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Abstract. We propose a new algorithm to improve the accuracy of spectral methods for singu-
larly perturbed two-point boundary value problems. Driscoll and Hale [J. Numer. Anal., 36 (2016),
pp. 108--132] suggest resampling as an alternative to row replacement when including boundary
conditions. Testing this with an iterated sine-transformation [T. Tang and M. R. Trummer [SIAM
J. Sci. Comput., 17 (1996), pp. 430--438] designed for boundary layers reveals artificial boundary
conditions imposed by the transformation. The transformation is regularized to prevent this. The
new regularized sine-transformation is employed to solve boundary value problems with and without
resampling. It shows superior accuracy provided the regularization parameter is chosen from an
optimal range.
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1. Introduction. We are investigating spectral collocation methods for solving
two-point boundary value problems. In particular, we are interested in singularly
perturbed problems whose solutions exhibit thin boundary layers.

Including boundary conditions in spectral collocation methods poses a series of
issues. One straightforward way to include boundary conditions is to remove rows of
the spectral collocation differentiation matrix and replace them with the boundary
conditions [7]. This leads to an important question: Which rows should be removed?
Standard practice is to replace the first and last rows for second-order ODEs, but no
standard practice exists for any other order.

Driscoll and Hale [7] suggest a resampling method to deal with the ambiguity of
removing rows from ODE matrices. This involves evaluating the underlying interpo-
lating polynomial at a new set of points. The cardinality of this new set of points is
equal to the cardinality of the set of Chebyshev points minus the order of the ODE.
While this incurs a certain amount of round-off error, it eliminates the need to remove
rows; instead, the boundary conditions can be directly concatenated.

We now seek to apply this resampling procedure to problems involving boundary
layers. To resolve boundary layers it is often beneficial to use a coordinate transfor-
mation. This causes collocation points to become very close. The goal of this paper
is to see if resampling can be used alongside a coordinate transformation to both
resolve the boundary layers and eliminate the ambiguity of row removal. Specifically,
we examine the iterated sine-transformation from [11].

For comparison we also consider rational spectral collocation (RSC) [1] com-
bined with the coordinate transformations presented here. Like resampling, the RSC
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method changes the differentiation operator to work on a new set of points. It is used
frequently with customized transformations to improve accuracy for certain problems;
see, for example, [6].

The methods mentioned above are by no means the only numerical approaches
to solving singularly perturbed two-point boundary value problems. For example, [9]
proposes a method based on interval subdivision and solving an integral formulation
of the problem, and [10] reports an efficiently implemented method computing the
Chebyshev expansion coefficients.

2. Resampling. The resampling method of Driscoll and Hale [7] is explained
here briefly for the case of Chebyshev--Gauss--Lobatto spectral collocation. Let N be
an integer and X = \{ x0, x1, . . . , xN\} the set of Chebyshev nodes

xk = cos

\biggl( 
\pi k

N

\biggr) 
, 0 \leq k \leq N.

Let U be a vector of length N + 1 representing a function u(x) evaluated at the
Chebyshev nodes. This vector uniquely defines a polynomial uN (x) of degree at most
N that interpolates u(x) at these nodes.

If the matrix R resamples this vector at points \{ yj\} Mj=0, then the result is the
interpolating polynomial evaluated on these points:

RU =

\left[   uN (y0)
...

uN (yM )

\right]   .

Note that the vector RU uniquely defines a polynomial of degree at most M . For
M < N this means we are removing information stored in uN (x). Driscoll and Hale
refer to this as downsampling.

The matrix R can be formed with only four lines of code. We refer to Driscoll
and Hale for this code and describe briefly how it arises.

The interpolating polynomial uN (x) can be expressed in the barycentric form [5]

(2.1) uN (x) =

\sum N
k=0

cku(xk)
x - xk\sum N

k=0
ck

x - xk

,

where xk is the kth Chebyshev node and ck is the kth barycentric weight, defined as

(2.2) ck =

\left\{     
1/2 k = 0,

( - 1)k k = 1, . . . , N  - 1,

( - 1)N/2 k = N.

Evaluating uN (x) at the point yj can then be expressed as the following vector
inner product:

uN (yj) =
1\sum N

k=0
ck

x - xk

\Bigl[ 
c0

yj - x0
. . . cN

yj - xN

\Bigr] \left[   u(x0)
...

u(xN )

\right]   .

