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The continuous problem

Lu(x) = f(x)

L: Some linear operator acting on the function u(x)

u(x): Some real-valued function (with some regularity)
acting on a point x e Q C R

f(x): Some real-valued function (with possibly different
regularity than u(x)) acting on the same point x
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The discrete problem
LNUN = fN
Lp: Some operator taking N pieces of information from
up and returning N pieces of information in fy, ie.
Ly : RN RN

uy: Some set of N pieces of information, ie. uy € RV

fn: Some set of N pieces of information, ie. fy € RV
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By the description of the discrete problem Ly is some matrix of
size N x N and up and fy are both vectors of length N. The
solution vector uy is then uy = LﬁlfN.

We want our solution vector up to correspond in some way to the
solution function of the continuous problem. That is, we want

li =
i e = 4

in some sense.
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N
uy = Z akqbk(x).
k=1

The discrete space may be defined by a set of basis functions
(called trial functions), {¢k(X)}Q:1- Our approximation upy then
defines a linear combination of these functions:
o < - = = 9ac
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We want now that when we apply £ to this linear combination,
we'll retrieve an approximation to f(x):

N
D arLor(x) = f(x).
k=1
More specifically, we want that
N
<Z akLo(x) — f(x),wj(x)> =0Vj=1,..,N
k=1

for some inner product defined on the space of functions and for
some set of test functions 1;(x).
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This allows us to choose three things:
m the inner product (-, -),
m the trial functions ¢, (x),

X
m and the test functions 1;(x).

Different sets of these choices lead to different classes of methods.

o = = = A
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Finite Element Methods

®k(x) and 1j(x) have finite support (locally defined).

Spectral Methods

®k(x) and 1j(x) have infinite support (globally defined).
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The trial functions individually satisfy the boundary conditions.

1 k=
<¢k(x),¢j(x)>—{0 Y

(0k(x), ¥j(x)) = ¢x(%))
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Galerkin up contains the coefficients in the Galerkin basis.

Tau up also contains coefficients, but for a more general
basis.

Collocation up contains the values of the approximation at some
set of collocation points, un(x;).

u]
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We will focus on spectral collocation (global basis functions,
minimize residual point by point). That is,

UN(X]_) f(Xl)

UN(XQ) f(Xg)
N . - .

UN(XN) f(XN)

with Ly being a matrix representing the linear operator.

We need to know Ly to solve this system. For that, we need to
know the differentiation matrix, Dy.
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Dy must work perfectly for the trial functions, ¢x(x):

dr(x1) Pl (x1)
Pk(x2) ¢ (%)

N =

P(xn) ¢ (xn)
forall k=1,...,N.
Dy is singular since Dy [1 1 ... 1]T = 0 (nilpotent, actually).

The matrix representing second order differentiation is the square
of Dy. Likewise, D{™ = DI
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The continuous operator

Lu(x) = ul™(x) + Z pr(x)ul™ k) (x)
k=1

The discrete operator

Ly =D+ > Py *
k=1

where Py is a N x N diagonal matrix with entries py(x;).
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Ly is singular because Dy and all of its powers are singular.
Boundary conditions are needed to make Ly nonsingular. The
number of BCs matches the order of the problem, m.

BCs may be concatenated so the system is overdetermined or they
can be used to replace rows in L.
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What should we choose for ¢ (x)?
m ¢x(x) span a finite dimensional space

m they should be orthogonal with respect to some inner product
(generally a weighted L inner product)

m they can be used to approximate functions in the infinite
space arbitrarily well

Some candidates:
m Sinusoids (Fourier series)

m Polynomials (Weierstrass approximation theorem)
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Jacobi polynomials

PE) (x) =
Ma+n+1) i (n) Ma+B8+n+m+1) (x—l)'"

nlM(a+ B+ n+1) m Mo+ m+1) 2

m=0

Orthogonal with respect to the weight (1 — x)®(1 4 x)? on [~1,1]

o = = = =
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Ultraspherical polynomials

