
Chapter 1
Cycles in Newton-Raphson preconditioned by
Schwarz (ASPIN and its cousins)

Conor McCoid and Martin J. Gander

1.1 Introduction

ASPIN [3], RASPEN [5], and MSPIN [8] rely on various Schwarz methods to pre-
condition either Newton-Raphson or inexact Newton. While a priori convergence
criteria have been found for the underlying Schwarz methods, so far none exist for
their combination with Newton-Raphson.

Like in the linear case when combining a Krylov method and a Schwarz method,
there is an equivalence between preconditioning Newton-Raphson with a Schwarz
method and accelerating that same Schwarz method with Newton-Raphson [6]: A
domain is first subdivided into subdomains, the problem solved on each subdomain,
and the resulting formulation iterated through Krylov and Newton-Raphson, respec-
tively.

We examine cycling behaviour in alternating Schwarz in one dimension that has
been accelerated by applying Newton-Raphson. We begin by presenting the algo-
rithm for alternating Schwarz and how it is accelerated by Newton-Raphson. Sup-
pose we seek to solve the boundary value problem

F(x,u,u′,u′′) = 0, x ∈ [a,b], u(a) = A, u(b) = B

for some function F(x,u,v,w). Then an iteration of alternating Schwarz with sub-
domains (a,β ) and (α,b), α < β , is comprised of the following three steps:

(1) F(x,u1,u′1,u
′′
1) = 0, u1(a) = A, u1(β ) = γn,

(2) F(x,u2,u′2,u
′′
2) = 0, u2(α) = u1(α), u2(b) = B,

(3) γn+1 = u2(β ) = G(γn).
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The function G(γ) thus represents one iteration of alternating Schwarz in sub-
structured form. The process is repeated until convergence, ie.

(G◦G◦ · · · ◦G)(γ) = Gn(γ)≈ Gn+1(γ) = (G◦Gn)(γ).

This is naturally a fixed point iteration applied to the function G(γ).
To accelerate the method one applies Newton-Raphson to the function f (γ) =

G(γ)− γ , which has a root at the fixed point. If the fixed point is unique, this is the
only root of f (γ). To apply Newton-Raphson, one needs to know the value of G′(γ),
which may be found by adding two new steps, (1’) and (2’), to alternating Schwarz:

(1) F(x,u1,u′1,u
′′
1) = 0, u1(a) = A, u1(β ) = γn,

(1′) J(u1) · (v1,v′1,v
′′
1) = 0, v1(a) = 0, v1(β ) = 1,

(2) F(x,u2,u′2,u
′′
2) = 0, u2(α) = u1(α), u2(b) = B,

(2′) J(u2) · (v2,v′2,v
′′
2) = 0, v2(α) = 1, v2(b) = 0,

(3) γn+1 = γn−
u2(β )− γn

v1(α)v2(β )−1
= γn−

G(γn)− γn

G′(γn)−1
,

where vi(x) = ∂ui(x)/∂γ and J(ui) is the Jacobian of F(x,ui,u′i,u
′′
i ).

1.2 Convergence of generic fixed point iterations and
Newton-Raphson

A generic fixed point iteration xn+1 = g(xn) converges when |g(xn)− x∗|< |xn− x∗|,
where x∗ is the fixed point. This occurs when g(x) lies between x and 2x∗− x. The
convergence or divergence of the fixed point iteration is monotonic if sign(g(x)−
x∗) = sign(x−x∗) and oscillatory otherwise. This creates four lines, y= x, y= 2x∗−
x, y = x∗ and x = x∗, that divide the plane into octants. The four pairs of opposite
octants form four regions with distinct behaviour of the fixed point iteration, see left
of Figure 1.1 or Figure 5.7 from [7]:

1, g(x)< x < x∗ or g(x)> x > x∗: monotonic divergence;
2, x < g(x)< x∗ or x > g(x)> x∗: monotonic convergence;
3, x < x∗ < g(x)< 2x∗− x or x > x∗ > g(x)> 2x∗− x: convergent oscillations;
4, x < x∗ < 2x∗− x < g(x) or x > x∗ > 2x∗− x > g(x): divergent oscillations.

If the function g(x) intersects the line y = x at a point other than x∗ then there are
additional fixed points that the method can converge towards. If it intersects the line
y = 2x∗− x then a stable cycle can form. A fixed point iteration is therefore only
guaranteed to converge if g(x) lies entirely between the lines y = x and y = 2x∗− x,
ie. within regions 2 and 3.

