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Spectral methods

We want to approximate an infinite dimensional problem with a
finite dimensional one:

Lu(x) = f (x)→ AU = F

We take an orthonormal basis of some finite dimensional space
(usually polynomials) and decompose the problem:

u(x) ≈
N∑

k=0

αkΦk(x), f (x) ≈
N∑

k=0

βkΨk(x)
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Three types of spectral methods

Galerkin: focus on Φk(x) and Ψk(x)

Tau: focus on αk and βk

Collocation: focus on u(xk) and f (xk)

{xk}Nk=0 (called collocation points) are specific to the chosen basis
and arise from quadrature rules
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Spectral collocation

Build a matrix D such that if Φj is a vector with entries Φj(xk)
then DΦj = Φ′j where the entries of Φ′j are Φ′j(xk).
Multiply and add D together with coefficient functions to form
linear operator matrices. You can now solve AU = F .
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Introduction

High order differentiation matrices have round-off error

Can we remove sources of round-off error?

Option 1: Preconditioning by integration

Multiply by integration matrix

Option 2: Inversion

Find inverse of linear operator matrix
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The collocation method

Chebyshev differentiation matrices
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Fig: From pg. 53 of Spectral
Methods in MATLAB by L.N.
Trefethen

D(2) = D · D
D(k) = D · D(k−1) = Dk

xk = cos

(
kπ

N

)
∈ [−1, 1]
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The collocation method

The general m-th order problem

Lu(x) =u(m)(x) +
m∑

n=1

qn(x)u(m−n)(x) = f (x)

Bku(1) =
m∑

n=1

aknu
(m−n)(1) = ak0 , k =1, ..., k0

Bku(−1) =
m∑

n=1

aknu
(m−n)(−1) = ak0 , k =k0 + 1, ...,m
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The collocation method

The collocation matrices

Ā =D(m) +
m∑

n=1

QnD
(m−n), Qn =

qn(x0)
. . .

qn(xN)


Âk =

m∑
n=1

aknD
(m−n)
0 , k = 1, ..., k0

Âk =
m∑

n=1

aknD
(m−n)
N , k = k0 + 1, ...,m

D
(m−n)
0 is the first row of D(m−n), D

(m−n)
N the last row and D(0)

the identity matrix

Conor McCoid University of Geneva

Spectral Differentiation: Integration and Inversion



Introduction Integration Inversion Spectral Analysis Examples Conclusion

Combining operator and boundary conditions

Combining Ā and Â

Ā and Â can be concatenated to form the full system:

[
Ā

Â

]
~U =


~f
a1

0
...
am0


However, this system may be overdetermined.
Instead, remove rows of Ā and replace them with the rows of Â.
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Combining operator and boundary conditions

Combining Ā and Â

Each row (and column) of Ā is associated with a Chebyshev node.
Choose m of these nodes, V = {v1, ..., vm}.
Then the rows associated with these points will be replaced by
boundary conditions.
Define a new matrix A by its rows:

Aj =

{
Āj xj /∈ V

Âk xj = vk ∈ V
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Combining operator and boundary conditions

Combining Ā and Â

Alternatively, define the matrices D̃(k):

D̃
(m)
j =

{
D

(m)
j xj /∈ V

Âk xj = vk ∈ V

D̃
(k)
j =

{
D

(k)
j xj /∈ V

0 xj ∈ V

Then the matrix A is constructed just like Ā:

A = D̃(m) +
m∑

n=1

QnD̃
(m−n)
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Preconditioning

Preconditioning

D̃(m) is a large source of round-off error.
We would like to remove it by multiplying A by some matrix B:

BA = I +
m∑

n=1

BQnD̃
(m−n)

Usually, BD̃(m) ≈ I is enough.
In our case, we hope to find D̃(m)B = I .
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Preconditioning

Integration matrix

If the columns of B are representations of polynomials Bj(x), then:

D̃
(m)
i

~Bj =

{
B

(m)
j (xi ) xi /∈ V

BkBj(±1) xi = vk ∈ V

=⇒ B
(m)
j (xi ) =

{
δij xj /∈ V

0 xj ∈ V

BkBj(±1) =

{
1 xj = vk ∈ V

0 xj 6= vk
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The Chebyshev polynomials

