set A = {a1, . . . , am} such that

g(A) · eγ = 0 ∀ γ ∈ Γ.

We propose as a solution

ai =
(−1)i+1

d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 · eγ1 . . . x1 · eγm
...

...
xi−1 · eγ1 . . . xi−1 · eγm
xi+1 · eγ1 . . . xi+1 · eγm

...
...

xm+1 · eγ1 . . . xm+1 · eγm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

1−
m∑
i=1

ai =
(−1)m

d

∣∣∣∣∣∣∣
x1 · eγ1 . . . x1 · eγm

...
...

xm · eγ1 . . . xm · eγm

∣∣∣∣∣∣∣
for some constant d. In this way the coordinates of the intersection are

g(A) · eη =
1

d

∣∣∣∣∣∣∣
x1 · eη x1 · eγ1 . . . x1 · eγm

...
...

...
xm+1 · eη xm+1 · eγ1 . . . xm+1 · eγm

∣∣∣∣∣∣∣ .
It is clear that if η ∈ Γ then the coordinate is zero and g(A) lies on the inter-
section of the planes {Pγ | γ ∈ Γ}.

The constant d is found by rearranging the formula for 1−
∑
ai:

1 =
(−1)m

d

∣∣∣∣∣∣∣
x1 · eγ1 . . . x1 · eγm

...
...

xm · eγ1 . . . xm · eγm

∣∣∣∣∣∣∣+

m∑
i=1

ai

=

m+1∑
i=1

(−1)i+1

d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 · eγ1 . . . x1 · eγm
...

...
xi−1 · eγ1 . . . xi−1 · eγm
xi+1 · eγ1 . . . xi+1 · eγm

...
...

xm+1 · eγ1 . . . xm+1 · eγm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=⇒ d =

∣∣∣∣∣∣∣
1 x1 · eγ1 . . . x1 · eγm
...

...
...

1 xm+1 · eγ1 . . . xm+1 · eγm

∣∣∣∣∣∣∣ .
As a small validation of this formula, if xi · eη = c then g(A) · eη = c.
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If Γ contains 0 then we seek the set A such that

g(A) · eγ =0 ∀ γ ∈ Γ \ {0} ,∑
γ /∈Γ

g(A) · eγ =1.

The first of these conditions ensures that the first m columns of the determi-
nants within each ai remains unchanged. The last column of each is no longer
necessary and is replaced by some unknown vector. To find the unknown vector
we use the last condition listed above on g(A) and the established value of d:

0 =1−
∑
γ /∈Γ

g(A) · eγ

=d−

∣∣∣∣∣∣∣
∑
γ /∈Γ x1 · eγ x1 · eγ1 . . . x1 · eγm−1

w1

...
...

...
...∑

γ /∈Γ xm+1 · eγ xm+1 · eγ1 . . . xm+1 · eγm−1
wm+1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1−

∑
γ /∈Γ x1 · eγ x1 · eγ1 . . . x1 · eγm−1 w1

...
...

...
...

1−
∑
γ /∈Γ xm+1 · eγ xm+1 · eγ1 . . . xm+1 · eγm−1

wm+1

∣∣∣∣∣∣∣ .
Therefore, wi = 1−

∑
xi · eγ .

Note that the (n−m)–face of Y on the intersection of {Pγ | γ ∈ Γ} is on the
positive side of the remaining planes {Pη | η /∈ Γ}. That is, h(J |Γ) lies on Y if
and only if h(J |Γ) · eη ≥ 0 for all η /∈ Γ. Only the sign of h(J |Γ) · e0 is needed
for this determination as the position of h(J |Γ) is calculated via the other scalar
products.

Corollary 1. The numerator of h(J |Γi) · eηi is shared with the numerators of
h(J |Γj) · eηj for m values of j, up to a change in sign, where Γi and Γj have
cardinality m.

Proof. For each j ∈ Γi define Γj as

Γj = {η} ∪ Γi \ {j} .

Since Γi has m elements there are m such Γj . For each of these the numerator
of h(J |Γj) ·ej is the same up to an exchange of columns in the determinant.

By this corollary, if there is a change in sign of h(J |Γ) · eη then the entire
m–face of X defined by the indices J ends up on the other side of the (n−m)–
face of Y defined by Γ ∪ {η}. If the J–th m–face of X does not have m + 1
intersections then the signs of all existing intersections can be found using the
intersections of the (m− 1)–faces of X with indices that are subsets of J .
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