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Alternating Schwarz (AltS) for a 1D BVP

(1)


F (x , u1, u

′
1, u
′′
1 ) = 0

u1(a) = A

u1(β) = γn

(2)


F (x , u2, u

′
2, u
′′
2 ) = 0

u2(α) = u1(α)

u2(b) = B

(3)γn+1 = u2(β) = G (γn)

(1)

AltS can be thought of as a fixed point iteration, γn+1 = G (γn).
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Newton-Raphson Accelerated AltS / Nonlinear
Preconditioning

(1)


F (x , u1, u

′
1, u
′′
1 ) = 0

u1(a) = A

u1(β) = γn

(2)


F (x , u2, u

′
2, u
′′
2 ) = 0

u2(α) = u1(α)

u2(b) = B

(3)


J(u1) · (g1, g ′1, g ′′1 ) = 0

g1(a) = 0

g1(β) = 1

(4)


J(u2) · (g2, g ′2, g ′′2 ) = 0

g2(α) = 1

g2(b) = 0

(5)γn+1 = γn −
u2(β)− γn

g1(α)g2(β)− 1
=γn −

G (γn)− γn
G ′(γn)− 1

(2)
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Example

Consider the following second order nonlinear differential equation
with homogeneous Dirichlet boundary conditions on the domain
(-1,1):

u′′(x)− sin(au(x)) = 0.

This equation is nonsingular and admits only the trivial solution
u(x) = 0.
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Example

Figure: Newton-Raphson accelerated AltS on 1D sine example, a = 3.6
with overlap 0.4. Also plotted is y = x and y = −x .

Conor McCoid, Martin J. Gander UNIGE

Cycles in ASPN



Example

Figure: Period doubling bifurcation in the example caused by NR
acceleration.
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When does a fixed point iteration (FP) converge in 1D?

Convergence of the iteration
xn+1 = g(xn) depends on which
region (x , g(x)) lies.

1: Monotonic
divergence

2: Monotonic
convergence

3: Oscillatory
convergence

4: Oscillatory
divergence
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Figure: Behaviour of FP; the origin
is the fixed point of the function
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When does Newton-Raphson (NR) converge in 1D?

For Newton-Raphson there are
no regions. Instead, convergence
at a given point is determined by
where the slope points. These
’regions’ correspond to those for
FPI.

2
1

3

4

Figure: Regions of NR; the origin is
the root of the function
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Figure: Tracing border between regions 1 and 4.
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Figure: Tracing border between regions 1 and 2.
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Figure: Tracing border between regions 2 and 3.
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What about tracing the border between regions 3 and 4?
Let x∗ be a root of f (x) and let fC (x) trace the border between
regions 3 and 4. Then

2x∗ − x = x − fC (x)

f ′C (x)
,

=⇒ f ′C (x) = − fC (x)

2(x∗ − x)
,

=⇒ fC (x) = C
√
|x − x∗|

for any value of C ∈ R.
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When does NR converge in 1D?

We transform from Cartesian
coordinates (x , y) to (x ,C ),
where C = y/

√
|x − x∗| (with

x∗ being the root of the
function). A function must be
monotonic in this geometry for
NR to converge.

x

f (x)

Figure: Geometry of NR; the origin
is the root of the function
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NR accelerated FP in 1D

Figure 9 is the same as figure 8
tilted so that the x–axis is set to
the line y = x . A function g(x)
must now be monotonic in this
geometry if NR on g(x)− x is to
converge.

y = xg(x)

Figure: Geometry of NR of FP; the
origin is the root of the function
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When does AltS converge in 1D?

In 1D, AltS takes information at a point on the interface and
produces an update at that point. This can be thought of as a
fixed point function, G (γ).

AltS then converges if (and only if) G (γ) lies in regions 2 or 3 for
γ sufficiently close to γ∗ (the fixed point). There are also a
number of conditions that are sufficient for AltS to converge from
any initial γ (for example, see1). Under such conditions, G (γ) is
necessarily in regions 2 or 3 everywhere.
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When does NR accelerated AltS converge in 1D?

Applying NR to G (γ)− γ gives an accelerated AltS. Like any NR
method, we need the slope to take on certain values in certain
regions.

G (γ) lies in Necessary condition Sufficient condition

1 G ′(γ) > 1
2 G ′(γ) < 1 G ′(γ) < 1/2
3 G ′(γ) < 1/2 G ′(γ) < 0
4 G ′(γ) < 0
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Monotonicity of AltS in 1D

Lemma

As long as the problem to be solved is nonsingular on all
subdomains then G (γ) is strictly monotonic.

Proof outline: If G (γ1) = G (γ2) then u2(x) is the same for both
γ1 and γ2. Therefore, u2(α) is the same for both =⇒ u1(x) is the
same for both =⇒ u1(β) is the same for both.
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1D example

Recall the 1D example with Dirichlet boundary conditions on
(-1,1):

u′′(x)− sin(au(x)) = 0.

This equation is nonsingular and admits only the trivial solution
u(x) = 0.
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1D example

Figure: Left: G (γ) and NR accelerated AltS; also plotted are the lines
y = x − x0 and y = 2x0 − x . Right: G (γ) with the geometry of figure 9.
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AltS will converge for this example since G (γ) lies entirely within
region 2.

However, Newton-Raphson accelerated AltS won’t converge for all
initial conditions as it crosses the line between regions 3 and 4.
There will be a (small) domain where the method converges to a
stable oscillation.
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1D example

Figure: Period doubling bifurcation in the example caused by NR
acceleration.
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Changing overlap changes where
cycling occurs in parameter
space.

Figure: Parameter at which cycling
starts as a function of overlap.
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As overlap increases, the basin of
cycling grows in parameter space
but the number of initial
conditions that converge to it
dwindles.
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Figure: Basin of cycling as a
function of overlap. The basin is in
two dimensions: parameter and
initial condition.

Conor McCoid, Martin J. Gander UNIGE

Cycles in ASPN



Possible algorithm
Suppose we know that G (γ) lies in FP region 2. Then we can
apply an algorithm guaranteed to converge.

1 Select γ0 ∈ R and set n = 0.

2 Calculate G (γn) and G ′(γn). If G ′(γn) = 1 set γn+1 = G (γn),
increment n and repeat this step. If not, proceed to the next
step.

3 Calculate the Newton iteration for G (γn) (using the
Davidenko-Branin trick), denoted γ̃n. If |G ′(γn)− 1| ≤ 1/2
then set γn+1 = γ̃n, increment n and return to step 2. If not,
calculate the average of γn and γ̃n, denoted γ̂n, and proceed
to the next step.

4 Calculate G (γ̂n). If G (γ̂n)− γ̂n has the same sign as
G (γn)− γn then set γn+1 = γ̃n. If not, set γn+1 = G (γn). In
either case, increment n and return to step 2.
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2D

The line between regions 3 and 4 in 2D is now defined by all
possible rotations around the root.

xn+1 − x∗ = R(xn − x∗), R>R = I

If a function f (x) satisfies

f (x) = Jf (x)(I − R)(x − x∗)

at some point for any rotation matrix R then that point lies on the
boundary between regions 3 and 4 and therefore represents a cycle.
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2D - damping in y–direction

uxx(x , y)+εuyy (x , y)−sin(au) = 0

If ε→ 0 then we retrieve the 1D
problem. If ε is sufficiently small,
we see cycling again.

Figure: Bifurcation diagram for
ε = 1e − 5.
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Future Work

Determine relation between operator parameters (overlap size,
tangential diffusion, etc.) and basin of cycling

Find conditions under which such cycling is impossible

Improve algorithm for higher dimensions
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