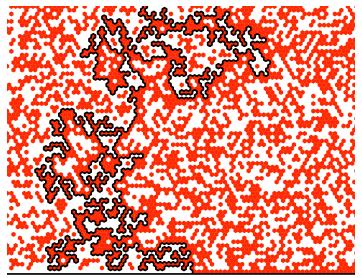
Random curves, scaling limits and Loewner evolutions

Antti Kemppainen (Université Paris-sud 11)

A joint work with Stanislav Smirnov (Université de Genève)

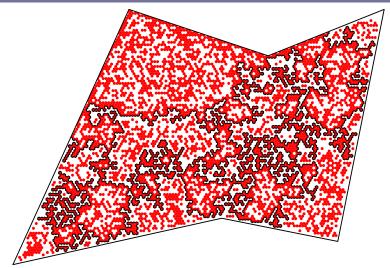
Ascona May 24th, 2010

Interface separating two phases



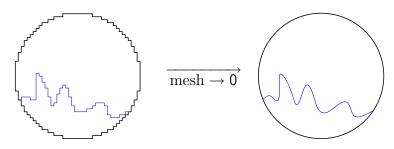
2D lattice models: percolation, Ising model, random cluster models

Scaling limit of an interface



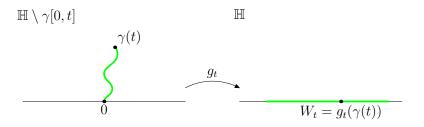
- \mathbb{P} is the law of a random simple curve in a simply connected domain U and connecting $a, b \in \partial U$
- Scaling limit: mesh \rightarrow 0.

Scaling limit of an interface



- Goal: present a setting for proving the convergence.
- Often: a sequence of (U, a, b, \mathbb{P}) so that (U, a, b) approximates $(\hat{U}, \hat{a}, \hat{b})$, \mathbb{P} from a chosen lattice model.
- Useful to choose a reference domain, e.g. the unit-disc \mathbb{D} , and map conformally $\phi: U \to \mathbb{D}$, $\phi(a) = -1$, $\phi(b) = 1$.
- We will consider a set Σ , whose elements are triplets (U, ϕ, \mathbb{P}) .

Schramm-Loewner evolution



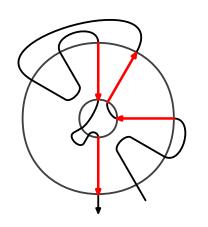
- g_t conformal mapping with a specific normalization: $g_t(z) = z + \frac{C(t)}{z} + \dots$ capacity
- Loewner equation

$$\frac{\partial g_t}{\partial t}(z) = \frac{C'(t)}{g_t(z) - W_t}$$

where $t \mapsto W_t$ continuous. Capacity param. C(t) = 2t.

• SLE_{κ}, $\kappa > 0$, a random curve s.t. $W_t = \sqrt{\kappa} B_t$. $(B_t)_{t \geq 0}$ standard, one-dimesional Brownian motion.

Crossings of an annulus

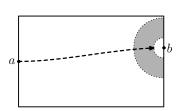


A *crossing* of an annulus $A(z_0, r, R) = \{z : r < |z - z_0| < R\}$ is a subcurve such that its end points are in the different components of $\mathbb{C} \setminus A(z_0, r, R)$.

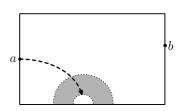
Crossings of an annulus

There are three types of crossings of an annulus $A = A(z_0, r, R)$.

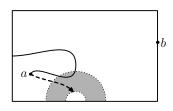
Forced



Unforced



Ambiguous



Condition assumed to hold for the random curve

Choose a parametrization for all curves, $\gamma:[0,1]\to\mathbb{C}.$

Condition

 $\exists C > 1$ s.t. for any $(U, \phi, \mathbb{P}) \in \Sigma$, for any stopping time τ and for any annulus $A = A(z_0, r, R)$, $0 < Cr \le R$,

$$\mathbb{P}(\gamma[\tau, 1] \text{ crosses any } V \in \mathcal{U}(U_{\tau}, A) \mid \gamma[0, \tau]) < \frac{1}{2}$$

for almost every $\gamma[0, \tau]$.

where $U_t = U \setminus \gamma(0, t]$ and

$$\mathcal{U}(U_t,A) = egin{cases} \emptyset & \text{if A is not on } \partial U_t \\ \text{those components of } U_t \cap A \text{ that } \\ \text{don't separate } \gamma(t) \text{ and } b \end{cases}$$
 otherwise

