Spectral Differentiation: Integration and Inversion

Conor McCoid

University of Geneva

October 16th, 2018

Spectral methods

We want to approximate an infinite dimensional problem with a finite dimensional one:

$$
\mathcal{L} u(x)=f(x) \rightarrow A U=F
$$

We take an orthonormal basis of some finite dimensional space (usually polynomials) and decompose the problem:

$$
u(x) \approx \sum_{k=0}^{N} \alpha_{k} \Phi_{k}(x), \quad f(x) \approx \sum_{k=0}^{N} \beta_{k} \Psi_{k}(x)
$$

Three types of spectral methods

■ Galerkin: focus on $\Phi_{k}(x)$ and $\Psi_{k}(x)$
■ Tau: focus on α_{k} and β_{k}

- Collocation: focus on $u\left(x_{k}\right)$ and $f\left(x_{k}\right)$
$\left\{x_{k}\right\}_{k=0}^{N}$ (called collocation points) are specific to the chosen basis and arise from quadrature rules

Spectral collocation

Build a matrix D such that if Φ_{j} is a vector with entries $\Phi_{j}\left(x_{k}\right)$ then $D \Phi_{j}=\Phi_{j}^{\prime}$ where the entries of Φ_{j}^{\prime} are $\Phi_{j}^{\prime}\left(x_{k}\right)$. Multiply and add D together with coefficient functions to form linear operator matrices. You can now solve $A U=F$.

Introduction

■ High order differentiation matrices have round-off error
■ Can we remove sources of round-off error?

Option 1: Preconditioning by integration

Multiply by integration matrix

Option 2: Inversion

Find inverse of linear operator matrix

```
OO 0000
```

000

Chebyshev differentiation matrices

$\frac{2 N^{2}+1}{6}$	$2 \frac{(-1)^{j}}{1-x_{j}}$	$\frac{1}{2}(-1)^{N}$
$-\frac{1}{2} \frac{(-1)^{i}}{1-x_{i}}$	$\frac{(-1)^{i+j}}{x_{i}-x_{j}}$	
	$\frac{(-1)^{i+j}}{x_{i}-x_{j}}$	$\frac{1}{2} \frac{(-1)^{N+i}}{1+x_{i}}$
$-\frac{1}{2}(-1)^{N}$	$-2 \frac{(-1)^{N+j}}{1+x_{j}}$	$-\frac{2 N^{2}+1}{6}$

Fig: From pg. 53 of Spectral Methods in MATLAB by L.N. Trefethen

$$
\begin{gathered}
D^{(2)}=D \cdot D \\
D^{(k)}=D \cdot D^{(k-1)}=D^{k} \\
x_{k}=\cos \left(\frac{k \pi}{N}\right) \in[-1,1]
\end{gathered}
$$

[^0]
The general m-th order problem

$$
\begin{array}{rlrl}
\mathcal{L} u(x) & =u^{(m)}(x)+\sum_{n=1}^{m} q_{n}(x) u^{(m-n)}(x)=f(x) & \\
\mathcal{B}_{k} u(1) & =\sum_{n=1}^{m} a_{n}^{k} u^{(m-n)}(1)=a_{0}^{k}, & k=1, \ldots, k_{0} \\
\mathcal{B}_{k} u(-1) & =\sum_{n=1}^{m} a_{n}^{k} u^{(m-n)}(-1)=a_{0}^{k}, & k & =k_{0}+1, \ldots, m
\end{array}
$$

The collocation matrices

$$
\begin{array}{ll}
\bar{A}=D^{(m)}+\sum_{n=1}^{m} Q_{n} D^{(m-n)}, & Q_{n}=\left[\begin{array}{lll}
q_{n}\left(x_{0}\right) & & \\
& \ddots & \\
& & q_{n}\left(x_{N}\right)
\end{array}\right] \\
\hat{A}_{k}=\sum_{n=1}^{m} a_{n}^{k} D_{0}^{(m-n)}, & k=1, \ldots, k_{0} \\
\hat{A}_{k}=\sum_{n=1}^{m} a_{n}^{k} D_{N}^{(m-n)}, & k=k_{0}+1, \ldots, m
\end{array}
$$

