	Integration			
000 000		0000 000	0000	

Spectral Differentiation: Integration and Inversion

Conor McCoid

University of Geneva

October 16th, 2018

Conor McCoid

University of Geneva

	Integration			
000 000		0000 000	0000 000	

Spectral methods

We want to approximate an infinite dimensional problem with a finite dimensional one:

$$\mathcal{L}u(x) = f(x) \to AU = F$$

We take an orthonormal basis of some finite dimensional space (usually polynomials) and decompose the problem:

$$u(x) \approx \sum_{k=0}^{N} \alpha_k \Phi_k(x), \quad f(x) \approx \sum_{k=0}^{N} \beta_k \Psi_k(x)$$

Conor McCoid

	Integration			
000 000		0000 000	0000	

Three types of spectral methods

- Galerkin: focus on $\Phi_k(x)$ and $\Psi_k(x)$
- **Tau:** focus on α_k and β_k
- Collocation: focus on $u(x_k)$ and $f(x_k)$

 $\{x_k\}_{k=0}^N$ (called collocation points) are specific to the chosen basis and arise from quadrature rules

Image: A math a math

000 000	0000 000	0000	

Spectral collocation

Build a matrix D such that if Φ_j is a vector with entries $\Phi_j(x_k)$ then $D\Phi_j = \Phi'_j$ where the entries of Φ'_j are $\Phi'_j(x_k)$. Multiply and add D together with coefficient functions to form linear operator matrices. You can now solve AU = F.

Conor McCoid

University of Genev

• • • • • • • • • • • • • •

					Conclusion
000 000	00 00 000	0000 000	0000	00 00 00 0	

High order differentiation matrices have round-off error

(日) (同) (三) (三)

Can we remove sources of round-off error?

Option 1: Preconditioning by integration

Multiply by integration matrix

Option 2: Inversion

Find inverse of linear operator matrix

Conor McCoid

Introduction			
• 00 000	0000 000	0000	

The collocation method

Chebyshev differentiation matrices

Fig: From pg. 53 of *Spectral Methods in MATLAB* by L.N. Trefethen

$$D^{(2)} = D \cdot D$$
$$D^{(k)} = D \cdot D^{(k-1)} = D^{k}$$
$$x_{k} = \cos\left(\frac{k\pi}{N}\right) \in [-1, 1]$$

・ロン ・回 と ・ ヨ と ・

University of Geneva

-

Conor McCoid

0				
	000	000	00 00 00 0	

The collocation methor

The general *m*-th order problem

$$\mathcal{L}u(x) = u^{(m)}(x) + \sum_{n=1}^{m} q_n(x)u^{(m-n)}(x) = f(x)$$
$$\mathcal{B}_k u(1) = \sum_{n=1}^{m} a_n^k u^{(m-n)}(1) = a_0^k, \qquad k = 1, ..., k_0$$
$$\mathcal{B}_k u(-1) = \sum_{n=1}^{m} a_n^k u^{(m-n)}(-1) = a_0^k, \qquad k = k_0 + 1, ..., m$$

University of Geneva

< ロ > < 回 > < 回 > < 回 > < 回 >

Conor McCoid

Introduction			Conclusion
00 000	0000 000	0000	

The collocation method

The collocation matrices

$$\bar{A} = D^{(m)} + \sum_{n=1}^{m} Q_n D^{(m-n)}, \quad Q_n = \begin{bmatrix} q_n(x_0) & & \\ & \ddots & \\ & & q_n(x_N) \end{bmatrix}$$
$$\hat{A}_k = \sum_{n=1}^{m} a_n^k D_0^{(m-n)}, \qquad k = 1, \dots, k_0$$
$$\hat{A}_k = \sum_{n=1}^{m} a_n^k D_N^{(m-n)}, \qquad k = k_0 + 1, \dots, m$$

 $D_0^{(m-n)}$ is the first row of $D^{(m-n)}$, $D_N^{(m-n)}$ the last row and $D^{(0)}$ the identity matrix

Conor McCoid

Introduction	Integration			
000 ●00		0000 000	0000	
Combining operate	or and boundary conditi			

Combining \overline{A} and \hat{A}

 \overline{A} and \widehat{A} can be concatenated to form the full system:

$$\begin{bmatrix} \bar{A} \\ \hat{A} \end{bmatrix} \vec{U} = \begin{bmatrix} \vec{f} \\ a_0^1 \\ \vdots \\ a_0^m \end{bmatrix}$$

However, this system may be overdetermined. Instead, remove rows of \bar{A} and replace them with the rows of \hat{A} .

