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The Gaussian Free Field

A random (gaussian) field ® : Q@ — R in a planar domain
The mean of the field M(z) = E®(z) is a harmonic function
(usually defined by boundary conditions: Dirichlet, Neumann,
etc...)

The covariance of the field C(z1,2) = G(z1, z2) is a Green's
function in Q
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The Gaussian Free Field

A random (gaussian) field ® : Q@ — R in a planar domain

The mean of the field M(z) = E®(z) is a harmonic function
(usually defined by boundary conditions: Dirichlet, Neumann,
etc...)

The covariance of the field C(z1,2) = G(z1, z2) is a Green's
function in Q (with corresponding homogeneous boundary
conditions)
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Relations to SLE: level lines

Schramm & Sheffield '2006
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Relations to SLE: level lines

Schramm & Sheffield '2006

Domains with two marked points x, x;, with Dirichlet
boundary conditions £ = +,/%.

Dirichlet boundary valued Green's function as covariance

Discretize the field, take the mesh to zero
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Relations to SLE: level lines

Schramm & Sheffield '2006

Domains with two marked points x, x;, with Dirichlet
boundary conditions £ = +,/%.

Dirichlet boundary valued Green's function as covariance

Discretize the field, take the mesh to zero = level lines
converge to SLE,
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Soft approach: coupling
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Soft approach: coupling

In the continuum: there exists a coupling of SLE4 and GFF,
such that the curve behaves like a level line.
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Soft approach: coupling

In the continuum: there exists a coupling of SLE4 and GFF,
such that the curve behaves like a level line.

Namely: Conditionally on the curve ~;, the law of the field is
that of the GFF in Q\¢, the jump has moved to the tip
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Constructive formulation: sample SLE4 curve up to time t;
sample GFF in Q\;; forget the curve = obtain a new field ¢
in Q
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Constructive formulation: sample SLE4 curve up to time t;
sample GFF in Q\;; forget the curve = obtain a new field ¢
in Q

which appears to have the same law as ®.
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Soft approach: coupling
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Soft approach: coupling

Other boundary conditions far away from the curve?
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Soft approach: coupling

Other boundary conditions far away from the curve?

Doubly connected domains?
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The zoo of examples: simply-connected case
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The zoo of examples: simply-connected case

Three arcs, boundary values —\, A, Neumann: dipolar SLE,.
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The zoo of examples: simply-connected case

Three arcs, boundary values —\, A, Neumann: dipolar SLE,.

Three arcs, boundary values —A\, A, 0: dipolar SLE,.
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The zoo of examples: simply-connected case

Three arcs, boundary values —\, A, Neumann: dipolar SLE,.
Three arcs, boundary values —A\, A, 0: dipolar SLE,.

Three arcs, boundary values — X, A, Riemann-Hilbert:
Oy;M(z) =0, 0 = e’1: SLE4(p) with p depending on a.
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The zoo of examples: simply-connected case

More marked points, jump-Dirichlet boundary conditions:
SLE4(p1, p2,...) with p’s proportional to jumps (Schramm &
Sheffield, Cardy, Dubédat).
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The zoo of examples: simply-connected case

Neuwmann

Rieyfann — Hilbert
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The zoo of examples: simply-connected case

Rieyfann — Hilbert

More marked points, mixed boundary conditions: not
SLE4(p)!
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The zoo of examples: simply-connected case

Rieyfann — Hilbert

More marked points, mixed boundary conditions: not
SLE4(p)!

But the drift still can be computed. Expression involves
derivatives of M and its harmonic conjugate w.r.t marked
points.
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The zoo of examples: doubly-connected case

Neumann
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The zoo of examples: doubly-connected case

Neumann

One marked point on the outer boundary with jump —2\ =
multi-valued mean.

Neumann boundary conditions on the inner boundary

K. lzyurov and K. Kytdla Hadamard's formula and couplings of SLE with GFF



The zoo of examples: doubly-connected case

Neumann

One marked point on the outer boundary with jump —2\ =
multi-valued mean.

Neumann boundary conditions on the inner boundary
Coupled with annular SLE;,.

K. lzyurov and K. Kytdla Hadamard'’s formula and couplings of SLE with GFF



The zoo of examples: doubly-connected case

A A
Two marked points on the outer boundary (Hagendorf, Bauer,

Bernard'09 via partition function): some annulus analogs of

On the inner boundary: either Neumann or Dirichlet
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The zoo of examples: doubly-connected case

A A
Two marked points on the outer boundary (Hagendorf, Bauer,

Bernard'09 via partition function): some annulus analogs of

On the inner boundary: either Neumann or Dirichlet

Drifts are computed explicitly (in terms of Schwarz kernels in
the annulus), and the existence of couplings is proven.
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The zoo of examples: doubly-connected case

A A

Two marked points on the outer boundary (Hagendorf, Bauer,

Bernard'09 via partition function): some annulus analogs of

On the inner boundary: either Neumann or Dirichlet

Drifts are computed explicitly (in terms of Schwarz kernels in
the annulus), and the existence of couplings is proven.

Easily generalizes to many marked points xi, xo,... on the
outer boundary (of total jump 2\ in Dirichlet case)
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The zoo of examples: doubly-connected case
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The zoo of examples: doubly-connected case

One marked point on the inner boundary; Dirichlet boundary
conditions.
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The zoo of examples: doubly-connected case

One marked point on the inner boundary; Dirichlet boundary
conditions.

Still one integer parameter to fix: can add an integer multiple
of A on the inner boundary.
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The zoo of examples: doubly-connected case
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The zoo of examples: doubly-connected case

This leads to a curve with a prescribed winding.
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The zoo of examples: doubly-connected case

This leads to a curve with a prescribed winding.

