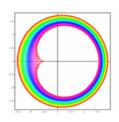
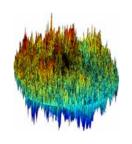
Random normal matrices

Nikolai Makarov

- based on joint work with Y. Ameur and H. Hedenmalm
- physical theory: P.Wiegmann and A. Zabrodin
- important references:
 - --- K. Johansson (Hermitian matrices)
 - --- B. Rider and B. Virag (Ginibre ensemble)
 - --- R. Berman, B. Berndtsson, J. Sjostrand (asymptotics of Bergman kernels)



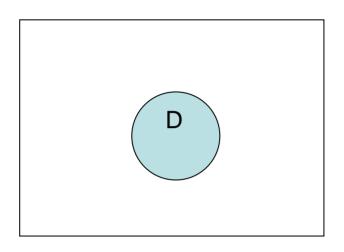
Potential theory

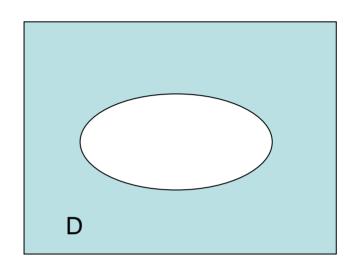


Statistical model

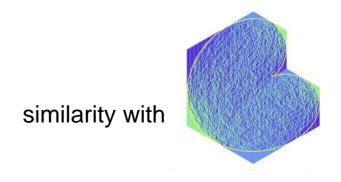
Field theory

Quadrature domains

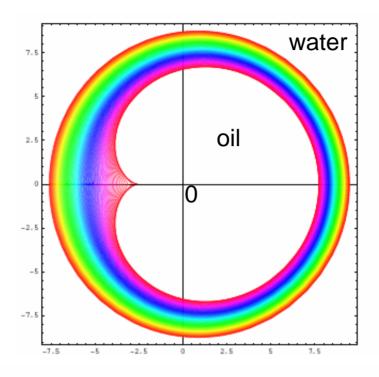




$$\int_D u = \sum_1^k c_j u(z_j)$$



Polubarinova-Kochina example

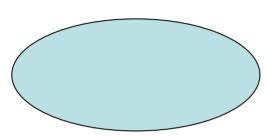


- inverted ellipse
- Varchenko, Etingof: Why the coundary of a round drop becomes a curve of order 41

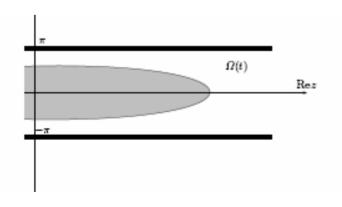
$$V_n = 2\pi \nabla G(\cdot, 0)$$

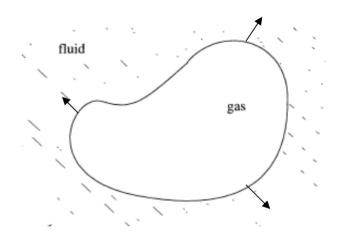
Hele-Shaw flow

[Gauss]



$$V_n = 2\pi \nabla G(\cdot, \infty)$$





[Saffman-Taylor]

Gauss variational problem

- $ightharpoonup \sigma$ electric charge (a positive measure) in $\mathbb C$
- $ightharpoonup Q: \mathbb{C}
 ightarrow \mathbb{R} \cup \{+\infty\}$ external field potential

$$Q(z) \gg \log |z|, \quad z \to \infty$$
 (*)

Q-energy of the charge:

$$\int \int \log \frac{1}{|z-w|} d\sigma(z) d\sigma(w) + 2\sigma(Q)$$

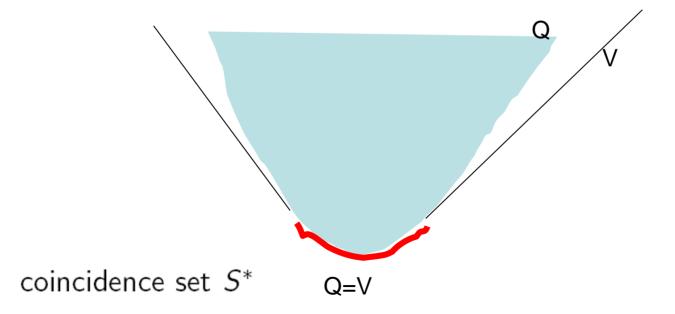
Find σ of total charge one with minimal Q-energy