As the column vector in the above equation is the vector U , the row vector represents
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the jth row of the matrix R. Thus, the matrix R can be defined elementwise as

(2.3) Rjk =

\left\{   
ck

yj - xk\sum N
i=0

ci
yj - xi

yj \not = xk

1 yj = xk.

Driscoll and Hale use Chebyshev points of the first kind as the resampling points
[7]:

yj = cos

\biggl( 
(2j + 1)\pi 

2(M + 1)

\biggr) 
, 0 \leq j \leq M.

These points do not include the endpoints x = \pm 1. The examples in this paper
focus on second-order equations, which require two boundary conditions. We choose
M = N  - 2 for these problems.

The points xk and yj are closest for j = k = 0. This difference is equal to
1 - cos(\pi /2(N  - 1)) = \scrO 

\bigl( 
1/N2

\bigr) 
. Higham [8] suggests the round-off error in each Rjk

is \scrO (N).

2.1. Application. Consider using Chebyshev collocation to solve the second-
order differential equation

\epsilon u\prime \prime (x) + p(x)u\prime (x) + q(x)u(x) = f(x), x \in [ - 1,+1].

This reduces the problem to solving

\epsilon u\prime \prime 
N (x) + p(x)u\prime 

N (x) + q(x)uN (x) = f(x), x \in X.

This ultimately leads to N + 1 coupled linear equations.
In addition to the equation, we require two boundary conditions for the problem

to be well-posed. Standard methodology recommends removing two of the aforemen-
tioned linear equations and replacing them with these boundary conditions. Alterna-
tively, we can use resampling in one of two approaches.

First, rather than evaluating the equation at the Chebyshev nodes, we can eval-
uate it directly at the resampling points \{ yj\} Mj=0:

\epsilon u\prime \prime 
N (yj) + p(yj)u

\prime 
N (yj) + q(yj)uN (yj) = f(yj),

which gives M +1 coupled linear equations. Taking M = N  - 2 will allow a straight-
forward concatenation of two boundary conditions. The process to find the values of
uN (yj) has already been described. For u\prime 

N (yj) and u\prime \prime 
N (yj) it is a simple matter to

resample DU and D2U :\left[   u\prime 
N (y0)
...

u\prime 
N (yM )

\right]   = RDU,

\left[   u\prime \prime 
N (y0)
...

u\prime \prime 
N (yM )

\right]   = RD2U.

Second, we can resample the linear equations after they have been calculated on
the Chebyshev nodes

R
\bigl( 
\epsilon D2 + PD +Q

\bigr) 
U = RF,

where P and Q are diagonal matrices with entries equal to p(xk) and q(xk), respec-
tively, and F is a column vector with entries f(xk).
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Note that the first term, \epsilon RD2U , is the same in both approaches. The remain-
ing terms are different. On the right-hand side, the vector RF is a resampling of
the polynomial fN (x) that interpolates the function f(x) on the Chebyshev nodes.
Likewise, RQU is a resampling of the polynomial (qu)N (x), which interpolates the
product q(x)u(x) on the Chebyshev nodes. The same is true of RPDU , (pu\prime )N (x),
and p(x)u\prime 

N (x).
Since the second approach resamples the same equations used in the standard

method, there is likely to be the most agreement between these two. Which of the
two approaches is more accurate is an open question and may vary from problem to
problem. Driscoll and Hale recommend the second approach.

3. Iterated sine-transformation. The two-point boundary value problem de-
scribed in subsection 2.1 has at least one boundary layer for small values of \epsilon . As such,
we would like a number of collocation points in the boundary layer. To do so, one can
use a coordinate stretching transformation, such as the iterated sine-transformation
introduced in [11].

If we look at the problem on the transformed coordinate y(x) (a function of the
old coordinate x), then the equation becomes

\epsilon v\prime \prime (y) +

\biggl( 
p(x)

y\prime (x)
+ \epsilon 

y\prime \prime (x)

y\prime (x)2

\biggr) 
v\prime (y) +

q(x)

y\prime (x)2
v(y) =

f(x)

y\prime (x)2
,

where v(y) = v(y(x)) = u(x). To apply a Chebyshev collocation method to this
problem, restrict y to the Chebyshev nodes. Thus, the equation can be discretized as

(\epsilon D2 + PD +Q)V = F,

where D is the standard Chebyshev differentiation matrix and P , Q, and F are

discretizations of p(x)
y\prime (x) + \epsilon y\prime \prime (x)

y\prime (x)2 ,
q(x)
y\prime (x)2 , and

f(x)
y\prime (x)2 , respectively.