Image: A math a math

Conor McCoid

Introduction	Integration		
000			
Combining operate	or and boundary condit		

Combining \bar{A} and \hat{A}

Each row (and column) of \overline{A} is associated with a Chebyshev node. Choose *m* of these nodes, $V = \{v_1, ..., v_m\}$.

Then the rows associated with these points will be replaced by boundary conditions.

Define a new matrix A by its rows:

$$A_j = \begin{cases} \bar{A}_j & x_j \notin V \\ \hat{A}_k & x_j = v_k \in V \end{cases}$$

University of Geneva

A B > A B >

Conor McCoid

Introduction				
000		0000 000	0000	
Combining or such	المتلومين والمستحم المستحم			

Combining \overline{A} and \hat{A}

Alternatively, define the matrices $\tilde{D}^{(k)}$:

$$egin{aligned} & ilde{D}_{j}^{(m)} = egin{cases} D_{j}^{(m)} & x_{j} \notin V \ \hat{A}_{k} & x_{j} = v_{k} \in V \ \hat{D}_{j}^{(k)} = egin{cases} D_{j}^{(k)} & x_{j} \notin V \ 0 & x_{j} \in V \ 0 & x_{j} \in V \end{aligned}$$

Then the matrix A is constructed just like \overline{A} :

$$A = \tilde{D}^{(m)} + \sum_{n=1}^{m} Q_n \tilde{D}^{(m-n)}$$

Conor McCoid

	Integration			
000 000	00 00 000	0000 000	0000	
Preconditioning				

Preconditioning

 $\tilde{D}^{(m)}$ is a large source of round-off error. We would like to remove it by multiplying A by some matrix B:

$$BA = I + \sum_{n=1}^{m} BQ_n \tilde{D}^{(m-n)}$$

Image: A math a math

Usually, $B\tilde{D}^{(m)} \approx I$ is enough. In our case, we hope to find $\tilde{D}^{(m)}B = I$.

Conor McCoid

	Integration				
000	00	0000	0000	00	
	00			00	
Preconditioning					

Integration matrix

If the columns of B are representations of polynomials $B_i(x)$, then:

University of Geneva

(日) (四) (日) (日) (日)

Conor McCoid

	Integration		
	ŏŏ		

The Chebyshev polynomials

$$\partial_x^{-1} T_0(x) = T_1(x)$$

$$\partial_x^{-1} T_1(x) = T_2(x)/4$$

$$\partial_x^{-1} T_k(x) = \frac{1}{2} \left(\frac{T_{k+1}(x)}{k+1} - \frac{T_{k-1}(x)}{k-1} \right)$$

・ロト ・回ト ・目と

Figure: $T_k(x) = \cos(k \arccos(x))$

University of Geneva

Conor McCoid

	Integration				
000 000	00 00 000	0000 000	0000	00	

The Chebyshev polynomials

 $T_k(x)$ satisfy a discrete orthogonality relation on the nodes:

$$\langle T_k, T_j \rangle_c = \sum_{i=0}^N \frac{1}{c_i} T_k(x_i) T_j(x_i) = \frac{c_j}{2} N \delta_{jk}$$
 $c_j = \begin{cases} 2 & k = 0, N \\ 1 & 1 \le k < N \end{cases}$

University of Geneva

< ロ > < 回 > < 回 > < 回 > < 回 >

Conor McCoid

	Integration			
000 000		0000 000	0000	

Constructing the preconditioner

Decomposing $B_j(x)$ (adapted from Wang et al.)

