

Hadamard's formula and couplings of SLE with GFF

K. Izyurov and K. Kytölä

Université de Genève

May 24, 2010

The Gaussian Free Field

The Gaussian Free Field

A random (gaussian) field $\Phi : \Omega \rightarrow \mathbb{R}$ in a planar domain

The Gaussian Free Field

A random (gaussian) field $\Phi : \Omega \rightarrow \mathbb{R}$ in a planar domain

The mean of the field $M(z) = \mathbb{E}\Phi(z)$ is a harmonic function

The Gaussian Free Field

A random (gaussian) field $\Phi : \Omega \rightarrow \mathbb{R}$ in a planar domain

The mean of the field $M(z) = \mathbb{E}\Phi(z)$ is a harmonic function
(usually defined by boundary conditions: Dirichlet, Neumann,
etc...)

The Gaussian Free Field

A random (gaussian) field $\Phi : \Omega \rightarrow \mathbb{R}$ in a planar domain

The mean of the field $M(z) = \mathbb{E}\Phi(z)$ is a harmonic function
(usually defined by boundary conditions: Dirichlet, Neumann,
etc...)

The covariance of the field $C(z_1, z_2) = G(z_1, z_2)$ is a Green's
function in Ω

The Gaussian Free Field

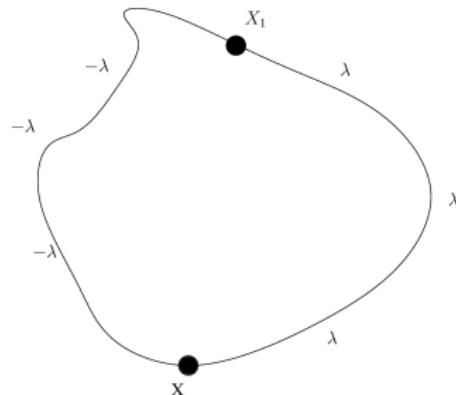
A random (gaussian) field $\Phi : \Omega \rightarrow \mathbb{R}$ in a planar domain

The mean of the field $M(z) = \mathbb{E}\Phi(z)$ is a harmonic function
(usually defined by boundary conditions: Dirichlet, Neumann,
etc...)

The covariance of the field $C(z_1, z_2) = G(z_1, z_2)$ is a Green's
function in Ω (with corresponding homogeneous boundary
conditions)

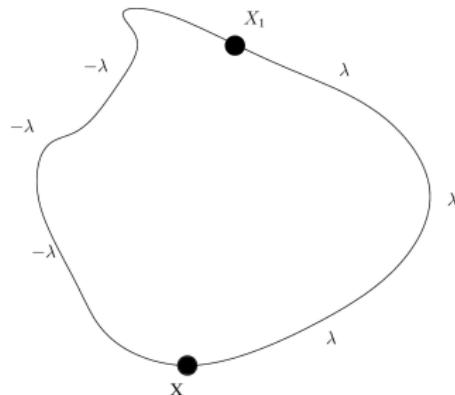
Relations to SLE: level lines

Schramm & Sheffield '2006



Relations to SLE: level lines

Schramm & Sheffield '2006



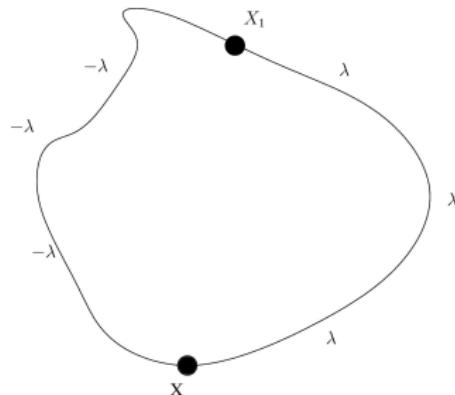
Domains with two marked points x, x_1 , with Dirichlet boundary conditions $\pm\lambda = \pm\sqrt{\frac{\pi}{8}}$.

Dirichlet boundary valued Green's function as covariance

Discretize the field, take the mesh to zero

Relations to SLE: level lines

Schramm & Sheffield '2006



Domains with two marked points x, x_1 , with Dirichlet boundary conditions $\pm\lambda = \pm\sqrt{\frac{\pi}{8}}$.

Dirichlet boundary valued Green's function as covariance

Discretize the field, take the mesh to zero \Rightarrow level lines converge to SLE_4

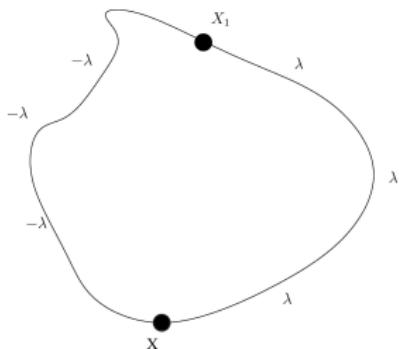
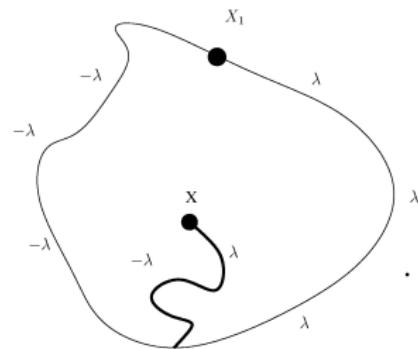
Soft approach: coupling