$D_{0}^{(m-n)}$ is the first row of $D^{(m-n)}, D_{N}^{(m-n)}$ the last row and $D^{(0)}$ the identity matrix

Combining \bar{A} and \hat{A}

\bar{A} and \hat{A} can be concatenated to form the full system:

$$
\left[\begin{array}{c}
\bar{A} \\
\hat{A}
\end{array}\right] \vec{U}=\left[\begin{array}{c}
\vec{f} \\
a_{0}^{1} \\
\vdots \\
a_{0}^{m}
\end{array}\right]
$$

However, this system may be overdetermined. Instead, remove rows of \bar{A} and replace them with the rows of \hat{A}.

Combining \bar{A} and \hat{A}

Each row (and column) of \bar{A} is associated with a Chebyshev node. Choose m of these nodes, $V=\left\{v_{1}, \ldots, v_{m}\right\}$.
Then the rows associated with these points will be replaced by boundary conditions.
Define a new matrix A by its rows:

$$
A_{j}= \begin{cases}\bar{A}_{j} & x_{j} \notin V \\ \hat{A}_{k} & x_{j}=v_{k} \in V\end{cases}
$$

Combining \bar{A} and \hat{A}

Alternatively, define the matrices $\tilde{D}^{(k)}$:

$$
\begin{aligned}
& \tilde{D}_{j}^{(m)}= \begin{cases}D_{j}^{(m)} & x_{j} \notin V \\
\hat{A}_{k} & x_{j}=v_{k} \in V\end{cases} \\
& \tilde{D}_{j}^{(k)}= \begin{cases}D_{j}^{(k)} & x_{j} \notin V \\
0 & x_{j} \in V\end{cases}
\end{aligned}
$$

Then the matrix A is constructed just like \bar{A} :

$$
A=\tilde{D}^{(m)}+\sum_{n=1}^{m} Q_{n} \tilde{D}^{(m-n)}
$$

Preconditioning

Preconditioning

$\tilde{D}^{(m)}$ is a large source of round-off error.
We would like to remove it by multiplying A by some matrix B :

$$
B A=I+\sum_{n=1}^{m} B Q_{n} \tilde{D}^{(m-n)}
$$

Usually, $B \tilde{D}^{(m)} \approx I$ is enough.
In our case, we hope to find $\tilde{D}^{(m)} B=I$.

Preconditioning

Integration matrix

If the columns of B are representations of polynomials $B_{j}(x)$, then:

$$
\begin{aligned}
\tilde{D}_{i}^{(m)} \vec{B}_{j} & = \begin{cases}B_{j}^{(m)}\left(x_{i}\right) & x_{i} \notin V \\
\mathcal{B}_{k} B_{j}(\pm 1) & x_{i}=v_{k} \in V\end{cases} \\
\Longrightarrow B_{j}^{(m)}\left(x_{i}\right) & = \begin{cases}\delta_{i j} & x_{j} \notin V \\
0 & x_{j} \in V\end{cases} \\
\mathcal{B}_{k} B_{j}(\pm 1) & = \begin{cases}1 & x_{j}=v_{k} \in V \\
0 & x_{j} \neq v_{k}\end{cases}
\end{aligned}
$$

The Chebyshev polynomials

The Chebyshev polynomials

$$
\begin{aligned}
& \partial_{x}^{-1} T_{0}(x)=T_{1}(x) \\
& \partial_{x}^{-1} T_{1}(x)=T_{2}(x) / 4 \\
& \partial_{x}^{-1} T_{k}(x)=\frac{1}{2}\left(\frac{T_{k+1}(x)}{k+1}-\frac{T_{k-1}(x)}{k-1}\right) .
\end{aligned}
$$