 $B_j(x)$ is a polynomial of at most degree N, then its *m*-th derivative can be represented as

$$B_{j}^{(m)}(x) = \sum_{k=0}^{N} b_{k,j} T_{k}(x), \quad b_{k,j} = 0 \quad \forall \quad k = N - m + 1, ..., N$$

 $\langle B_{j}^{(m)}, T_{k} \rangle_{c} = b_{k,j} c_{k} N/2$

Let $\beta_{k,j} = B_j^{(m)}(v_k)/c_n$ where $v_k = x_n \in V$; these values are unknown

$$b_{k,j} = \frac{2}{c_k N} \langle B_j^{(m)}, T_k \rangle_c = \frac{2}{c_k N} \left(\frac{1}{c_j} T_k(x_j) + \sum_{n=1}^m \beta_{n,j} T_k(v_n) \right).$$

Conor McCoid

University of Geneva

・ロト ・回ト ・ヨト ・ヨト

	Integration		
	000		
Constructing the r	reconditioner		

Solving for $\beta_{k,j}$

Since $b_{k,j} = 0$ for k = N - m + 1, ..., N, we can make a system to solve for $\beta_{k,j}$:

$$\begin{bmatrix} T_N(v_1) & \dots & T_N(v_m) \\ \vdots & \ddots & \vdots \\ T_{N-m+1}(v_1) & \dots & T_{N-m+1}(v_m) \end{bmatrix} \begin{bmatrix} \beta_{1,j} \\ \vdots \\ \beta_{m,j} \end{bmatrix} = -\frac{1}{c_j} \begin{bmatrix} T_N(x_j) \\ \vdots \\ T_{N-m+1}(x_j) \end{bmatrix}$$

イロン イヨン イヨン イヨン

Conor McCoid

	Integration			
000 000		0000 000	0000	
Constructing the p	preconditioner			

Boundary conditions

For $x_j \notin V$

$$B_j(x) = \sum_{k=0}^{N-m} b_{k,j} \left(\partial_x^{-m} T_k(x) - p_k(x) \right)$$
$$\mathcal{B}_n p_k(\pm 1) = \mathcal{B}_n \partial_x^{-m} T_k(\pm 1)$$

For $x_j \in V$, $B_j(x)$ is a polynomial of degree at most m-1 satisfying

$$\mathcal{B}_k B_j(\pm 1) = \begin{cases} 1 & x_j = v_k \\ 0 & x_j \neq v_k \end{cases}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Conor McCoid

	Inversion		
000 000	0000 000	0000	

Inversion matrices

$$A = \tilde{D}^{(m)} + \sum_{n=1}^{m} Q_n \tilde{D}^{(m-n)}$$

We want R such that AR = I. If $R_j(x)$ is the polynomial represented by the *j*-th column of R, then:

$$\mathcal{L}R_j(x_i) = egin{cases} \delta_{ij} & x_j
otin V \ 0 & x_j \in V \ 0 & x_j
otin V \ \mathcal{B}_k R_j(\pm 1) = egin{cases} 0 & x_j
otin v_k \in V \ 1 & x_j = v_k \in V \ \end{pmatrix}$$

University of Geneva

< ロ > < 回 > < 回 > < 回 > < 回 >

Conor McCoid

	Inversion		
000 000	0000 000	0000	

Fundamental solutions

To solve this problem we need to know the fundamental solutions of $\ensuremath{\mathcal{L}}$:

$$\mathcal{L}P_k(x) = 0$$
 $k = 1, ..., m$

We then assume the columns of R have the form:

$$R_j(x) = \sum_{k=1}^m G_{k,j}(x) P_k(x)$$

・ロト ・回 ト ・ ヨト ・

Conor McCoid

	Inversion		
000 000	0000 000	0000	

Variation of parameters

We proceed by variation of parameters:

$$\sum_{k=1}^{m} G'_{k,j}(x) P_k^{(l)}(x) = 0 \quad l = 0, ..., m-2,$$

$$\implies \mathcal{L}R_j(x) = \sum_{k=1}^m G'_{k,j}(x) P_k^{(m-1)}(x)$$

University of Geneva

Conor McCoid

	Inversion		
000 000	000 000	0000	

Variation of parameters

This leads to the following conditions:

$$G'_{k,j}(x_i) = \begin{cases} \beta_{k,j} & x_i = x_j \\ 0 & x_i \neq x_j, v_k \end{cases}$$
$$P_k^{(l)}(v_k) = \begin{cases} 0 & l < m \\ 1 & l = m \end{cases}$$

• • • • • • • • • • • •

Therefore, $G_{k,j}(x)$ is a multiple of a Birkhoff interpolant from earlier, and $P_k(x)$ is a particular fundamental solution