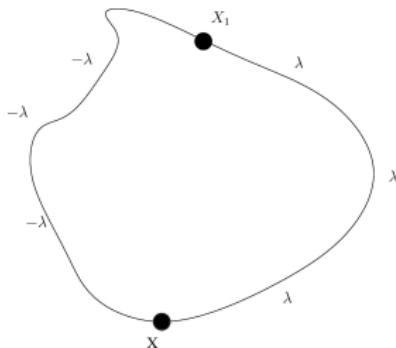
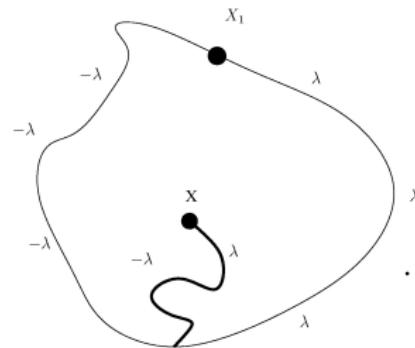
Soft approach: coupling

In the continuum: there exists a coupling of SLE_4 and GFF, such that the curve behaves like a level line.

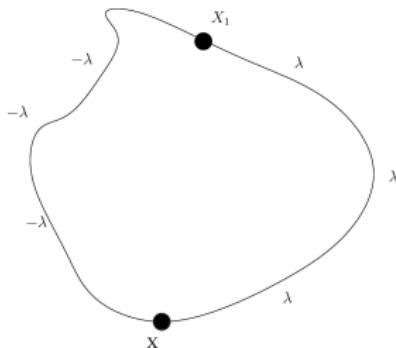
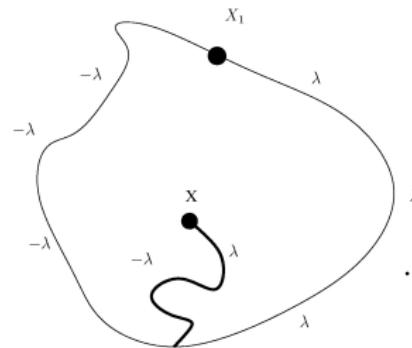
In the continuum: there exists a coupling of SLE_4 and GFF, such that the curve behaves like a level line.

Namely: Conditionally on the curve γ_t , the law of the field is that of the GFF in $\Omega \setminus \gamma_t$, the jump has moved to the tip





Constructive formulation: sample SLE₄ curve up to time t ;
 sample GFF in $\Omega \setminus \gamma_t$; forget the curve \Rightarrow obtain a new field $\tilde{\Phi}$ in Ω



Constructive formulation: sample SLE₄ curve up to time t ;
 sample GFF in $\Omega \setminus \gamma_t$; forget the curve \Rightarrow obtain a new field $\tilde{\Phi}$ in Ω

which appears to have the same law as Φ .

Soft approach: coupling

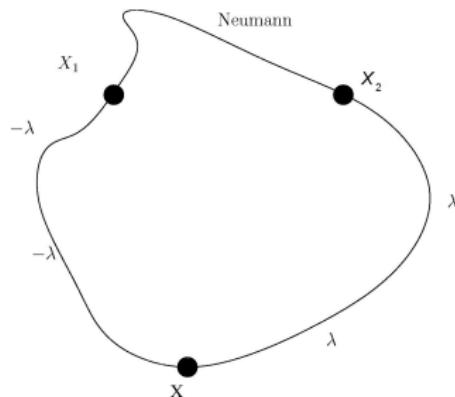
Soft approach: coupling

Other boundary conditions far away from the curve?

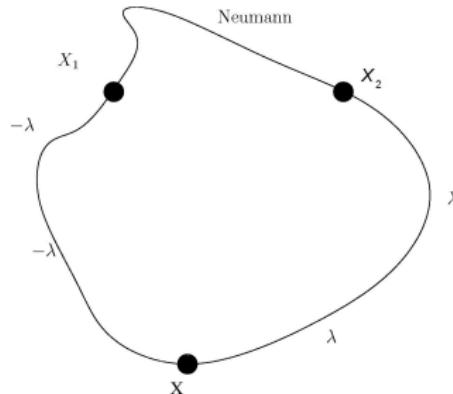
Other boundary conditions far away from the curve?

Doubly connected domains?

The zoo of examples: simply-connected case

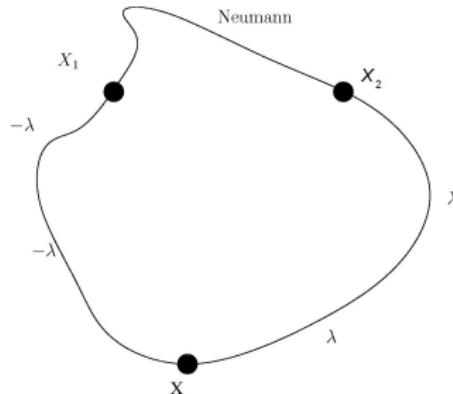


The zoo of examples: simply-connected case



Three arcs, boundary values $-\lambda$, λ , Neumann: dipolar SLE₄.