Note that these functions are evaluated on the coordinate x. It is then necessary
to calculate the values x must take to match y. That is, we need to know xk such
that yk = y(xk) is the kth Chebyshev node.

The iterated sine-transformation is defined as [11]

g0(y) = y, gm(y) = sin
\Bigl( \pi 
2
gm - 1(y)

\Bigr) 
,

where m is the number of times the transformation is applied iteratively.
The mapping is bijective for all m \geq 0 [11]. Moreover, if yk is the kth Chebyshev

node, then

(3.1) gm(y0) - gm(y1) = gm(yN - 1) - gm(yN ) =
8

\pi 2

\biggl( 
\pi 2

4N

\biggr) 2m+1

(1 +\scrO 
\bigl( 
1/N2

\bigr) 
),

and so the distance between points near the boundary shrinks exponentially with each
iteration.

The coordinate x can then be represented as x(y) = gm(y). The point xk at which
to evaluate p(x), q(x), and f(x) is the mth transformation of yk, the kth Chebyshev
node.
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It remains to calculate 1/y\prime (x) and y\prime \prime (x)/y\prime (x)2. In [11] one can find the following
recursive formulae for calculating these quantities:

(3.2)

1

y\prime (x)
=

m - 1\prod 
n=0

\pi 

2
cos

\Bigl( \pi 
2
gn(y)

\Bigr) 
,

h0(x) = x, hm(x) =
2

\pi 
arcsin(hm - 1(x)),

y\prime \prime (x)

y\prime (x)2
=

h\prime \prime 
m(x)

h\prime 
m(x)2

=
\pi 

2
tan

\Bigl( \pi 
2
hm(x)

\Bigr) 
+

\pi 

2
cos

\Bigl( \pi 
2
hm(x)

\Bigr) h\prime \prime 
m - 1(x)

h\prime 
m - 1(x)

2
.

Note that hm(x) is the inverse transformation of gm(y), and so y(x) = hm(x). In
addition, hm - n(x) = gn(y) and h\prime \prime 

0(x) = 0.

3.1. Combining transformation and resampling. Consider that

v\prime (y) =
d

dy
u(gm(y)) = u\prime (x)g\prime m(y).

The derivative of gm(y) is (see [11])

g\prime 0(y) = 1, g\prime m(y) =
\pi 

2
cos

\Bigl( \pi 
2
gm - 1(y)

\Bigr) 
g\prime m - 1(y).

For m = 1, it is straightforward to see that g\prime 1(\pm 1) = 0. It follows that v\prime (\pm 1) = 0
for m > 0.

This imposes artificial Neumann boundary conditions on the problem. They are
seen in the term y\prime \prime (x)/y\prime (x)2, where infinities are calculated at x = \pm 1. This also
causes 1/y\prime (\pm 1) = 0, and so the other terms vanish.

Recall that standard methodology recommends removing rows to make room for
boundary conditions. By removing the first and last rows, the underlying Neumann
conditions are not seen. By contrast, when incorporating resampling, these conditions
become important, and the infinities calculated in y\prime \prime (x)/y\prime (x)2 cause the resampling
to fail.

3.2. Regularized sine-transformation. This can be fixed by using a regular-
ized form of this transformation so that g\prime m(\pm 1) is nonzero. The regularized sine-
transformation is defined as

(3.3) gm(y) = \mu gm - 1(y) + (1 - \mu ) sin
\Bigl( \pi 
2
gm - 1(y)

\Bigr) 
, 0 < \mu < 1,

which leads to the following changes to the iterated sine-transformation:

(3.4)

1

y\prime (x)
= g\prime m(y)

=
\Bigl[ 
\mu + (1 - \mu )

\pi 

2
cos

\Bigl( \pi 
2
gm - 1(y)

\Bigr) \Bigr] 
g\prime m - 1(y),

y\prime \prime (x)

(y\prime (x))2
=  - g\prime \prime m(y)

g\prime m(y)

=  - 
g\prime \prime m - 1(y)

g\prime m - 1(y)
+ g\prime m - 1(y)

\Bigl( \pi 
2

\Bigr) 2 (1 - \mu ) sin
\bigl( 
\pi 
2 gm - 1(y)

\bigr) 
\mu + (1 - \mu )\pi 2 cos

\bigl( 
\pi 
2 gm - 1(y)

\bigr) .
These terms can be computed recursively.
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Lemma 3.1. The transformation defined in (3.3) is bijective. The spacing between
points near the boundary is

gm(y0) - gm(y1) =
\mu m

2

\pi 2

N2
+\scrO 

\bigl( 
1/N4

\bigr) 
.