Existence, uniqueness, free boundary problem

▶ If Q is LSC, then there is a unique probability measure $\hat{\sigma} = \hat{\sigma}[Q]$ of minimal Q-energy, [Frostman '35]

(e.g., $Q \in (*)$ continuous on a closed set and $+\infty$ elsewhere)

Find maximal subharmonic $V \leq Q$ such that $V \sim \log |z|$ at ∞



Smoothness, localization

▶ If $Q \in C^2(\mathrm{nbh}\ S^*)$, then $\Delta Q \geq 0$ on S^* and

$$2\pi\hat{\sigma} = \Delta Q \cdot 1_{S^*} = \Delta Q \cdot 1_S$$

- Conclusion: equilibrium measure is determined
 - by the support S ("droplet"), and
 - by the (conformal) metric ΔQ
- Examples of zero curvature metrics:

$$Q = |z|^2, |z|^{-2}, \log |z|^2$$
 plus harmonic H

If ∂H is rational, then the components of $\mathbb{C}\setminus S$ are quadrature domains (after conformal transformation)

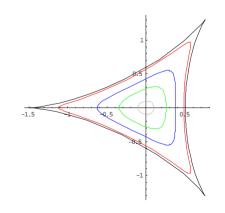
Laplacian growth

- What happens to the droplet if we slightly change the potential?
- ▶ Special case: $S_t = S(Q/t)$ [S_t is support of $\sigma_t = t\hat{\sigma}(Q/t)$, the Q-extremal measure of mass t]
- ► Formally [Richardson]:

$$\dot{\sigma}_t = \omega_t^{\infty},$$

or symbolically

$$\frac{1}{2\pi}V_n = \nabla G(\cdot, \infty)$$



[gradient wrt metric ΔQ)]

C^{ω} potentials

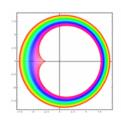
Formal Hele-Shaw equation can be justified for (locally) C^{ω} potentials [Sakai]

▶ Generalization: consider $Q_{\varepsilon} = Q - \varepsilon g$ [$Q \in C^{\omega}$, $\partial S \in C^{\omega}$, g is smooth]

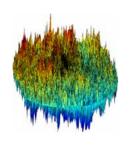
Then

$$\frac{d}{d\varepsilon}\Big|_{\varepsilon=0}\int f\cdot\sigma(Q_{\varepsilon})=\big(f^{S},g^{S}\big)_{\nabla}$$

[f^S is an extension of $f|_S$ harmonic in $\hat{\mathbb{C}} \setminus S$]



Potential theory



Statistical model

Field theory of CG

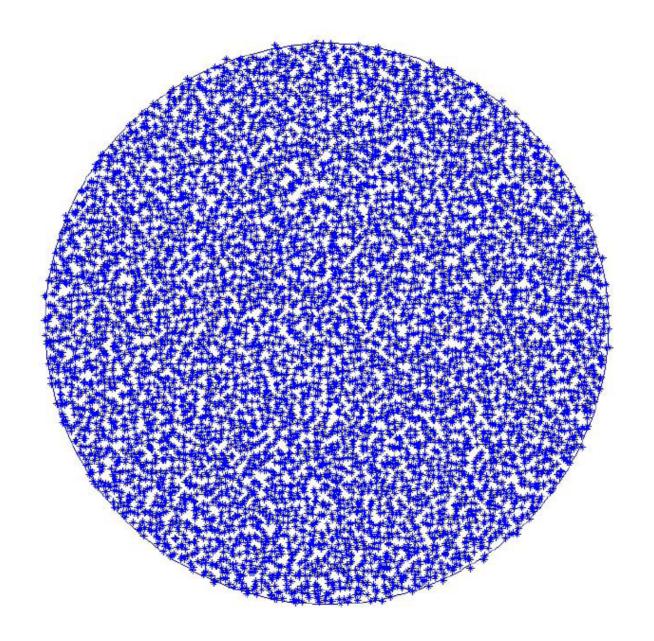
Statistical model

• n electrons at random positions λ_j in external field nQ

$$H = \sum_{j \neq k} \log \frac{1}{|\lambda_j - \lambda_k|} + 2n \sum_{j \neq k} Q(\lambda_j).$$

$$Z_n(Q)=\int_{\mathbb{C}^n}e^{-\frac{\beta}{2}H},$$

2D Dyson ensembles; one-component plasma;
 [Wiegmann-Zabrodin]