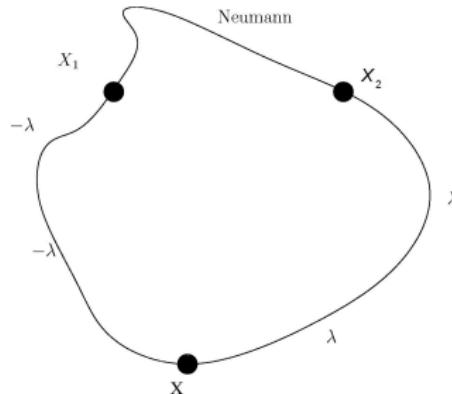
The zoo of examples: simply-connected case



Three arcs, boundary values $-\lambda, \lambda$, Neumann: dipolar SLE₄.

Three arcs, boundary values $-\lambda, \lambda, 0$: dipolar SLE₄.

The zoo of examples: simply-connected case

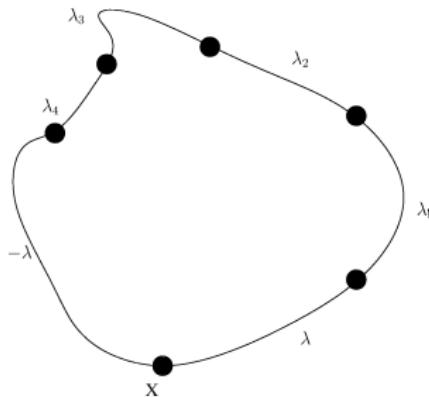


Three arcs, boundary values $-\lambda, \lambda$, Neumann: dipolar SLE₄.

Three arcs, boundary values $-\lambda, \lambda, 0$: dipolar SLE₄.

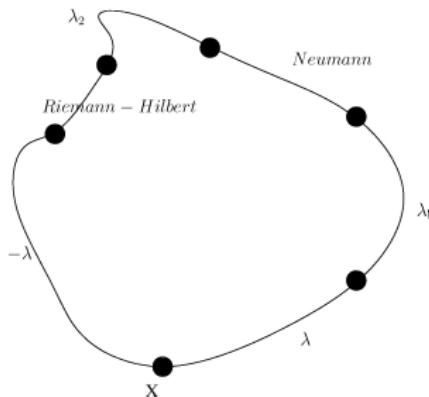
Three arcs, boundary values $-\lambda, \lambda$, Riemann-Hilbert:
 $\partial_\sigma M(z) = 0$, $\sigma = e^{i\alpha}\tau$: SLE₄(ρ) with ρ depending on α .

The zoo of examples: simply-connected case

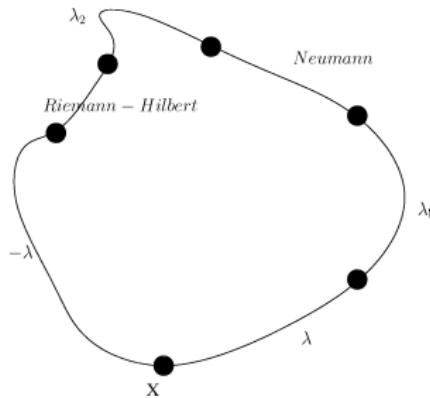


More marked points, jump-Dirichlet boundary conditions:
 $\text{SLE}_4(\rho_1, \rho_2, \dots)$ with ρ 's proportional to jumps (Schramm & Sheffield, Cardy, Dubédat).

The zoo of examples: simply-connected case

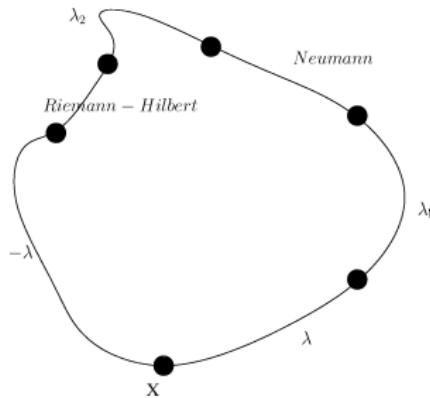


The zoo of examples: simply-connected case



More marked points, mixed boundary conditions: **not** $\text{SLE}_4(\bar{\rho})$!

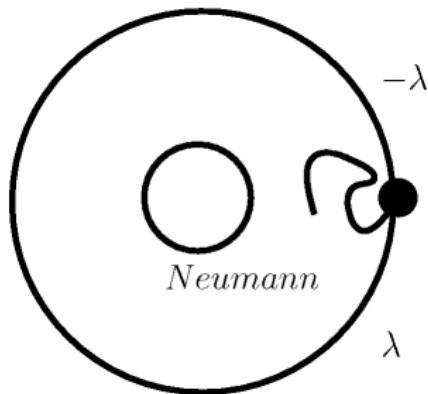
The zoo of examples: simply-connected case



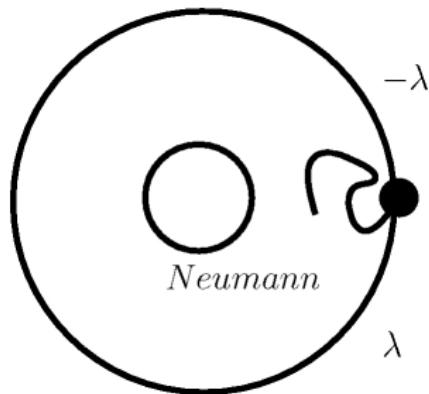
More marked points, mixed boundary conditions: **not** $\text{SLE}_4(\bar{\rho})$!