In addition, 1/y\prime (\pm 1) = \mu m and y\prime \prime (\pm 1)/y\prime (\pm 1)2 = \pm 1 - \mu m

\mu .

The proof of this lemma is presented in Appendix A.
The distance between points near the boundary still shrinks with each itera-

tion under the regularized sine-transformation; the rate, however, is significantly
reduced from \scrO (1/N2m+1

) to \scrO 
\bigl( 
\mu m/N2

\bigr) 
. As \mu approaches zero, we retrieve the

infinities calculated for the iterated sine-transformation. As m approaches infinity,
y\prime \prime (\pm 1)/y\prime (\pm 1)2 approaches \pm 1/\mu .

It should be mentioned that in the limit as \mu approaches zero, the regularized
sine-transformation becomes the original. Therefore, while the spacing appears to
depend primarily on \mu , it cannot decrease below the spacing defined by the original
transformation.

4. RSC. Rather than transforming the equation by stretching the coordinates,
we can construct a collocation method for the new transformed points. One way to
do so is through RSC [12]. This method is used in a number of applications. For
example, Chen, Wang, and Wu use it with a sinh-transformation for a system of
singularly perturbed convection-diffusion equations [6].

The RSC method changes the differentiation operator to act on the transformed
set of points. Given a set of points X = \{ xk\} , the new differentiation operators are
defined as

(4.1)

DX,jk =

\Biggl\{ 
ck

cj(xj - xk)
, j \not = k,

 - 
\sum 

i \not =j DX,ji, j = k,

D
(2)
X,jk =

\Biggl\{ 
2DX,jk

\Bigl( 
DX,jj  - 1

xj - xk

\Bigr) 
, j \not = k,

 - 
\sum 

i \not =j D
(2)
X,ji, j = k,

where DX is the first-order operator, D
(2)
X is the second-order operator, and cj are

the weights previously defined in (2.2). Note that if X is the set of Chebyshev points,
this returns the original Chebyshev differentiation operators.

This method arises, like resampling, from the barycentric form of the interpolating
polynomial. By changing the interpolation points without adjusting the weights, the
interpolant is no longer a polynomial; instead, it is a rational function. This rational
interpolant has been introduced in [4] and explored in depth in [2].

The new discrete system to solve is

(\epsilon D
(2)
X + PXDX +QX)U = FX ,

where PX and QX are diagonal matrices with entries p(xk) and q(xk), respectively,
and FX is a column vector with entries f(xk). The distance between points is defined
by the transformation and can be found in the previous sections.

Using RSC removes the need to compute 1/y\prime (x) and y\prime \prime (x)/y\prime (x)2. However,
points must be separated by at least machine epsilon to prevent singularities when

calculating DX and D
(2)
X .
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5. Experiments. We apply the various methods described to the ODE from
[11],

(5.1) \epsilon u\prime \prime (x) - xu\prime (x) - u(x) =

\biggl( 
x+ 1

\epsilon 
 - 1

\biggr) 
e - 

x+1
\epsilon  - 2

\biggl( 
x - 1

\epsilon 
+ 1

\biggr) 
e

x - 1
\epsilon ,

with exact solution u(x) = e - (x+1)/\epsilon + 2e(x - 1)/\epsilon and Dirichlet boundary conditions.
For sufficiently small \epsilon the boundary conditions are numerically equivalent to u(1) = 2
and u( - 1) = 1 in IEEE double precision. We will focus on \epsilon = 10 - 9.

Consider the exact solution evaluated at x+ \delta for some small \delta :

u(x+ \delta ) = e - (x+1)/\epsilon e - \delta /\epsilon + 2e(x - 1)/\epsilon e\delta /\epsilon .