Condition assumed to hold for the random curve

Choose a parametrization for all curves, $\gamma:[0,1]\to\mathbb{C}.$

Condition

 $\exists K > 0, \Delta > 0$ s.t. for any $(U, \phi, \mathbb{P}) \in \Sigma$, for any stopping time τ and for any annulus $A = A(z_0, r, R)$, 0 < r < R,

$$\mathbb{P}(\gamma[\tau, 1] \text{ crosses any } V \in \mathcal{U}(U_{\tau}, A) \mid \gamma[0, \tau]) < K\left(\frac{r}{R}\right)^{\Delta}$$

for almost every $\gamma[0, \tau]$.

where $U_t = U \setminus \gamma(0, t]$ and

$$\mathcal{U}(U_t, A) = \begin{cases} \emptyset & \text{if } A \text{ is not on } \partial U_t \\ \text{those components of } U_t \cap A \text{ that } \\ \text{don't separate } \gamma(t) \text{ and } b \end{cases}$$
 otherwise

Main theorem, shortly

- Condition assumed is carried nicely under conformal mappings. Hence it holds in chosen reference domain(s).
- Under Condition the following holds for $\Sigma_{\mathbb{D}} = \{\phi \mathbb{P} : (U, \phi, \mathbb{P}) \in \Sigma\}: \exists F_n \text{ so that } \mathbb{P}(F_n) \to 1 \text{ as } n \to \infty \text{ uniformly in } \mathbb{P} \in \Sigma_{\mathbb{D}} \text{ and so that each } F_n \text{ is}$
 - precompact in the path topology: The space of curves X, the equivalence classes of $C([0,1],\mathbb{C})$ under increasing reparametrizations. A metric in X:

$$d_X(\gamma, \hat{\gamma}) = \inf \left\{ \|f - \hat{f}\|_{\infty} : f, \hat{f} \text{ parametr. of } \gamma, \hat{\gamma} \right\}.$$

- precompact in the driving process topology: The capacity parametrization and the norm $\|\cdot\|_{\infty}$
- On $\overline{F_n}$ the above descriptions are the same: the tip is uniformly visible from the target point.

Precompactness in the path convergence

Theorem

There exists $\alpha > 0$ s.t. each curve can be parametrized α -Hölder continuously with the Hölder norm being a tight random variable on $\Sigma_{\mathbb{D}}$.

- Tight r.v. Y on Σ_0 : for each $\varepsilon > 0$, $\exists M > 0$ s.t. $\mathbb{P}(Y \in [-M, M]) > 1 \varepsilon$, for any $\mathbb{P} \in \Sigma_0$.
- Aizenman&Burchard [1999]: the above holds for a collection of probability measures Σ_0 on X if

$$\mathbb{P}(\exists n \text{ crossings of } A(z_0, r, R)) \leq K_n \left(\frac{r}{R}\right)^{\Delta_n}$$

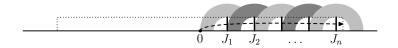
for each $\mathbb{P} \in \Sigma_0$, where Δ_n large when n large.

• Half of the crossings are unforced. $\Delta_n \geq ((n-2)/12) \cdot \Delta$

Precompactness in the driving process convergence

Theorem

For any $0 < \beta < 1/2$, the driving processes of the curves are β -Hölder continuous with a tight Hölder norm on $\Sigma_{\mathbb{D}}$.

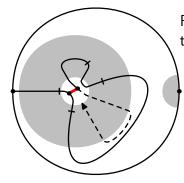


 The increments of the driving process have exponential tails:

$$\mathbb{P}\big[\,|W_t - W_s| \ge L\,\big|\,W[0,s]\big] \le Ke^{-c\frac{L}{\sqrt{t-s}}}$$

(note: capacity parametrization)

Excluding a six-arms event



For fixed ρ , define E(r, R) as the event that $\exists (s, t) \in [0, 1]^2$, s < t, s.t.

- diam $(\gamma[s,t]) \geq R$ and
- ② \exists a crosscut C, diam(C) < r, that separates $\gamma(s,t]$ from $B(1,\rho)$ in $\mathbb{D} \setminus \gamma(0,s]$.

Theorem

Uniformly for $\mathbb{P} \in \Sigma_{\mathbb{D}}$, $\mathbb{P} \Big(E(r,R) \Big) = o(1)$ as $r \to 0$.

Conclusion

- The condition assumed is uniform over the scales. Scale invariance is not assumed.
- Conformal maps were used (mostly for resolving a problem with non-smooth boundary near a and b), but conformal invariance is not assumed.
- Condition assumed is a natural property to check. Gives a conceptual way to prove the existence of subsequential limits and that the limits are well-described by Loewner equation.
- Should be applicable for any random curve converging to ${\sf SLE}_\kappa$, $\kappa < 8$.
- Generalizes to several points, $\mathsf{SLE}_{\kappa}(\rho_1, \rho_2, \ldots)$ processes.

Thank you for your attention!