But the drift still can be computed. Expression involves derivatives of M and its harmonic conjugate w.r.t marked points.

The zoo of examples: doubly-connected case



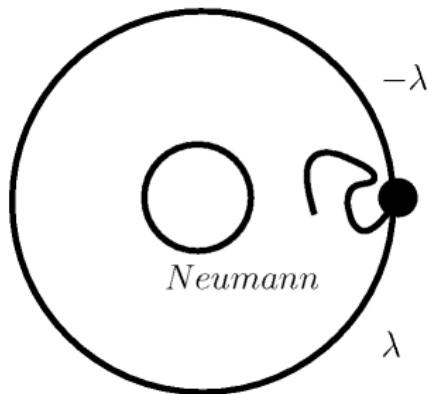
The zoo of examples: doubly-connected case



One marked point on the outer boundary with jump $-2\lambda \Rightarrow$ multi-valued mean.

Neumann boundary conditions on the inner boundary

The zoo of examples: doubly-connected case

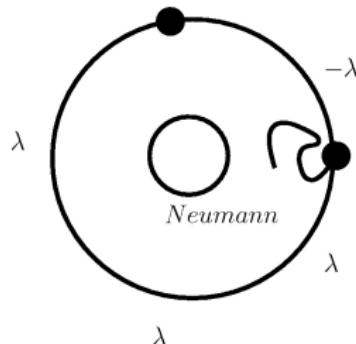
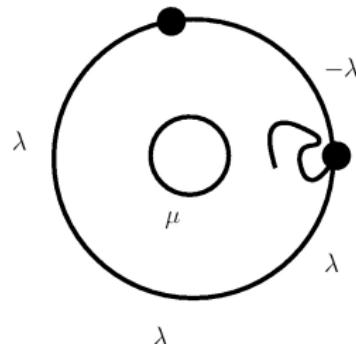


One marked point on the outer boundary with jump $-2\lambda \Rightarrow$ multi-valued mean.

Neumann boundary conditions on the inner boundary

Coupled with annular SLE₄.

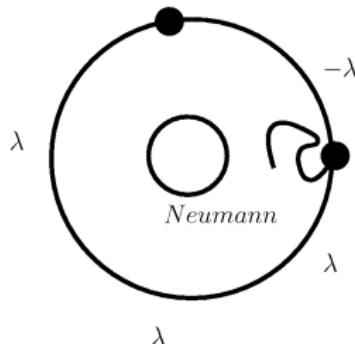
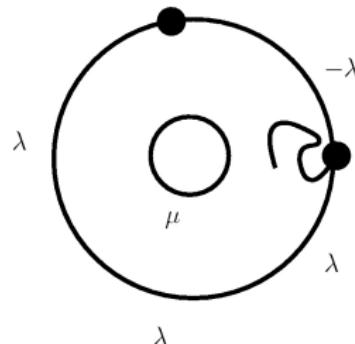
The zoo of examples: doubly-connected case



Two marked points on the outer boundary (Hagendorf, Bauer, Bernard'09 via partition function): some annulus analogs of $\text{SLE}_4(\rho)$.

On the inner boundary: either Neumann or Dirichlet

The zoo of examples: doubly-connected case

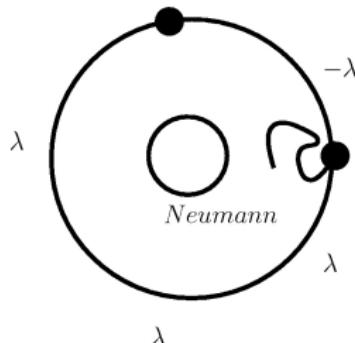
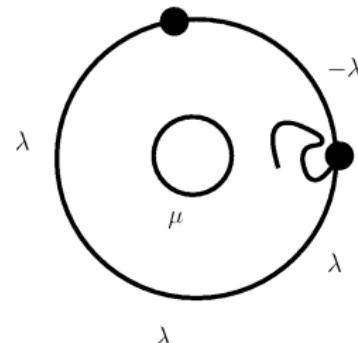


Two marked points on the outer boundary (Hagendorf, Bauer, Bernard'09 via partition function): some annulus analogs of $\text{SLE}_4(\rho)$.

On the inner boundary: either Neumann or Dirichlet

Drifts are computed explicitly (in terms of Schwarz kernels in the annulus), and the existence of couplings is proven.

The zoo of examples: doubly-connected case



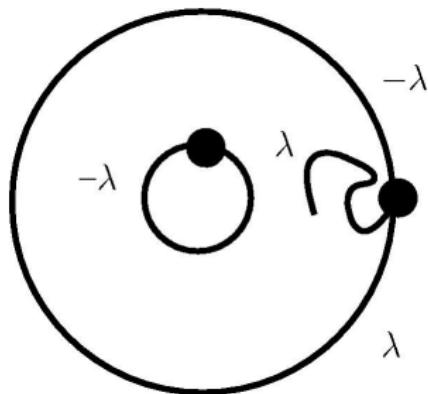
Two marked points on the outer boundary (Hagendorf, Bauer, Bernard'09 via partition function): some annulus analogs of $\text{SLE}_4(\rho)$.