In particular, let x be near 1 and \delta = 10 - 16, on the order of machine epsilon. Then
the difference between u(x+ \delta ) and u(x) is on the order of \delta /\epsilon = 10 - 7. Therefore, we
cannot measure the error below this level. More precisely, the error of the numerical
solution near the boundary cannot drop below the level of \delta /\epsilon , simply because of the
conditioning of evaluating the solution. Away from the boundary the error decreases
below that threshold; see Figure 6.

The transformations described in the previous section are designed to place more
points within the boundary layers of the ODE. These layers have a width related
to the magnitude of \epsilon . Therefore, we wish for the distance between points near the
boundary to be of the same magnitude as \epsilon . We use this distance as the independent
variable in the following experiments and define it as

(5.2) \eta =
8

\pi 2

\biggl( 
\pi 2

4N

\biggr) 2m+1

for the iterated sine-transformation (see (3.1)) and

(5.3) \eta =
\mu m

2

\pi 2

N2

for the new regularized sine-transformation (see Lemma 3.1). We would then like
\eta = \scrO (\epsilon ).

Consider \epsilon = 10 - 9 and a variety of values of N . The following table gives the
number of iterations of the iterated sine-transformation that gives the desired magni-
tude. Note this describes only the minimum number of iterations to guarantee that
at least one point lies in the boundary layer.

N m Magnitude

128 2 10 - 14

256 2 10 - 17

512 1 10 - 10

1024 1 10 - 11

Let us now consider the regularized sine-transformation. The following table gives
the value of \mu that provides the desired magnitude for variousN andm. This indicates
a maximum value that \mu is allowed to take. Smaller \mu will ensure the boundary layer
is better resolved.

N m \mu m \mu m \mu 

128 1 3.32\times 10 - 6 2 1.82\times 10 - 3 3 1.49\times 10 - 2

256 1 1.33\times 10 - 5 2 3.64\times 10 - 3 3 2.37\times 10 - 2

512 1 5.31\times 10 - 5 2 7.29\times 10 - 3 3 3.76\times 10 - 2

1024 1 2.12\times 10 - 4 2 1.46\times 10 - 2 3 5.97\times 10 - 2
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Fig. 1. Approximation to the L\infty error of the solution as a function of the spacing between
points near the boundary. N is equal to 32, 64, 128, 256, 512, and 1024, increasing from right to left
along each line.

In sections 5.1--5.3 the methods are first tested using row replacement of the first
and last rows to include the boundary conditions. Once ideal parameter choices are
established, the regularized sine-transformation is tested with resampling in section
5.4.

5.1. Iterated sine-transformation. In the introduction to this section, we
discussed at length the effect of the transformation on the spacing between points
at the boundary. This is, however, not always the leading restriction on accuracy.
Figure 1 shows the accuracy of solving (5.1) using the iterated sine-transformation
for m = 1, 2, and 3 for various values of N . The error is plotted as a function of the
approximate spacing at the boundary, \eta .

The spacing for this transformation, \eta , depends on the parameters N and m. Ex-
cepting those values of the parameters that do not admit points within the boundary
layer, increasing N improves the accuracy. Neither increasing m nor decreasing \eta will
generally give better accuracy. Thus, N dictates the accuracy more than the spacing
\eta and the number of iterations m.

5.2. Regularized sine-transformation. Figure 2 shows the same results but
for the regularized sine-transformation. This transformation is highly dependent on
the regularization parameter \mu . We fix N = 128 and m = 3. Boundary conditions
are included through the replacement of the first and last rows.

Accuracy does not improve until \eta is of order \scrO (\epsilon ). Also note that error falls
below \scrO (1) only once there is at least one point within the boundary layer. The
number of local minima corresponds to the number of points allowed in the boundary
layer by the transform. There is, however, no pattern to when these minima occur in
terms of spacing or distribution of points.

If we change N , we expect similar dependence of accuracy on the spacing. Figure
3 shows that the plots of error for N = 128, 256, and 512 have many similar features.
There are about twice as many local minima for N = 256, likely the result of more
points available to move into the boundary layer. The global minima of error occurs
at roughly the same spacing, approximately 10 - 11. At this spacing there are 6, 9, and
12 points within \epsilon of x = 1 for N = 128, 256, and 512 respectively.
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Fig. 2. Error of the regularized sine-transformation as a function of the spacing between points
near the boundary for N = 128 and m = 3.

Fig. 3. Error of the regularized sine-transformation as a function of the spacing between points
near the boundary for N = 128, 256, and 512 and m = 3. The horizontal lines represent the error
of the iterated sine-transformation for the same N and m.

