Alternating Schwarz (AltS)

Consider the nonlinear problem F(u) = 0 on the domain [a, b] with Dirichlet boundary conditions: u(a) = A and u(b) = B. Rather than solve the problem on the entire domain, one may split the domain in two and solve the problem on each subdomain:

$$x \in [a, \beta] \begin{cases} F(u_1^n) = 0\\ u_1^n(a) = A\\ u_1^n(\beta) = u_2^{n-1}(\beta) \end{cases}$$
(1)
$$x \in [\alpha, b] \begin{cases} F(u_2^n) = 0\\ u_2^n(b) = B\\ u_2^n(\alpha) = u_1^n(\alpha) \end{cases}$$
(2)

AltS stops when the value of $u_2^{n-1}(\beta)$ remains constant (up to a given tolerance).

AltS as a fixed point iteration

AltS may be thought of as a fixed point iteration: $\int F(u_1^n) = 0 \qquad \qquad \int F(u_2^n) = 0$ $\begin{cases} u_1^n(a) = A \implies \begin{cases} u_2^n(b) = B \end{cases}$ $u_1^n(\beta) = \gamma_n \qquad \qquad u_2^n(\alpha) = u_1^n(\alpha)$ with $\gamma_{n+1} = u_2^n(\beta)$. The process that transforms γ_n into γ_{n+1} is an implicit function $G(\gamma)$, so that $\gamma_{n+1} = G(\gamma_n)$. $G(\gamma)$ may not have a closed form expression for nonlinear F.

Newton preconditioning (NP)

To speed up convergence, we can apply Newton-Raphson to the function $G(\gamma) - \gamma$. This requires knowledge of $G'(\gamma)$, which we can find by solving the following linear problems:

$$\begin{cases} J(u_1^n) \cdot g_1 = 0\\ g_1(\alpha) = 0\\ g_1(\beta) = 1 \end{cases} \begin{cases} J(u_2^n) \cdot g_2 = 0\\ g_2(b) = 0\\ g_2(\alpha) = g_1(\alpha) \end{cases}$$
(3)

where J(u) is the Jacobian of F evaluated at the function u(x). The derivative of $G(\gamma)$ is then $G'(\gamma) = g_2(\beta).$

Period doubling when accelerating alternating Schwarz with Newton-Raphson

Conor McCoid, supervised by Martin J. Gander

University of Geneva

Example

Consider the following example:

$$\begin{aligned} u''(x) - \sin(Cu) &= 0, \quad x \in [-1, 1], \\ u(-1) &= u(1) = 0. \end{aligned}$$
(4)

The solution is the zero function $(\gamma^* = 0)$. The AltS fixed point function $G(\gamma)$ for this example cannot be written explicitly. It is plotted in the figure to the right (red) alongside its NP counterpart (blue). When the NP function crosses the line y = $2\gamma^* - \gamma$ cycling becomes possible.

Parameters

• $\alpha = -0.2, \ \beta = 0.2;$	Tł
• $\gamma_0 = \pm 1.65, C \in [3.52, 3.82];$	inc
• 50 iterations of AltS with NP are calculated to	wi cif
achieve stability for each value of C ;	cha
• 64 iterations are then plotted.	dit

Results

he results are presented in the figure above. Not cluded is the graph's reflection over the line $\gamma = 0$ ith colours reversed. This behaviour requires spefic choices of γ_0 . The cycling intervals of γ_0 and C nange depending on overlap and transmission contions in AltS.

I'd like to thank Martin Gander for his help and direction on this research.

Cycling in NP

Cycling under NP cannot occur if the function $G(\gamma)$ is monotonic with respect to the geometry of the figure below. The origin of this figure is the fixed point, (γ^*, γ^*) . In particular, if $G''(\gamma) > 0$ for $\gamma < 0$ γ^* and $G''(\gamma) < 0$ for $\gamma > \gamma^*$ then NP will converge quadratically regardless of γ_0 .

Cycling becomes much more likely when $G''(\gamma) = 0$ for $\gamma \neq \gamma^*$. The simplest way to ensure this is for the Hessian of F(u) to be zero for $u \neq u^*$, the exact solution.

References

[1] Xiao-Chuan Cai and David E Keyes.

Nonlinearly preconditioned inexact Newton algorithms. SIAM Journal on Scientific Computing, 24(1):183–200, 2002.

[2] Victorita Dolean, Martin J Gander, Walid Kheriji, Felix Kwok, and Roland Masson.

Nonlinear preconditioning: How to use a nonlinear Schwarz method to precondition Newton's method. SIAM Journal on Scientific Computing, 38(6):A3357–A3380, 2016.

Acknowledgements