On the inner boundary: either Neumann or Dirichlet

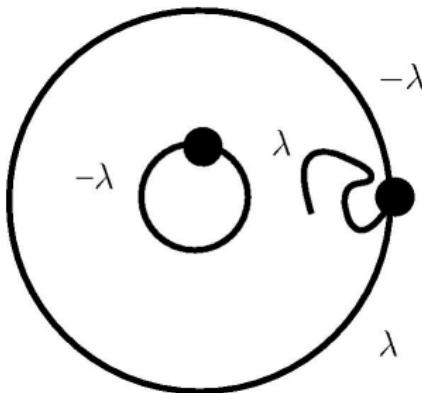
Drifts are computed explicitly (in terms of Schwarz kernels in the annulus), and the existence of couplings is proven.

Easily generalizes to many marked points x_1, x_2, \dots on the outer boundary (of total jump 2λ in Dirichlet case)

The zoo of examples: doubly-connected case

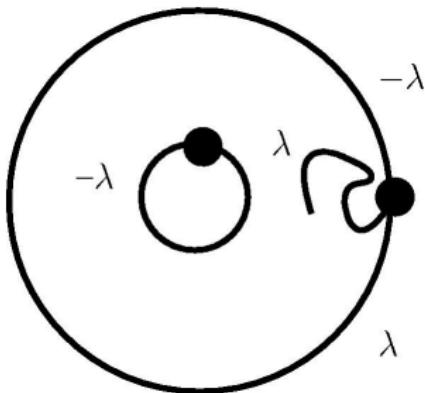


The zoo of examples: doubly-connected case



One marked point on the inner boundary; Dirichlet boundary conditions.

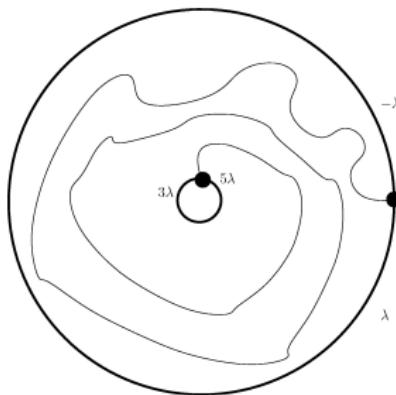
The zoo of examples: doubly-connected case



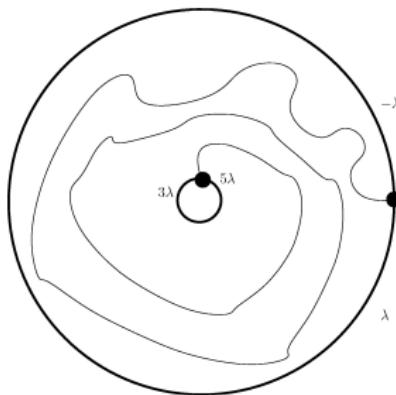
One marked point on the inner boundary; Dirichlet boundary conditions.

Still one integer parameter to fix: can add an integer multiple of λ on the inner boundary.

The zoo of examples: doubly-connected case

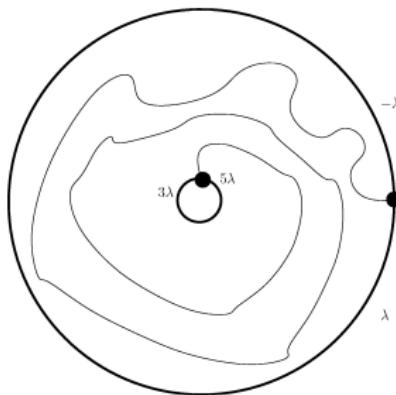


The zoo of examples: doubly-connected case



This leads to a curve with a prescribed winding.

The zoo of examples: doubly-connected case



This leads to a curve with a prescribed winding.

Indeed; eventually the winding is as it's supposed to be.

Different κ ?

Different κ ?

All results concerning Dirichlet boundary conditions generalize to different κ ;

Different κ ?

All results concerning Dirichlet boundary conditions generalize to different κ ;

The conformal transformation rule of the field:

$$\Phi_{\Omega}(z) = \Phi_{\varphi(\Omega)}(\varphi(z)) + \beta \arg \varphi'(z);$$

Different κ ?

All results concerning Dirichlet boundary conditions generalize to different κ ;

The conformal transformation rule of the field:

$$\Phi_{\Omega}(z) = \Phi_{\varphi(\Omega)}(\varphi(z)) + \beta \arg \varphi'(z);$$

Neumann boundary conditions do not generalize.

Different κ ?

All results concerning Dirichlet boundary conditions generalize to different κ ;

The conformal transformation rule of the field:

$$\Phi_{\Omega}(z) = \Phi_{\varphi(\Omega)}(\varphi(z)) + \beta \arg \varphi'(z);$$

Neumann boundary conditions do not generalize.

Question: what is the natural coupling of annulus GFF with SLE $_{\kappa}$ for $\kappa \neq 4$?

Multiply connected domains

Multiply connected domains

Still possible to prove that there exists a coupling for a unique drift...

Still possible to prove that there exists a coupling for a unique drift...