Newton-Raphson can make use of this analysis by considering it as a fixed point
iteration:
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Fig. 1.1 Left: Behaviour of the fixed point iteration xn+1 = g(xn), where the origin is the fixed
point, g(0) = 0. Right: Regions of Newton-Raphson, xn+1 = xn− f (xn)/ f ′(xn), where the origin
is the root, f (0) = 0. The tangent line to f (x) can be traced from (x, f (x)) towards the line y = 0.
Where it lands on this line indicates which fixed point iteration behaviour occurs.

xn+1 = xn−
f (xn)

f ′(xn)
= g f (xn).

The borders between the regions no longer depend solely on the value of f (x) but
also f ′(x). The right of Figure 1.1 shows which type of behaviour Newton-Raphson
will have based on where the tangent line points.

As stated, if g f (x) intersects the line y = x there are additional fixed points, and
if it intersects y = 2x∗− x there may be stable cycles. For guaranteed convergence
g f (x) must lie between these lines. Intersections of g f (x) with y = x occur only
if f (x) = 0 and f (x) has additional roots or f ′(x) = ∞. Both circumstances are
assumed not to occur. Intersections of g f (x) with y = 2x∗−x may be represented as
a first order ODE:

f ′C(x) =−
fC(x)

2(x∗− x)
, fC(x∗) = 0.

The solution to this ODE is fC(x) = C
√
|x− x∗| where C ∈ R. If a function f (x)

with root x∗ is tangential to fC(x) for any value of C then g f (x) intersects the line
y = 2x∗− x. The left of Figure 1.2 shows the functions fC(x).

A function f (x) that is monotonic with respect to this geometry has guaranteed
convergence under Newton-Raphson. That is, if f (x) is nowhere tangential to fC(x)
in a given domain containing x∗ for any value of C then g f (x) converges to the root
for any initial guess in that domain. Since f ′C(x

∗) = ∞ and f (x∗) = 0 there is always
a region around the root x∗ where f (x) crosses all of these lines monotonically. This
conforms with the theory on Newton-Raphson.

The corresponding geometry for a fixed point function accelerated by Newton-
Raphson is skewed such that the line y = 0 is aligned to y = x, as seen in the right of
Figure 1.2. The lines of this figure are the functions gC(x) = fC(x)+ x. A function
g(x) must be monotonic in this geometry or Newton-Raphson applied to g(x)− x
may exhibit cycling behaviour.
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Fig. 1.2 Left: Solutions fC(x) such that g f (x) intersects y = 2x∗− x for all x. Right: Functions
gC(x) = fC(x)+ x such that g f (x) for f (x) = gC(x)− x intersects y = 2x∗− x for all x.

Table 1.1 Conditions for convergent behaviour of Newton-Raphson applied to g(x)− x.

g(x) lies in Necessary condition Sufficient condition

1 g′(x)> 1
2 g′(x)< 1 g′(x)< 1/2
3 g′(x)< 1/2 g′(x)< 0
4 g′(x)< 0

If it is known in which fixed point region of the left of Figure 1.1 g(x) lies
then one can find necessary and, in some cases, sufficient conditions for Newton-
Raphson to have convergent behaviour based on the slopes of the lines gC(x). For
example, in region 2 the maximum of g′C(x) is 1. If g(x) lies in region 2 then its
slope must therefore be less than 1 everywhere or there will be a point where g(x)
runs tangent to gC(x) for some C. Moreover, the minimum of g′C(x) is 1/2. If g(x)
has a slope less than 1/2 then it cannot run tangent to gC(x) for any C. The list of
these conditions is summarized in Table 1.1.

1.3 The fixed point iteration of alternating Schwarz

We now seek to apply this theory to alternating Schwarz. As stated earlier, we con-
sider alternating Schwarz as a function G(γ), taking as input the value of u1(β ) and
as output the value of u2(β ). Under reasonable conditions we can prove a number
of useful properties of G(γ) without prior knowledge of the fixed point γ∗.

Theorem 1 If the problem F(x,u,u′,u′′) = 0 for x ∈ Ω , u(x) = h(x) for x ∈ ∂Ω

has a unique solution on Ω = [a,α] and Ω = [β ,b] and the continuations of these
solutions are also unique, then the function G(γ) is strictly monotonic.