Density of states

Define $\sigma_n \in \text{Prob}(C)$ as

$$\sigma_n(e) = E \frac{\#\{z_j \in e\}}{n}, \qquad e \subset C,$$

[E is expectation wrt P_n]

Theorem [Johansson, Elbau-Felder, Hedenmalm-M.]

$$\sigma_n \to \sigma := \hat{\sigma}[Q] \quad \text{in} \quad (C \cap L^{\infty})^*.$$

In particular, if $Q \in C^2$ in some neighborhood of the "droplet" $S := \sup \sigma$, then

$$\sigma = \frac{1}{2\pi} \Delta Q \cdot 1_{\mathcal{S}}.$$

Random normal matrices

Special case $\beta = 2$:

$$Z_n(Q) = \int_{\mathcal{M}_n} e^{-2n \operatorname{trace} Q(M)} dM,$$

where $\mathcal{M}_n \subset C^{(n^2)}$ is the set of normal $n \times n$ matrices.

 P_n describes the distribution of eigenvalues.

Example:
$$Q = +\infty$$
 on $C \setminus \Sigma$

- $\Sigma = \mathbb{R}$ Hermitian ensembles.
- $\Sigma = \mathbb{T}$ unitary ensembles.

Fermionic description of \mathbb{P}_n for $\beta = 2$

Lemma

 \mathbb{P}_n is a determinantal process. The kernel $K_n(z, w)$ is equal to the reproducing kernel in weighted polynomial Bergman-Fock space

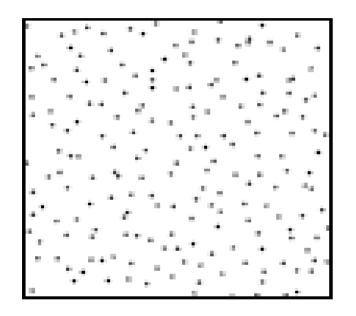
$$\mathcal{H}_n = \mathcal{P}_n \cdot e^{-nQ/2} \subset L^2(\mathbb{C}).$$

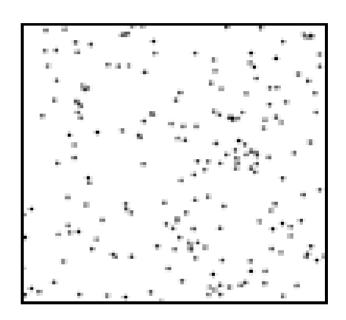
- k-point intensity is det{K(z_i, z_j)}.
- Quantum mechanical interpretation: fermions in magnetic field at lowest Landau level
- k-point wave function:

$$\psi_{k,n}(z) = \frac{1}{\sqrt{k!}} \det \psi_i(z_j),$$

 $\{\psi_i\}$ are ON weighted polynomials.

Finer structure





our electrons(lattice-type)

Poisson

Statistical correction

Theorem [Ameur-Hedenmalm-M]

If $Q \in C^{\omega}$ in a nbh of S and if f is a smooth test function, then

$$\mathbb{E}\sum f(\lambda_j) = n\sigma(f) + \nu(f) + o(1),$$

where

$$8\pi\nu(f) = \int_{S} f \, \Delta \log \Delta Q + \int_{S} \Delta f + \int_{\partial S} \left(f^{S} \partial_{*} L - L \partial_{*} f^{S} \right)$$

- $L = \log \Delta Q$
- ▶ ∂_* is normal derivative wrt $\mathbb{C} \setminus S$
- f^S is an extension of $f|_S$ harmonic in $\hat{\mathbb{C}} \setminus S$
- \triangleright constant 8π depends on β

[Johansson] for Hermitian

[Rider-Virag] for Ginibre

Footnotes

- universality of the double layer (independence of Q)
- the jump in the potential depends on β
- Polyakov-Alvarez (det_ζ Δ) & MacKean-Singer (heat kernel asymptotics)
- Partition function:

$$\frac{d}{ds}\log Z_n(sQ) = n \mathbb{E}_{sQ} \sum Q(\lambda_j),$$

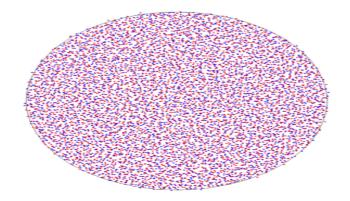
integrate over Hele-Shaw flow [explicit formulae by Wiegmann-Zabrodin]