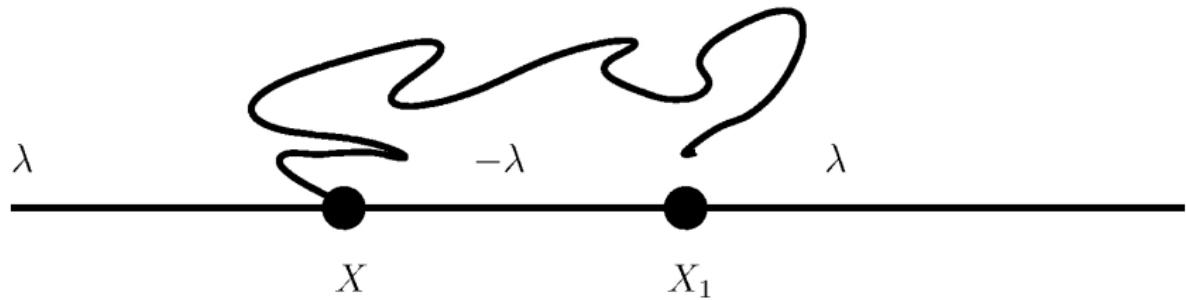
and compute that drift

Still possible to prove that there exists a coupling for a unique drift...

and compute that drift

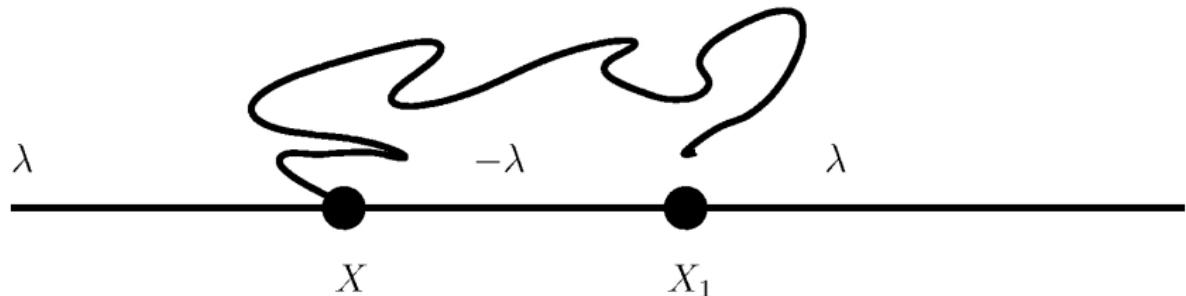
in terms of derivatives of M and \tilde{M} etc w. r. t. marked points and conformal moduli parameters.

Proof: simple case



Domain: half-plane \mathbb{H} ; two marked points x, x_1

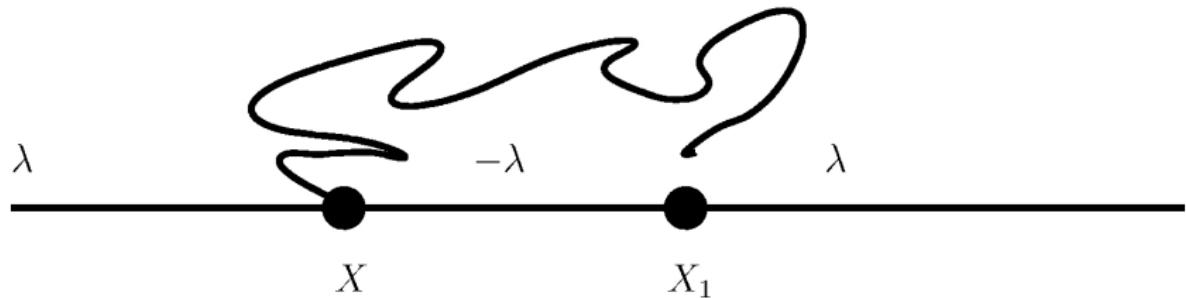
Proof: simple case



Domain: half-plane \mathbb{H} ; two marked points x, x_1

Fields $\Phi_{\mathbb{H}}, \Phi_{\mathbb{H} \setminus \gamma_t}$ coincide in distribution \Rightarrow

Proof: simple case

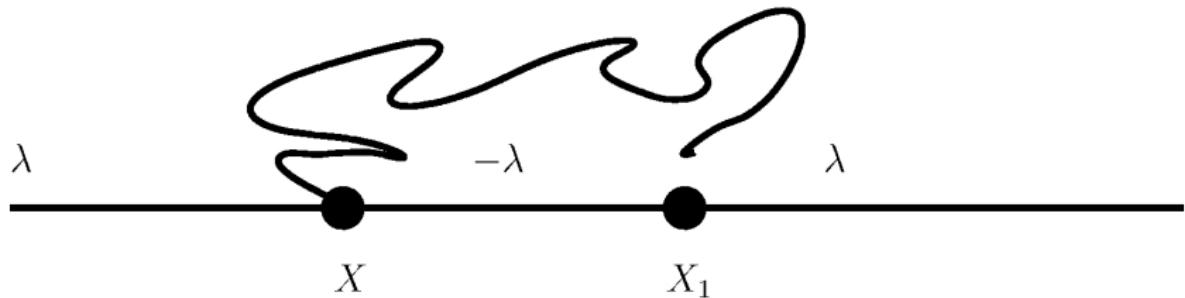


Domain: half-plane \mathbb{H} ; two marked points x, x_1

Fields $\Phi_{\mathbb{H}}, \Phi_{\mathbb{H} \setminus \gamma_t}$ coincide in distribution \Rightarrow

$$\mathbb{E}\Phi(z) = \mathbb{E}_{SLE}\mathbb{E}\Phi_{\Omega_t}(z) = \mathbb{E}(\Phi \circ g_t)(z)$$