Conor McCoid

	Integration	Inversion		
000 000		0000 •00	0000	
The Wronskian				

Solving for $\beta_{k,j}$ (again)

The system to solve the $\beta_{k,j}$ is:

$$\begin{bmatrix} P_1(x_j) & \dots & P_m(x_j) \\ \vdots & \ddots & \vdots \\ P_1^{(m-1)}(x_j) & \dots & P_m^{(m-1)}(x_j) \end{bmatrix} \begin{bmatrix} \beta_{1,j} \\ \vdots \\ \beta_{m,j} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$$

・ロン ・日ン ・ヨン・

This system is related to the Wronskian of the set $\{P_l(x)\}_{l=1}^m$

Conor McCoid

	Integration	Inversion			
000	00	0000	0000	00	
	00	000		00	
The Wronskian					

The Wronskian

The Wronskian of the set $\{P_l(x)\}_{l=1}^m$ is defined as:

$$W(\lbrace P_l \rbrace_{l=1}^m; x) = \det \left(\begin{bmatrix} P_1(x_j) & \dots & P_m(x_j) \\ \vdots & \ddots & \vdots \\ P_1^{(m-1)}(x_j) & \dots & P_m^{(m-1)}(x_j) \end{bmatrix} \right)$$

By Cramer's rule $\beta_{k,j}$ can be defined as:

$$\beta_{k,j} = (-1)^{j+m} \frac{W(\{P_l\}_{l \neq k}; x_j)}{W(\{P_l\}_{l=1}^m; x_j)}$$

・ロト ・回 ト ・ ヨト ・

Spectral Differentiation: Integration and Inversion

Conor McCoid

	Integration	Inversion			
000 000	00	0000	0000	00	
	000	000		00	
The Wronskian					

Abel's identity

In many cases using the Wronskians proves neither efficient nor accurate, but one could use Abel's identity to find $W(\{P_l\}_{l=1}^m; x)$:

$$W(\{P_l\}_{l=1}^m; x) = W(\{P_l\}_{l=1}^m; -1) \exp\left(-\int_{-1}^x q_1(s) ds\right)$$

University of Geneva

Conor McCoid

Introduction 000 000	Integration 00 000 000	Inversion 0000 000	Spectral Analysis ●000 000	Examples 00 00 00 00 0	Conclusion
First order, V = $\{$	1}				

Consider the boundary eigenvalue problem:

$$u'(x) = \lambda u(x) \quad \forall x \in [-1,1], \quad u(1) = 0$$

・ロト ・回 ト ・ ヨト ・

This admits only the eigenpair u(x) = 0, $\lambda = 0$

Conor McCoid

Introduction 000 000	Integration 00 000	Inversion 0000 000	Spectral Analysis 0●00 000	Examples 00 00 00 00	Conclusion
First order, $V = \{1, 2\}$	1}				

DEVP

Consider the collocation version of this problem with $V = \{1\}$:

$$AU = \tilde{D}U = \lambda U$$

・ロト ・回 ト ・ ヨト ・

Since \tilde{D} is a $N + 1 \times N + 1$ nonsingular matrix there are N + 1 nontrivial eigenpairs

Conor McCoid

Introduction 000 000	Integration 00 000 000	Inversion 0000 000	Spectral Analysis ○○●○ ○○○	Examples 00 00 00 00 0	Conclusion
First order, V = $\{$	1}				

CEVP

The DEVP is not the discrete version of the BEVP; instead, it approximates the following continuous eigenvalue problem:

$$u'(x) = \lambda u(x) \quad \forall x \in [-1,1), \quad u(1) = \lambda u(1)$$

A B > A B >

Either $\lambda = 1$ and $u(x) = e^x$ or u(1) = u(x) = 0

Conor McCoid

	Integration		Spectral Analysis		Conclusion
000 000	00	0000	0000	00	
	00			00	
First order, $V = \{$	1}				

Three EVPs

- CEVP admits only one solution not found in BEVP
- DEVP has the nontrivial CEVP eigenpair and N computational eigenpairs (no continuous analogue)
- The computational modes approximate rapidly decaying exponentials

Conor McCoid

	Integration	Spectral Analysis	
		000	
First order, $V = \{$	x; }		

CEVP

Consider the same problem but with $V = \{x_i\}$:

$$u'(x) = \lambda u(x) \quad \forall x \in [-1,1] \setminus \{x_i\}, \quad u(1) = \lambda u(x_i)$$