The Chebyshev polynomials

Figure:
Tk(x) = cos (k arccos(x))

∂−1
x T0(x) =T1(x)

∂−1
x T1(x) =T2(x)/4

∂−1
x Tk(x) =

1

2

(
Tk+1(x)

k + 1
− Tk−1(x)

k − 1

)
.
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The Chebyshev polynomials

The Chebyshev polynomials

Tk(x) satisfy a discrete orthogonality relation on the nodes:

〈Tk ,Tj〉c =
N∑
i=0

1

ci
Tk(xi )Tj(xi ) =

cj
2
Nδjk

cj =

{
2 k = 0,N

1 1 ≤ k < N
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Constructing the preconditioner

Decomposing Bj(x) (adapted from Wang et al.)
Bj(x) is a polynomial of at most degree N, then its m-th derivative
can be represented as

B
(m)
j (x) =

N∑
k=0

bk,jTk(x), bk,j = 0 ∀ k = N −m + 1, ...,N

〈B(m)
j ,Tk〉c = bk,jckN/2

Let βk,j = B
(m)
j (vk)/cn where vk = xn ∈ V ; these values are

unknown

bk,j =
2

ckN
〈B(m)

j ,Tk〉c =
2

ckN

(
1

cj
Tk(xj) +

m∑
n=1

βn,jTk(vn)

)
.
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Constructing the preconditioner

Solving for βk ,j

Since bk,j = 0 for k = N −m + 1, ...,N, we can make a system to
solve for βk,j : TN(v1) . . . TN(vm)

...
. . .

...
TN−m+1(v1) . . . TN−m+1(vm)


β1,j

...
βm,j

 = − 1

cj

 TN(xj)
...

TN−m+1(xj)
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Constructing the preconditioner

Boundary conditions

For xj /∈ V

Bj(x) =
N−m∑
k=0

bk,j
(
∂−mx Tk(x)− pk(x)

)
Bnpk(±1) =Bn∂−mx Tk(±1)

For xj ∈ V , Bj(x) is a polynomial of degree at most m − 1
satisfying

BkBj(±1) =

{
1 xj = vk

0 xj 6= vk
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Inversion

Inversion matrices

A = D̃(m) +
m∑

n=1

QnD̃
(m−n)

We want R such that AR = I . If Rj(x) is the polynomial
represented by the j-th column of R, then:

LRj(xi ) =

{
δij xj /∈ V

0 xj ∈ V

BkRj(±1) =

{
0 xj 6= vk ∈ V

1 xj = vk ∈ V
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Inversion

Fundamental solutions

To solve this problem we need to know the fundamental solutions
of L:

LPk(x) = 0 k = 1, ...,m

We then assume the columns of R have the form:

Rj(x) =
m∑

k=1

Gk,j(x)Pk(x)
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Inversion

Variation of parameters

We proceed by variation of parameters:

m∑
k=1

G ′k,j(x)P
(l)
k (x) = 0 l = 0, ...,m − 2,

=⇒ LRj(x) =
m∑

k=1

G ′k,j(x)P
(m−1)
k (x)
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Inversion

Variation of parameters

This leads to the following conditions:

G ′k,j(xi ) =

{
βk,j xi = xj

0 xi 6= xj , vk

P
(l)
k (vk) =

{
0 l < m

1 l = m

Therefore, Gk,j(x) is a multiple of a Birkhoff interpolant from
earlier, and Pk(x) is a particular fundamental solution
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The Wronskian

Solving for βk ,j (again)

The system to solve the βk,j is: P1(xj) . . . Pm(xj)
...

. . .
...

P
(m−1)
1 (xj) . . . P

(m−1)
m (xj)


β1,j

...
βm,j

 =

0
...
1


This system is related to the Wronskian of the set {Pl(x)}ml=1
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The Wronskian

The Wronskian

The Wronskian of the set {Pl(x)}ml=1 is defined as:

W ({Pl}ml=1; x) = det


 P1(xj) . . . Pm(xj)

...
. . .