Proof: simple case



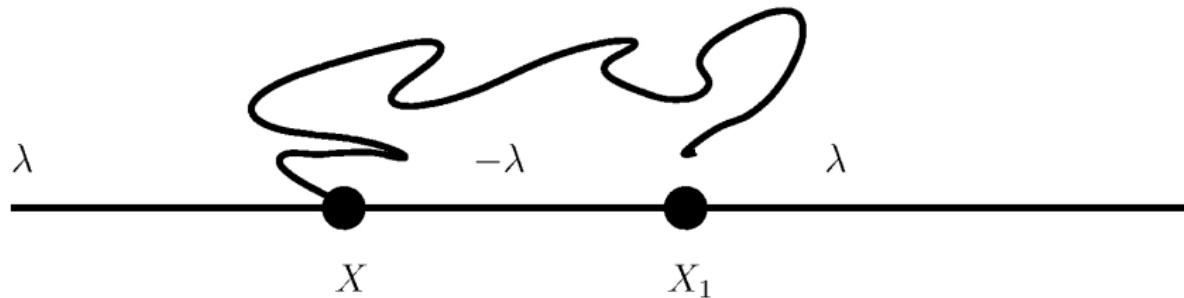
Domain: half-plane \mathbb{H} ; two marked points x, x_1

Fields $\Phi_{\mathbb{H}}, \Phi_{\mathbb{H} \setminus \gamma_t}$ coincide in distribution \Rightarrow

$$\mathbb{E}\Phi(z) = \mathbb{E}_{SLE}\mathbb{E}\Phi_{\Omega_t}(z) = \mathbb{E}(\Phi \circ g_t)(z)$$

$$\mathbb{E}\Phi(z_1)\Phi(z_2) = \mathbb{E}(\Phi \circ g_t)(z_1)(\Phi \circ g_t)(z_2))$$

Proof: simple case



Domain: half-plane \mathbb{H} ; two marked points x, x_1

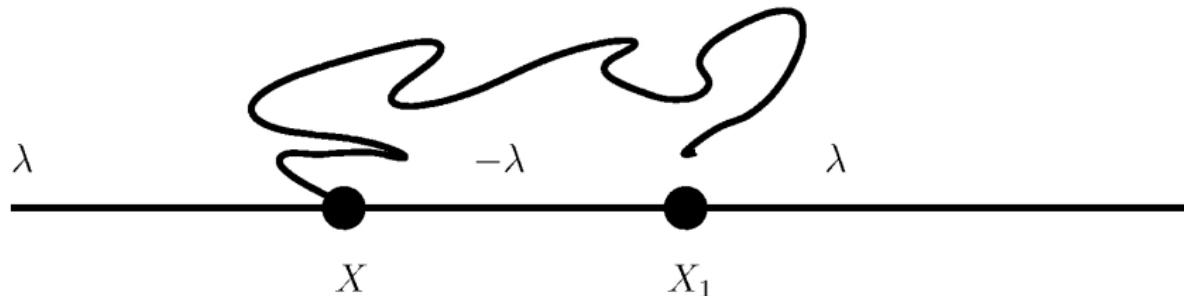
Fields $\Phi_{\mathbb{H}}, \Phi_{\mathbb{H} \setminus \gamma_t}$ coincide in distribution \Rightarrow

$$\mathbb{E}\Phi(z) = \mathbb{E}_{SLE}\mathbb{E}\Phi_{\Omega_t}(z) = \mathbb{E}(\Phi \circ g_t)(z)$$

$$\mathbb{E}\Phi(z_1)\Phi(z_2) = \mathbb{E}(\Phi \circ g_t)(z_1)(\Phi \circ g_t)(z_2))$$

We actually prove:

Proof: simple case



Domain: half-plane \mathbb{H} ; two marked points x, x_1

Fields $\Phi_{\mathbb{H}}, \Phi_{\mathbb{H} \setminus \gamma_t}$ coincide in distribution \Rightarrow

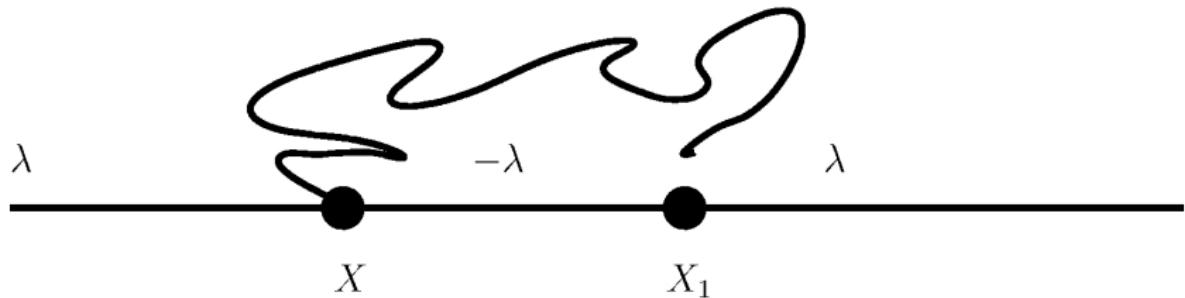
$$\mathbb{E}\Phi(z) = \mathbb{E}_{SLE}\mathbb{E}\Phi_{\Omega_t}(z) = \mathbb{E}(\Phi \circ g_t)(z)$$

$$\mathbb{E}\Phi(z_1)\Phi(z_2) = \mathbb{E}(\Phi \circ g_t)(z_1)(\Phi \circ g_t)(z_2))$$