Indeed; eventually the winding is as it's supposed to be.
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All results concerning Dirichlet boundary conditions generalize
to different x;
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All results concerning Dirichlet boundary conditions generalize
to different x;

The conformal transformation rule of the field:
Pa(z) = ¢ q)(p(2) + Barg¢'(2);
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All results concerning Dirichlet boundary conditions generalize
to different x;

The conformal transformation rule of the field:
®q(z) = Py)(p(2)) + Barg ¢'(2);
Neumann boundary conditions do not generalize.
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All results concerning Dirichlet boundary conditions generalize
to different x;

The conformal transformation rule of the field:
®q(z) = Py)(p(2)) + Barg ¢'(2);
Neumann boundary conditions do not generalize.

Question: what is the natural coupling of annulus GFF with
SLE for k # 47.
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Multiply connected domains
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Multiply connected domains

Still possible to prove that there exists a coupling for a unique
drift...
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Multiply connected domains

Still possible to prove that there exists a coupling for a unique
drift...

and compute that drift
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Multiply connected domains

Still possible to prove that there exists a coupling for a unique
drift...

and compute that drift

in terms of derivatives of M and M etc w. r. t. marked points
and conformal moduli parameters.
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Proof: simple case

X X1

Domain: half-plane H; two marked points x, x;
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Proof: simple case

X X1

Domain: half-plane H; two marked points x, x;
Fields &y, CDH\% coincide in distribution =
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Proof: simple case

X X1
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Proof: simple case

X X1

Domain: half-plane H; two marked points x, x;
Fields &y, CDH\% coincide in distribution =
E®(z) = Es eE®q,(2)=E(® o g:)(z)
Ed(21)®(z2) = E(P 0 g¢)(21))(® o gt)(22))
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Proof: simple case

X X1

Domain: half-plane H; two marked points x, x;
Fields &y, CDH\% coincide in distribution =
E®(z) = Es eE®q,(2)=E(® o g:)(z)
Ed(21)®(z2) = E(P 0 g¢)(21))(® o gt)(22))
We actually prove:
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Proof: simple case

X X1

Domain: half-plane H; two marked points x, x;
Fields &y, ¢H\% coincide in distribution =
E®(z) = Es eE®q,(2)=E(® o g:)(z)
E®(z)P(22) = E(P 0 g¢)(21))(P 0 gt)(22))
We actually prove:

M(Xt, ge(x1), gt(z)) is a martingale;
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Proof: simple case

X X1

Domain: half-plane H; two marked points x, x;
Fields &y, ¢H\% coincide in distribution =
E®(z) = Es eE®q,(2)=E(® o g:)(z)
E®(z)P(22) = E(P 0 g¢)(21))(P 0 gt)(22))
We actually prove:

M(Xt, ge(x1), gt(z)) is a martingale;

G(gt(z1), 8t(22)) + M( Xz, ge(x1), 8t(2))M( Xz, gt(x1), 8¢(2)) is
a martingale.
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Proof: one-point function is a martingale
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Proof: one-point function is a martingale

Let M = QF, F analytic in z; dX; := /kdB; + D.dt
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Proof: one-point function is a martingale

Let M = QF, F analytic in z; dX; := /kdB; + D.dt
dM(X:, gt(x1), g:(2)) =
(500 + 520 F + 2,04 F + DidyF| dt +

&
C\,
SkOxFdB: ’X,Xl ,z—Xe,gt(x1),8t(2)

K. lzyurov and K. Kytdla Hadamard'’s formula and couplings of SLE with GFF



Proof: Two-point function is a martingale

Second equation:
dG(gi(z1), gt(z2)) = —d[M(..., ..., gc(z1))M(..., ..., gt(22))]
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Proof: Two-point function is a martingale

Second equation:

dG(gi(z1), ge(22)) = —d[M(..., ..., ge(z1))M(...., ..., 8:(22))]
If the first equation holds, then M is a martingale, with dB
part equal to = /K30y F(gt(z1))dB
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Proof: Two-point function is a martingale

Second equation:

dG(gi(z1), ge(22)) = —d[M(..., ..., ge(z1))M(...., ..., 8:(22))]
If the first equation holds, then M is a martingale, with dB
part equal to = \/kS0xF(gt(z1))dB= —\/kPx, (gt(z1))dB
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Proof: Two-point function is a martingale

Second equation:

dG(gi(z1), ge(22)) = —d[M(..., ..., ge(z1))M(...., ..., 8:(22))]

If the first equation holds, then M is a martingale, with dB
part equal to = \/kS0xF(gt(z1))dB= —\/kPx, (gt(z1))dB
The equation above is Hadamard's formula; easily generalizes
to other cases.
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One-point function is a martingale

First equation:

dM(Xt, g:(x1), &:(2)) =
S |§0F + 750.F + 52500 F + DideF| = 0

—X
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One-point function is a martingale

First equation:

dM(Xt, g:(x1), &:(2)) =
S |§0F + 750.F + 52500 F + DideF| = 0

X1

LHS: Zero Dirichlet boundary condtions apart from x;
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One-point function is a martingale

First equation:

dM(Xt, g:(x1), &:(2)) =
S |§0F + 750.F + 52500 F + DideF| = 0

Xt
LHS: Zero Dirichlet boundary condtions apart from x;

Possible singularity at x
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One-point function is a martingale

First equation:

dM(X:, ge(x1), 8:(2)) =

S [500F + 2220:F + 5204 F + DdiF| =0

LHS: Zero Dirichlet boundary condtions apart from x;
Possible singularity at x

There exists a unique D; that cancels it out!
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Thank you!
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