...

P
(m−1)
1 (xj) . . . P

(m−1)
m (xj)




By Cramer’s rule βk,j can be defined as:

βk,j = (−1)j+mW ({Pl}l 6=k ; xj)

W ({Pl}ml=1; xj)
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The Wronskian

Abel’s identity

In many cases using the Wronskians proves neither efficient nor
accurate, but one could use Abel’s identity to find W ({Pl}ml=1; x):

W ({Pl}ml=1; x) = W ({Pl}ml=1;−1) exp

(
−
∫ x

−1
q1(s)ds

)
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First order, V = {1}

BEVP

Consider the boundary eigenvalue problem:

u′(x) = λu(x) ∀x ∈ [−1, 1], u(1) = 0

This admits only the eigenpair u(x) = 0, λ = 0
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First order, V = {1}

DEVP

Consider the collocation version of this problem with V = {1}:

AU = D̃U = λU

Since D̃ is a N + 1× N + 1 nonsingular matrix there are N + 1
nontrivial eigenpairs
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First order, V = {1}

CEVP

The DEVP is not the discrete version of the BEVP; instead, it
approximates the following continuous eigenvalue problem:

u′(x) = λu(x) ∀x ∈ [−1, 1), u(1) = λu(1)

Either λ = 1 and u(x) = ex or u(1) = u(x) = 0
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First order, V = {1}

Three EVPs

CEVP admits only one solution not found in BEVP

DEVP has the nontrivial CEVP eigenpair and N
computational eigenpairs (no continuous analogue)

The computational modes approximate rapidly decaying
exponentials
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First order, V = {xi}

CEVP

Consider the same problem but with V = {xi}:

u′(x) = λu(x) ∀x ∈ [−1, 1] \ {xi}, u(1) = λu(xi )

The eigenvalues are then:

λ =
W (xi − 1)

xi − 1

where W (x) is the Lambert W function, the inverse of xex
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First order, V = {xi}

Eigenvalues

We’ve gone from one eigenvalue to infinite eigenvalues

The corresponding eigenvectors are spirals in the complex plane
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First order, V = {xi}

Some notes

We’ve reduced the number of computational modes by
changing which row we remove

Eigenvalues of D̃ match those of B

About 2 thirds of the eigenvalues of D̃ match exact values
(Weideman and Trefethen observe a ratio of 2/π exact to
total eigenvalues for a second order example)
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Methods

Standard:
AU = F

Preconditioning (generalized from Wang et al.):(
I +

m∑
n=1

BQnD̃
(m−n)

)
U = BF

Inverse operator (new):
U = RF
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Singular example

Singular example: function of V

Figure: xu′′(x)− (x + 1)u′(x) + u(x) = x2, u(±1) = 1
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Singular example

Singular example: function of N

Figure: xu′′(x)− (x + 1)u′(x) + u(x) = x2, u(±1) = 1
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Constant coefficients

Constant coefficients: function of V

Figure: u(5)(x) + u(4)(x)− u′(x)− u(x) = f (x)
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Constant coefficients

Constant coefficients: function of N

Figure: u(5)(x) + u(4)(x)− u′(x)− u(x) = f (x)
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Nonconstant coefficients

Nonconstant coefficients: function of V

Figure:
u(5)(x) + sin(10x)u′(x) + xu(x) = f (x), u(±1) = u′(±1) = u′′(1) = 0
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Nonconstant coefficients

Nonconstant coefficients: function of N

Figure:
u(5)(x) + sin(10x)u′(x) + xu(x) = f (x), u(±1) = u′(±1) = u′′(1) = 0
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Nonlinear example

Nonlinear

Figure: u(4)(x) = u′(x)u′′(x)− u(x)u(3)(x),
u(±1) = u′(−1) = 0, u′(1) = 1
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Conclusion

Some sources of round-off error (largest order derivative) are
easy to remove

Remaining derivatives prove challenging

Inversion operators need homogeneous solutions, which may
not be available
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Future Works

A priori row removal

Alternative methods to calculate integration matrix

Inversion for constant coefficients

Preconditioning for perturbed/ boundary layer problems
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