Figure:

$$
T_{k}(x)=\cos (k \arccos (x))
$$

The Chebyshev polynomials

The Chebyshev polynomials

$T_{k}(x)$ satisfy a discrete orthogonality relation on the nodes:

$$
\begin{aligned}
\left\langle T_{k}, T_{j}\right\rangle_{c} & =\sum_{i=0}^{N} \frac{1}{c_{i}} T_{k}\left(x_{i}\right) T_{j}\left(x_{i}\right)=\frac{c_{j}}{2} N \delta_{j k} \\
c_{j} & = \begin{cases}2 & k=0, N \\
1 & 1 \leq k<N\end{cases}
\end{aligned}
$$

Decomposing $B_{j}(x)$ (adapted from Wang et al.) $B_{j}(x)$ is a polynomial of at most degree N, then its m-th derivative can be represented as

$$
\begin{gathered}
B_{j}^{(m)}(x)=\sum_{k=0}^{N} b_{k, j} T_{k}(x), \quad b_{k, j}=0 \quad \forall \quad k=N-m+1, \ldots, N \\
\left\langle B_{j}^{(m)}, T_{k}\right\rangle_{c}=b_{k, j} c_{k} N / 2
\end{gathered}
$$

Let $\beta_{k, j}=B_{j}^{(m)}\left(v_{k}\right) / c_{n}$ where $v_{k}=x_{n} \in V$; these values are unknown

$$
b_{k, j}=\frac{2}{c_{k} N}\left\langle B_{j}^{(m)}, T_{k}\right\rangle_{c}=\frac{2}{c_{k} N}\left(\frac{1}{c_{j}} T_{k}\left(x_{j}\right)+\sum_{n=1}^{m} \beta_{n, j} T_{k}\left(v_{n}\right)\right) .
$$

Constructing the preconditioner

Solving for $\beta_{k, j}$

Since $b_{k, j}=0$ for $k=N-m+1, \ldots, N$, we can make a system to solve for $\beta_{k, j}$:

$$
\left[\begin{array}{ccc}
T_{N}\left(v_{1}\right) & \cdots & T_{N}\left(v_{m}\right) \\
\vdots & \ddots & \vdots \\
T_{N-m+1}\left(v_{1}\right) & \ldots & T_{N-m+1}\left(v_{m}\right)
\end{array}\right]\left[\begin{array}{c}
\beta_{1, j} \\
\vdots \\
\beta_{m, j}
\end{array}\right]=-\frac{1}{c_{j}}\left[\begin{array}{c}
T_{N}\left(x_{j}\right) \\
\vdots \\
T_{N-m+1}\left(x_{j}\right)
\end{array}\right]
$$

Constructing the preconditioner

Boundary conditions

For $x_{j} \notin V$

$$
\begin{aligned}
B_{j}(x) & =\sum_{k=0}^{N-m} b_{k, j}\left(\partial_{x}^{-m} T_{k}(x)-p_{k}(x)\right) \\
\mathcal{B}_{n} p_{k}(\pm 1) & =\mathcal{B}_{n} \partial_{x}^{-m} T_{k}(\pm 1)
\end{aligned}
$$

For $x_{j} \in V, B_{j}(x)$ is a polynomial of degree at most $m-1$ satisfying

$$
\mathcal{B}_{k} B_{j}(\pm 1)= \begin{cases}1 & x_{j}=v_{k} \\ 0 & x_{j} \neq v_{k}\end{cases}
$$

Inversion matrices

$$
A=\tilde{D}^{(m)}+\sum_{n=1}^{m} Q_{n} \tilde{D}^{(m-n)}
$$

We want R such that $A R=I$. If $R_{j}(x)$ is the polynomial represented by the j-th column of R, then:

$$
\begin{aligned}
\mathcal{L} R_{j}\left(x_{i}\right) & = \begin{cases}\delta_{i j} & x_{j} \notin V \\
0 & x_{j} \in V\end{cases} \\
\mathcal{B}_{k} R_{j}(\pm 1) & = \begin{cases}0 & x_{j} \neq v_{k} \in V \\
1 & x_{j}=v_{k} \in V\end{cases}
\end{aligned}
$$