The eigenvalues are then:

$$\lambda = \frac{W(x_i - 1)}{x_i - 1}$$

(日) (四) (日) (日) (日)

where W(x) is the Lambert W function, the inverse of xe^x

Conor McCoid

	Integration	Spectral Analysis	
		000	
First order. $V = \{$	x; }		

Eigenvalues

We've gone from one eigenvalue to infinite eigenvalues

The corresponding eigenvectors are spirals in the complex plane

Conor McCoid

University of Geneva

	Integration	Spectral Analysis	Conclusion
		000	
First order $V = \{$	x: }		

Some notes

- We've reduced the number of computational modes by changing which row we remove
- Eigenvalues of \tilde{D} match those of B
- About 2 thirds of the eigenvalues of *D̃* match exact values (Weideman and Trefethen observe a ratio of 2/π exact to total eigenvalues for a second order example)

Image: A math a math

				Examples	
000 000	00 00 000	0000 000	0000		

Methods

Standard:

AU = F

Preconditioning (generalized from Wang et al.):

$$\left(I + \sum_{n=1}^{m} BQ_n \tilde{D}^{(m-n)}\right) U = BF$$

Inverse operator (new):

$$U = RF$$

(日) (四) (日) (日) (日)

Conor McCoid

Introduction 000 000	Integration 00 00 000	Inversion 0000 000	Spectral Analysis 0000 000	Examples ●0 ○0 ○0	

Singular example

Singular example: function of V

Figure: $xu''(x) - (x+1)u'(x) + u(x) = x^2$, $u(\pm 1) = 1$

э

・ロン ・日ン ・ヨン・

Integration	

Inversion 0000 000 Spectral Analysis

Examples

Image: A math a math

Conclusion

Singular example

Singular example: function of N

Figure: $xu''(x) - (x+1)u'(x) + u(x) = x^2$, $u(\pm 1) = 1$

	Integration			Examples	
000 000	00 00 000	0000 000	0000		

Constant coefficients

Constant coefficients: function of V

Figure: $u^{(5)}(x) + u^{(4)}(x) - u'(x) - u(x) = f(x)$

<ロ> <同> <同> <同> < 同>

Integration 00 00 Inversion 0000 000 Spectral Analysis 0000 000 Examples

Conclusion

Constant coefficients

Constant coefficients: function of N

Figure: $u^{(5)}(x) + u^{(4)}(x) - u'(x) - u(x) = f(x)$

・ロト ・回ト ・ヨト

Integration 00 00 Inversion 0000 000 Spectral Analysis 0000 000 Examples

< 17 ▶

Conclusion

Nonconstant coefficients

Nonconstant coefficients: function of V

Figure: $u^{(5)}(x) + \sin(10x)u'(x) + xu(x) = f(x), \quad u(\pm 1) = u'(\pm 1) = u''(1) = 0$

Conor McCoid

University of Geneva

Integration 00 00 Inversion 0000 000 Spectral Analysis

Examples

Conclusion

00

Nonconstant coefficients

Nonconstant coefficients: function of N

$$u^{(5)}(x) + \sin(10x)u'(x) + xu(x) = f(x), \quad u(\pm 1) = u'(\pm 1) = u''(1) = 0$$

Conor McCoid

University of Geneva

Introduction 000 000	Integration 00 00 000	Inversion 0000 000	Spectral Analysis 0000 000	Examples ○○ ○○ ●	

Nonlinear example

Nonlinear

Figure:
$$u^{(4)}(x) = u'(x)u''(x) - u(x)u^{(3)}(x)$$
,
 $u(\pm 1) = u'(-1) = 0$, $u'(1) = 1$

Conor McCoid

< □ > < □ > < 三</p>

			Conclusion
000 000	0000 000	0000	

Conclusion

- Some sources of round-off error (largest order derivative) are easy to remove
- Remaining derivatives prove challenging
- Inversion operators need homogeneous solutions, which may not be available

	Integration			Conclusion
000 000		0000 000	0000	

Future Works

- A priori row removal
- Alternative methods to calculate integration matrix
- Inversion for constant coefficients
- Preconditioning for perturbed/ boundary layer problems

Image: A math the second se