The error of the iterated sine-transformation is provided for reference as horizontal
lines for the same N and m. The spacing they occur at does not appear on the x--axis.
Since the regularized sine-transformation converges to the iterated sine-transformation
as \mu converges to zero, the errors likewise converge as the spacing decreases. For
appropriate choice of \mu the regularized sine-transformation outperforms the iterated
sine-transformation with the same m and N . Based on the shapes of the data for the
previous two figures, we can conjecture that the spacing should be between \scrO (\epsilon ) and
\scrO 
\bigl( 
\epsilon 2
\bigr) 
.

Figure 3 is replicated form = 2 in Figure 4. The iterated sine-transformation does
not achieve the best accuracy, unlike for m = 3, where both transformations had error
on the order of 10 - 7 for N = 512. It should be even more evident that the regularized
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Fig. 4. Error of the regularized sine-transformation as a function of the spacing between points
near the boundary for N = 128, 256, and 512 and m = 2. The horizontal lines represent the error
of the iterated sine-transformation for the same N and m.

Fig. 5. Error of the RSC method with the regularized sine-transformation as a function of the
spacing (\eta ) between points near the boundary for N = 128, 256, and 512 and m = 3. Spacing is
changed by altering \mu in the regularized sine-transformation for two boundary layers.

sine-transformation offers significant benefits over the iterated sine-transformation,
with the regularized sine-transformation possessing error several orders of magnitude
lower than the iterated sine-transformation for all choices of N .

5.3. RSC. We now apply the rational spectral collocation method with the reg-
ularized sine-transformation. The iterated sine-transformation has points too close
together to be used by RSC. A value of \mu is needed, and Figure 5 examines which
value is best. The relation between \eta and \mu is explained in the introduction to this
section.

Figure 5 shows that, again, spacing needs to be below the value of \epsilon for any accu-
racy to be achieved. Also shown is an increase in error as spacing grows smaller. This
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Fig. 6. Comparison of error for the iterated sine-transform (IST), the regularized sine-
transform (RST), the regularized sine-transform with resampling (R-RST), and the regularized sine-
transform with RSC (RSC) as functions of N . The spacing between points near the boundary is
10 - 10 for RSC and 10 - 11 for the remaining methods, and m = 3. The left figure shows error over
all points, while the right figure shows error for points near zero.

is likely due to round-off error in calculating the differentiation matrices associated
with RSC. Fits to these increases show that this source of error grows as \scrO (1/\eta ).
Given this, we should optimize this method by choosing the largest \eta that allows an
accurate result, which appears to be roughly \eta = 10 - 10.

5.4. Resampling. Having thoroughly tested the behavior of the regularized
sine-transformation, we are now prepared to combine it with Driscoll's and Hale's
resampling. The given problem appears to have an ideal spacing of 10 - 11. We choose
m = 3 and an appropriate value of \mu . Additionally, we compare the iterated sine-
transformation and RSC with the regularized sine-transformation, using spacing 10 - 11

and 10 - 10, respectively. The independent variable is nowN , the number of collocation
points: This parameter directly influences computation time.

Figure 6 provides a comparison of accuracy of the four methods. The left fig-
ure shows error over all points. The regularized sine-transformation with resampling
performs best for smaller N . The regularized sine-transformation with and with-
out resampling have the same accuracy for sufficiently large N . The iterated sine-
transformation shows spectral convergence but of slower order than the regularized
sine-transformation. RSC suffers round-off error on the order of 10 - 3 and cannot
converge below this.

Recall that the minimum error we achieve (10 - 7) is related to round-off error in
calculating the values of the exact solution near the boundary. Away from x = \pm 1
this problem does not occur, and the error continues to decrease systematically. To
this end, the right of Figure 6 shows the error at a single point adjacent to x = 0 for
all four methods. In [11] it is pointed out that this is the location of the largest error
for N < 128. We see that the error at this point continues to decrease spectrally, and
the regularized sine-transformation provides the best accuracy in this measure.

5.5. Other examples. Changing the value of \epsilon affects the width of the boundary
layer. This results in new optimal spacing of points near the boundary and a new
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Fig. 7. Error of the RSC method for the second example with the regularized sine-
transformation as a function of the spacing (\eta ) between points near the boundary for N = 128, 256,
and 512 and m = 3. Spacing is changed by altering \mu in the regularized sine-transformation for two
boundary layers.

minimum error, but all other behavior mentioned above remains the same. The
optimal spacing ranges are presented for \epsilon = 10 - 9, 10 - 6, and 10 - 3 in the following
table.