Proof It suffices to show that G(γ1) = G(γ2) implies γ1 = γ2. Let u j
1 solve the

problem on [a,β ] with u j
1(β ) = γ j. Likewise, u j

2 solves the problem on [α,b] with
u j

2(α) = u j
1(α). Suppose u1

2(β ) = u2
2(β ). Then both u1

2 and u2
2 solve the same prob-

lem on [β ,b]. By assumption, this must mean u1
2 = u2

2 and u1
1(α) = u2

1(α). By a
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similar argument, this implies u1
1 and u2

1 solve the same problem on [a,α]. Again by
assumption u1

1 = u2
1 and γ1 = γ2. �

We can even prove that G(γ) is restricted to region 2 with additional properties.
As an example, we reprove a result from Lui [9].

Theorem 2 (Theorem 2 from [9])
Consider the equation u′′(x)+ f (x,u,u′) = 0 for x∈ (a,b), u(a) = u(b) = 0 under

the assumptions that

• f ∈C1 ([a,b]×R×R) ,
• ∂ f (x,v,v′)

∂u ≤ 0 for all x ∈ [a,b] and v ∈ H1
0 ([a,b]) ,

• | f (x,v,v′)| ≤ C(1+ |v′|η) for all x ∈ [a,b] and v ∈ H1
0 ([a,b]) and some C > 0,

0 < η < 1 .

The problem is solved using alternating Schwarz with two subdomains and Dirichlet
transmission conditions. Then G(γ) for this problem lies within region 2.

Proof It suffices to prove that the problem is well posed and 0 < G′(γ) < 1 for all
γ ∈ R. The well-posedness of the problem is guaranteed by Proposition 2 from [9].
As Lui points out, this also means the problem is well posed on any subdomain.
Using Theorem 1 this gives monotonicity of G(γ). Moreover, if u(x) = 0 for any
x ∈ (a,b) then the problem would be well posed on the domains [a,x] and [x,b]. As
such, u(x) has the same sign as γ and G′(γ)> 0.

Consider the problem in g1:

g′′1(x)+
∂ f
∂u

g1 +
∂ f
∂u′

g′1 = 0, x ∈ [a,β ], g1(a) = 0, g1(β ) = 1.

From the second assumption on f the operator on g1 satisfies a maximum principle
(see, for example, [9]). Therefore, g1(x) < 1 for all x ∈ (a,β ). By the same rea-
soning, g2(x) < g1(α) < 1 for all x ∈ (α,b) and G′(γ) < 1. Incidentally, the same
maximum principle applies for the operator on −g1 and −g2, and so G′(γ) > 0 as
we had before. �

This provides guaranteed convergence of alternating Schwarz. However, it does
not guarantee the convergence when one accelerates it through Newton-Raphson.
Using Table 1.1 we know that such convergence is assured if G′(γ)< 1/2 for all γ ,
but this is not true in all cases and cannot be determined a priori.

Take as an example the following second order nonlinear differential equation

u′′(x)− sin(au(x)) = 0, x ∈ (−1,1), (1.1)

with homogeneous Dirichlet boundary conditions. The problem is well posed and
admits only the trivial solution u(x) = 0. It is easy to see that this equation sat-
isfies the conditions of Theorem 2. Therefore, the alternating Schwarz fixed point
iteration, G(γ), lies within region 2 and is guaranteed to converge to the fixed point.
Sadly, its Newton-Raphson acceleration will not do so for all initial conditions. Take
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Fig. 1.3 Left: Results of Newton-Raphson accelerated alternating Schwarz as a function of initial
condition in solving equation (1.1). The value of a is 3.6 and the subdomains are Ω1 = (−1,0.2)
and Ω2 = (−0.2,1). Middle: G(γ) and its Newton-Raphson acceleration. Right: G(γ) plotted with
the geometry of the right of Figure 1.2.

a = 3.6 with an overlap of 0.4 and symmetric regions. The results of the Newton-
Raphson acceleration are found in Figure 1.3 (left). While for most initial values of
γ the method converges to the correct solution u = 0 there are two small intervals
where the method enters a stable cycle.