Fundamental solutions

To solve this problem we need to know the fundamental solutions of \mathcal{L} :

$$
\mathcal{L} P_{k}(x)=0 \quad k=1, \ldots, m
$$

We then assume the columns of R have the form:

$$
R_{j}(x)=\sum_{k=1}^{m} G_{k, j}(x) P_{k}(x)
$$

Inversion

Variation of parameters

We proceed by variation of parameters:

$$
\begin{aligned}
& \sum_{k=1}^{m} G_{k, j}^{\prime}(x) P_{k}^{(I)}(x)=0 \quad I=0, \ldots, m-2 \\
& \quad \Longrightarrow \mathcal{L} R_{j}(x)=\sum_{k=1}^{m} G_{k, j}^{\prime}(x) P_{k}^{(m-1)}(x)
\end{aligned}
$$

Variation of parameters

This leads to the following conditions:

$$
\begin{aligned}
G_{k, j}^{\prime}\left(x_{i}\right) & = \begin{cases}\beta_{k, j} & x_{i}=x_{j} \\
0 & x_{i} \neq x_{j}, v_{k}\end{cases} \\
P_{k}^{(I)}\left(v_{k}\right) & = \begin{cases}0 & l<m \\
1 & l=m\end{cases}
\end{aligned}
$$

Therefore, $G_{k, j}(x)$ is a multiple of a Birkhoff interpolant from earlier, and $P_{k}(x)$ is a particular fundamental solution

The Wronskian

Solving for $\beta_{k, j}$ (again)

The system to solve the $\beta_{k, j}$ is:

$$
\left[\begin{array}{ccc}
P_{1}\left(x_{j}\right) & \cdots & P_{m}\left(x_{j}\right) \\
\vdots & \ddots & \vdots \\
P_{1}^{(m-1)}\left(x_{j}\right) & \cdots & P_{m}^{(m-1)}\left(x_{j}\right)
\end{array}\right]\left[\begin{array}{c}
\beta_{1, j} \\
\vdots \\
\beta_{m, j}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right]
$$

This system is related to the Wronskian of the set $\left\{P_{l}(x)\right\}_{l=1}^{m}$

The Wronskian

The Wronskian

The Wronskian of the set $\left\{P_{l}(x)\right\}_{l=1}^{m}$ is defined as:

$$
W\left(\left\{P_{l}\right\}_{l=1}^{m} ; x\right)=\operatorname{det}\left(\left[\begin{array}{ccc}
P_{1}\left(x_{j}\right) & \ldots & P_{m}\left(x_{j}\right) \\
\vdots & \ddots & \vdots \\
P_{1}^{(m-1)}\left(x_{j}\right) & \ldots & P_{m}^{(m-1)}\left(x_{j}\right)
\end{array}\right]\right)
$$

By Cramer's rule $\beta_{k, j}$ can be defined as:

$$
\beta_{k, j}=(-1)^{j+m} \frac{W\left(\left\{P_{l}\right\}_{l \neq k} ; x_{j}\right)}{W\left(\left\{P_{l}\right\}_{l=1}^{m} ; x_{j}\right)}
$$

000

The Wronskian

Abel's identity

In many cases using the Wronskians proves neither efficient nor accurate, but one could use Abel's identity to find $W\left(\left\{P_{l}\right\}_{l=1}^{m} ; x\right)$:

$$
W\left(\left\{P_{l}\right\}_{l=1}^{m} ; x\right)=W\left(\left\{P_{l}\right\}_{l=1}^{m} ;-1\right) \exp \left(-\int_{-1}^{x} q_{1}(s) d s\right)
$$

First order, $V=\{1\}$

BEVP

Consider the boundary eigenvalue problem:

$$
u^{\prime}(x)=\lambda u(x) \quad \forall x \in[-1,1], \quad u(1)=0
$$

This admits only the eigenpair $u(x)=0, \lambda=0$

First order, $V=\{1\}$

DEVP

Consider the collocation version of this problem with $V=\{1\}$:

$$
A U=\tilde{D} U=\lambda U
$$

Since \tilde{D} is a $N+1 \times N+1$ nonsingular matrix there are $N+1$ nontrivial eigenpairs