We actually prove:

$M(X_t, g_t(x_1), g_t(z))$ is a martingale;

Proof: simple case



Domain: half-plane \mathbb{H} ; two marked points x, x_1

Fields $\Phi_{\mathbb{H}}, \Phi_{\mathbb{H} \setminus \gamma_t}$ coincide in distribution \Rightarrow

$$\mathbb{E}\Phi(z) = \mathbb{E}_{SLE} \mathbb{E}\Phi_{\Omega_t}(z) = \mathbb{E}(\Phi \circ g_t)(z)$$

$$\mathbb{E}\Phi(z_1)\Phi(z_2) = \mathbb{E}(\Phi \circ g_t)(z_1)(\Phi \circ g_t)(z_2))$$

We actually prove:

$M(X_t, g_t(x_1), g_t(z))$ is a martingale;

$G(g_t(z_1), g_t(z_2)) + M(X_t, g_t(x_1), g_t(z))M(X_t, g_t(x_1), g_t(z))$ is a martingale.

Proof: one-point function is a martingale

Proof: one-point function is a martingale

Let $M = \Im F$, F analytic in z ; $dX_t := \sqrt{\kappa} dB_t + D_t dt$

Proof: one-point function is a martingale

Let $M = \Im F$, F analytic in z ; $dX_t := \sqrt{\kappa} dB_t + D_t dt$

$$dM(X_t, g_t(x_1), g_t(z)) =$$

$$\Im \left[\frac{\kappa}{2} \partial_{xx} F + \frac{2}{z-x} \partial_z F + \frac{2}{x_1-x} \partial_{x_1} F + D_t \partial_x F \right] dt +$$

$$\Im \kappa \partial_x F dB_t \Big|_{x, x_1, z \rightarrow X_t, g_t(x_1), g_t(z)}$$

Second equation:

$$dG(g_t(z_1), g_t(z_2)) = -d[M(\dots, \dots, g_t(z_1))M(\dots, \dots, g_t(z_2))]$$

Second equation:

$$dG(g_t(z_1), g_t(z_2)) = -d[M(\dots, \dots, g_t(z_1))M(\dots, \dots, g_t(z_2))]$$

If the first equation holds, then M is a martingale, with dB part equal to $= \sqrt{\kappa} \Im \partial_x F(g_t(z_1)) dB$

Second equation:

$$dG(g_t(z_1), g_t(z_2)) = -d[M(\dots, \dots, g_t(z_1))M(\dots, \dots, g_t(z_2))]$$

If the first equation holds, then M is a martingale, with dB part equal to $= \sqrt{\kappa} \Im \partial_x F(g_t(z_1)) dB = -\sqrt{\kappa} P_{X_T}(g_t(z_1)) dB$

Second equation:

$$dG(g_t(z_1), g_t(z_2)) = -d[M(\dots, \dots, g_t(z_1))M(\dots, \dots, g_t(z_2))]$$

If the first equation holds, then M is a martingale, with dB part equal to $= \sqrt{\kappa} \Im \partial_x F(g_t(z_1)) dB = -\sqrt{\kappa} P_{X_T}(g_t(z_1)) dB$

The equation above is Hadamard's formula; easily generalizes to other cases.

One-point function is a martingale

First equation:

$$dM(X_t, g_t(x_1), g_t(z)) = \Im \left[\frac{\kappa}{2} \partial_{xx} F + \frac{2}{z-x} \partial_z F + \frac{2}{x_1-x} \partial_{x_1} F + D_t \partial_x F \right] = 0$$

One-point function is a martingale

First equation:

$$dM(X_t, g_t(x_1), g_t(z)) = \Im \left[\frac{\kappa}{2} \partial_{xx} F + \frac{2}{z-x} \partial_z F + \frac{2}{x_1-x} \partial_{x_1} F + D_t \partial_x F \right] = 0$$

LHS: Zero Dirichlet boundary conditions apart from x ;

One-point function is a martingale

First equation:

$$dM(X_t, g_t(x_1), g_t(z)) = \Im \left[\frac{\kappa}{2} \partial_{xx} F + \frac{2}{z-x} \partial_z F + \frac{2}{x_1-x} \partial_{x_1} F + D_t \partial_x F \right] = 0$$

LHS: Zero Dirichlet boundary conditions apart from x ;

Possible singularity at x

One-point function is a martingale

First equation:

$$dM(X_t, g_t(x_1), g_t(z)) = \Im \left[\frac{\kappa}{2} \partial_{xx} F + \frac{2}{z-x} \partial_z F + \frac{2}{x_1-x} \partial_{x_1} F + D_t \partial_x F \right] = 0$$

LHS: Zero Dirichlet boundary conditions apart from x ;

Possible singularity at x

There exists a unique D_t that cancels it out!

Thank you!