Special cases of the Jacobi polynomials with oo = 3

Legendre polynomials

a=06=0

Chebyshev polynomials

a=p=1/2
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Sturm-Liouville Theory

The Sturm-Liouville Problem (SLP):

Lsi¢(x) = = (p(x)¢(x))" + a(x)$(x) = Aw(x)$(x)
with p € C1(-1,1), p>0, q,w >0, q,w € C[-1,1].
If Ls; is self-adjoint ((Lspu,v) = (u, Lspv)) then the SLP has a

countable number of eigenvalues (\) and the eigenfunctions (¢(x))
form a complete set in L?(—1,1) and

L2(-1,1) = {u € L?(-1, 1)‘f_11 uPwdx < oo}.
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Projection of u(x) € L2,(—1,1)

N

Pyu(x) =Y 0kow(x)

k=1

where 0y = f_ll dr(x)u(x)w(x)dx/ Ak

If p(£1) =0 and u € C*>°(—1,1) then |dx| — O faster than any
polynomial power of 1/k (known as spectral convergence).
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Special cases of SLP: ultraspherical polynomials
= p(x) = (1—x*)**
m g(x) = c(1 — x?)~
mow(x)=(1-x%)°
For oo = 0 the eigenfunctions are the Legendre polynomials. For
a = 1/2 the eigenfunctions are the Chebyshev polynomials.
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Legendre polynomials

Rodrigues’ formula

1 d"
~2npl dxn

Pn(x) (x2 -1
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Chebyshev polynomials

Closed form

Th(x) = cos (narccos (x))
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Weighted Gaussian quadrature

1 N
/ f(x)w(x)dx = Z wi f(xk)
! k=1

We use the points xx as our collocation points. The weight

function w(x) is used in the weighted inner product (,-),, .
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Gauss-Jacobi: w(x) = (1 — x)*(1 + x)?
Gauss-Legendre: w(x) =1
Chebyshev-Gauss: w(x) = v1 — x?2

The corresponding polynomials are orthogonal both with respect to
(-,-),, and the quadrature rule.
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A good choice

Chebyshev polynomials

Th(x) = cos (narccos (x))

Chebyshev-Gauss(-Lobatto) quadrature

/_11 F(x)V/1 — x2dx = kz:)wkf (cos (%))
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So our trial functions are T,(x), the Chebyshev functions and our
differentiation matrix Dy is then:

collocation points are x; = cos (kﬁ) the Chebyshev points. The
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u"(x) — u(x) = cos(mx/2), u(£l) =0,
u(x) = —cos(mx/2)/((7/2)* + 1)

F~-Chebyshev collocation
[ +-Finite differences
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Lyl =1

Let R; be the j—th column of LR,I.

LRi(x) = {1 r=J

where LPy(x) = 0.

o = = = =
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Variation of parameters

Z GLJ(X)’DI((n)(X) =0, n=0,...m-2

— LRi(x Z%( Pm ) (x)
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k=1

0

P1(x;) Pm(xj) Brj _

P I0g) o PR [Bmil |3

[m] = = = =
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Pe(x) =D VinPa(x)

n=1

A 0

P (vk) Prm(vk) Vk,1

B(m=1) (1) Uy | [ vkm .

[m] = = = =

Conor McCoid University of Geneva
Introduction to Spectral Collocation



Fundamental matrix and Wronskian

f(x) . fm(x)

det = WAy )

D) L D)
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Pi(x) .. Pm(x)

PP L P ()
Piux) ...  Pmx) Y1 oo Ymi

A )y o BTG m e Ymm

[m] = = = =
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Constant coefficient linear operators

Lu(x) = ul™ (x) + Sy axu™ 9 (x)

N x/ A\
Pij(x) = e K

where Ay is a root with multiplicity mg (> mgx = m) of the
polynomial with coefficients ax and j =0, ..., m — 1.
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u"(x) — u(x) = cos(mx/2), u(£l) =0,
u(x) = —cos(mx/2)/((7/2)* + 1)

F~-Chebyshev collocation
|-+-Finite differences
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