CEVP

The DEVP is not the discrete version of the BEVP; instead, it approximates the following continuous eigenvalue problem:

$$
u^{\prime}(x)=\lambda u(x) \quad \forall x \in[-1,1), \quad u(1)=\lambda u(1)
$$

Either $\lambda=1$ and $u(x)=e^{x}$ or $u(1)=u(x)=0$

Three EVPs

- CEVP admits only one solution not found in BEVP
- DEVP has the nontrivial CEVP eigenpair and N computational eigenpairs (no continuous analogue)
■ The computational modes approximate rapidly decaying exponentials

CEVP

Consider the same problem but with $V=\left\{x_{i}\right\}$:

$$
u^{\prime}(x)=\lambda u(x) \quad \forall x \in[-1,1] \backslash\left\{x_{i}\right\}, \quad u(1)=\lambda u\left(x_{i}\right)
$$

The eigenvalues are then:

$$
\lambda=\frac{W\left(x_{i}-1\right)}{x_{i}-1}
$$

where $W(x)$ is the Lambert W function, the inverse of $x e^{x}$

Eigenvalues

We've gone from one eigenvalue to infinite eigenvalues

The corresponding eigenvectors are spirals in the complex plane

[^1]
Some notes

■ We've reduced the number of computational modes by changing which row we remove

- Eigenvalues of \tilde{D} match those of B
- About 2 thirds of the eigenvalues of \tilde{D} match exact values (Weideman and Trefethen observe a ratio of $2 / \pi$ exact to total eigenvalues for a second order example)

Methods

Standard:

$$
A U=F
$$

Preconditioning (generalized from Wang et al.):

$$
\left(I+\sum_{n=1}^{m} B Q_{n} \tilde{D}^{(m-n)}\right) U=B F
$$

Inverse operator (new):

$$
U=R F
$$

Singular example

Singular example: function of V

Figure: $x u^{\prime \prime}(x)-(x+1) u^{\prime}(x)+u(x)=x^{2}, \quad u(\pm 1)=1$

Singular example

Singular example: function of N

Figure: $x u^{\prime \prime}(x)-(x+1) u^{\prime}(x)+u(x)=x^{2}, \quad u(\pm 1)=1$

Constant coefficients

Constant coefficients: function of V

Figure: $u^{(5)}(x)+u^{(4)}(x)-u^{\prime}(x)-u(x)=f(x)$

Constant coefficients

Constant coefficients: function of N

Figure: $u^{(5)}(x)+u^{(4)}(x)-u^{\prime}(x)-u(x)=f(x)$

Nonconstant coefficients

Nonconstant coefficients: function of V

Figure:

$$
u^{(5)}(x)+\sin (10 x) u^{\prime}(x)+x u(x)=f(x), \quad u(\pm 1)=u^{\prime}(\pm 1)=u^{\prime \prime}(1)=0
$$

Nonconstant coefficients

Nonconstant coefficients: function of N

Figure:

$$
u^{(5)}(x)+\sin (10 x) u^{\prime}(x)+x u(x)=f(x), \quad u(\pm 1)=u^{\prime}(\pm 1)=u^{\prime \prime}(1)=0
$$

Nonlinear example

Nonlinear

Figure: $u^{(4)}(x)=u^{\prime}(x) u^{\prime \prime}(x)-u(x) u^{(3)}(x)$,
$u(\pm 1)=u^{\prime}(-1)=0, \quad u^{\prime}(1)=1$

Conclusion

- Some sources of round-off error (largest order derivative) are easy to remove
- Remaining derivatives prove challenging

■ Inversion operators need homogeneous solutions, which may not be available

Future Works

- A priori row removal
- Alternative methods to calculate integration matrix

■ Inversion for constant coefficients
■ Preconditioning for perturbed/ boundary layer problems

[^0]: Spectral Differentiation: Integration and Inversion

[^1]: Spectral Differentiation: Integration and Inversion