The function G(γ) can be plotted numerically, along with its Newton-Raphson
acceleration, see Figure 1.3 (middle), which shows that G(γ) does indeed lie within
region 2 as predicted by Theorem 2. However, G(γ) runs tangential to one of the
lines gC(γ), see Figure 1.3 (right), and so its Newton-Raphson acceleration crosses
into region 4. Due to symmetry, there is a 2-cycle at each crossing. Depending on
the slope of the acceleration as it crosses into region 4 this cycle may be stable.

Where stable cycles exist so too must there be period doubling bifurcation.
Changing the value of the parameter a we find that the 2-cycle found in Figure
1.3 (left) becomes two 2-cycles, then two 4-cycles, and so on until it devolves into
chaos, see Figure 1.4. With enough chaos the cycles are no longer stable and the

Fig. 1.4 Period doubling bifurcation in the example caused by Newton-Raphson acceleration.
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Fig. 1.5 Left: value of a at which bifurcation starts. Right: width of basin of cycling in γ and a.

acceleration exits into a convergent region.
While a change in the parameter a is the most obvious way to alter the dynamics,

one can also change the size of the overlap. This has a direct effect on the basin
of cycling in the spaces of both initial condition γ and the parameter a. Figure 1.5
(left) shows a nonlinear relationship between the first value of a at which cycling is
observed and the size of the overlap. As the overlap grows the parameter a must be
larger and larger for cycling to occur. Figure 1.5 (right) indicates that the interval
of initial conditions that result in cycling shrinks as the overlap grows. Meanwhile,
the length of the bifurcation diagram increases, meaning there are more values of a
with stable cycling.

1.4 Accelerated alternating Schwarz with guaranteed
convergence

Given Theorem 2 and the conditions of Table 1.1 one can construct a series of tests to
see if the Newton-Raphson acceleration is suitable for a given iteration. We present
one further useful trick to strengthen convergence, a correction to Newton-Raphson
due to Davidenko and Branin [1, 2, 4]. We replace step (3) in the algorithm with

(3∗) γ̃n = γn−
G(γn)− γn

|G′(γn)−1|
.

For G(γ) within region 2 the Newton-Raphson acceleration will now always march
in the direction of the fixed point. It may still overshoot and cycle but the direction
will always be correct.

For a problem satisfying the conditions of Theorem 2 or similar that guarantees
that G(γ) lies in region 2 the algorithm proceeds as follows:

1. Select some γ0 ∈ R. Set n = 0.
2. Calculate G(γn) and G′(γn). If G′(γn) = 1 then set γn+1 = G(γn), increment n and

return to step 2. If this is not true, proceed to step 3.
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3. Perform step (3*), which is the Newton-Raphson acceleration using the Davidenko-
Branin trick. If |G′(γn)−1| ≥ 1/2 then set γn+1 = γ̃n, increment n and return to
step 2. If this is not true, calculate γ̂n, the average of γn and γ̃n, and proceed to
step 4.

4. Calculate G(γ̂n). If G(γ̂n)− γ̂n has the same sign as G(γn)−γn then set γn+1 = γ̃n,
increment n and return to step 2. If this is not true, set γn+1 = G(γn), increment n
and return to step 2.

Each of steps 2, 3 and 4 contain a test of whether Newton-Raphson will con-
verge. In step 2, Newton-Raphson will not converge if the derivative of G(γ)− 1
is zero. In step 3, convergence is guaranteed if G′(γ) ≤ 1/2 based on Table 1.1.
The Davidenko-Branin trick strengthens this and also guarantees convergence if
G′(γ)≥ 3/2.

In step 4 we test the point halfway between the starting value γn and the Newton-
Raphson acceleration γ̃n, denoted γ̂n. Since G(γ) is in region 2 if G(γ) > γ then
γ < γ∗ and vice versa. Therefore, we can easily determine whether γ̂n is on the same
side of the fixed point as γn. If it is, then the fixed point γ∗ lies on the same side
of γ̂n as γ̃n, and so γ̃n is closer to γ∗ than γn. If it is not, then γ∗ lies between γn
and γ̂n. Since γ̃n is on the other side of γ̂n it is further from γ∗ than γn and we have
divergence. In such a case, the fixed point iteration should be used.

Note that while G(γ) represents alternating Schwarz in this context, it may be
exchanged for any fixed point iteration, in particular any Schwarz method. All that is
required for the algorithm to function is for G(γ) to be within region 2. For Schwarz
methods, this would necessitate a theorem similar to Theorem 2.
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