\epsilon Spacing range Minimum error

10 - 9 10 - 10 -- 10 - 12 10 - 7

10 - 6 10 - 7 -- 10 - 9 10 - 10

10 - 3 10 - 4 -- 10 - 6 10 - 13

We also consider another example, this one taken from [3],

\epsilon u\prime \prime (x) - u\prime (x) = 1/2, u(\pm 1) = 0,

which has exact solution

u(x) =  - x+ 1

2
+

e(x - 1)/\epsilon  - e - 2/\epsilon 

1 - e - 2/\epsilon 
.

For a fair comparison we again use \epsilon = 10 - 9.
In almost all respects the results for this example are identical to those from be-

fore, except for the RSC method, where the round-off error increases at a significantly
lower rate, as can be seen in Figure 7. Fits to these increases give a growth rate of
\scrO 
\bigl( 
\eta  - 0.17

\bigr) 
, approximately. The RSC method, however, is still unable to achieve the

minimum error for this problem.

6. Conclusion. Resampling eliminates the ambiguity of row removal in spectral
collocation problems. When coupled with the iterated sine-transformation, resam-
pling reveals artificial Neumann boundary conditions imposed by the transformation.
The transformation is regularized to prevent such artificial conditions.

The regularized sine-transformation has greater control over the spacing between
points near the boundary. This allows it to achieve orders of magnitude improvement
in accuracy over the iterated sine-transformation (see, for example, Figures 3 and 4).
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Combined with resampling the regularized sine-transformation achieves the best
possible accuracy. Resampling only offers improvement for low numbers of collocation
points. In Figure 6 the regularized sine-transformation performs equally well with and
without resampling for N \geq 128.

The accuracy of all methods used is predicated on knowing the ideal spacing
between points near the boundary. This appears to be closely tied to the value of
the perturbation parameter \epsilon . It can be estimated from the above data that the ideal
spacing is within an order of magnitude of \epsilon \times 10 - 2.

Appendix A. Proof of Lemma (3.1).

Proof. We show that the transformation is bijective. It is clear that gm(\pm 1) = \pm 1
for all m. Therefore, it suffices to show g\prime m(y) > 0 for y \in ( - 1, 1).

We proceed by induction. It is trivially true for m = 0. We suppose g\prime k(y) > 0
for all y \in ( - 1, 1). Since gk(\pm 1) = \pm 1, we have that | gk(y)| \leq 1 for all y \in [ - 1, 1].
Therefore, cos(\pi gk(y)/2) \geq 0 for all y \in ( - 1, 1). The proof then follows from (3.4):

g\prime k+1(y) =
\Bigl[ 
\mu + (1 - \mu )

\pi 

2
cos

\Bigl( \pi 
2
gk(y)

\Bigr) \Bigr] 
g\prime k(y) \geq \mu g\prime k(y) > 0.

Thus, the transformation is bijective.
Consider the Taylor expansion of gm(y) around y = 1:

gm(y) = 1 + g\prime m(1)(y  - 1) +\scrO 
\bigl( 
(y  - 1)2

\bigr) 
= 1 + \mu m(y  - 1) +\scrO 

\bigl( 
(y  - 1)2

\bigr) 
.

If we then consider the difference between gm(y0) and gm(y1), we have that

gm(y0) - gm(y1) =  - \mu m(cos(\pi /N) - 1) +\scrO 
\bigl( 
(1 - cos(\pi /N))2

\bigr) 
=

\mu m

2

\pi 2

N2
+\scrO 

\bigl( 
1/N4

\bigr) 
.

It is trivial to show that 1/y\prime (\pm 1) = \mu m. Finally,

y\prime \prime (\pm 1)

(y\prime (\pm ))2
=  - g\prime \prime m(\pm 1)

g\prime m(\pm 1)
=  - 

g\prime \prime m - 1(\pm 1)

g\prime m - 1(\pm 1)
\pm \mu m - 1 1 - \mu 

\mu 

= \pm 1 - \mu 

\mu 

m - 1\sum 
n=0

\mu n = \pm 1 - \mu m

\mu 
.
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