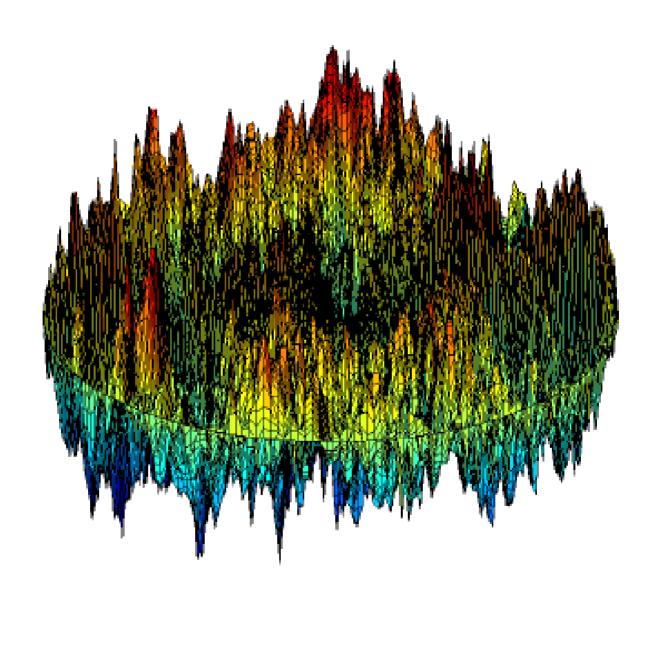
GFF convergence

Corollary

$$\sum f(\lambda_j) - \mathbb{E} \sum f(\lambda_j) \to \mathcal{N}\left(0, \frac{1}{4\pi} \|f^S\|_{\nabla}^2\right)$$

- ▶ In other words, $\log \frac{\rho(z,\tilde{M}_n)}{\rho(z,M_n)}$ converges to GFF in S with free boundary $(\tilde{M} \text{ and } M \text{ are independent matrices})$
- ▶ no dependence on Q or β
- the derivation uses only the classical term $\sigma(f)$, not $\nu(f)$, (plus estimates)





Proof of Cor.

 $\operatorname{Fluct}_n f := \sum f(\lambda_j) - n\sigma(f)$. Define

$$F(\lambda) = \log \mathbb{E} \ e^{\lambda \operatorname{Fluct}_n f}, \quad \lambda \in (0,1).$$

Then (following Kurt Johansson)

$$F'(\lambda) = \tilde{\mathbb{E}} \operatorname{Fluct}_n f \quad \operatorname{wrt} \quad \tilde{Q} = Q - \frac{\lambda f}{2n}$$

(and also F'' > 0), so by Laplacian growth

$$F'(\lambda) = n[\tilde{\sigma}(f) - \sigma(f)] + \tilde{\nu}(f) \rightarrow \frac{\lambda}{2\pi} \|f^{S}\|_{\nabla}^{2} + \nu(f).$$

Integrate.

"Quantum Hele-Shaw"

Corollary

$$|P_n|^2 e^{-nQ} \equiv R_{n+1}^1 - R_n^1 \to \omega^{\infty}$$

- ▶ P_n is the n-th ON polynomial in $L^2(e^{-nQ})$
- $ightharpoonup R_{n+1}^1$ and R_n^1 are intensities wrt the same potential nQ
- ▶ Compare: σ_t is density of states of n electrons in potential nQ and $\dot{\sigma} = \omega^{\infty}$

Double scaling in the bulk

- ▶ Let $0 \in Int(S)$, $Q \in C^2$ near 0, $\Delta Q(0) > 0$.
- Rescale so that the average spacing is one:

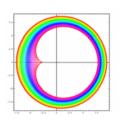
$$z \mapsto \sqrt{n} \sqrt{\Delta Q(0)} z$$

▶ $\mathbb{P}_{n,nQ} \mapsto \mu_n$, a new *n*-point process in \mathbb{C}

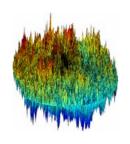
Theorem

$$\mu_n \to Ginibre(\infty)$$
.

- ▶ Ginibre(∞) is a det-process with $K(z, w) = e^{-2z\bar{w}-|z|^2-|w|^2}$
- ightharpoonup in C^{ω} case, hierarchies of universal laws at boundary singularities (?)



Potential theory



Statistical model

Field theory

CG approximation

- Consider $\Phi_n = \sqrt{2} \sum_j G(\cdot, \lambda_j) \sqrt{2} \sum_j G(\cdot, \lambda_j')$ as an approximation of GFF in S with Dirichlet boundary [eigenvalues of independent matrices]
- ▶ Definition of Φ_n^{*2} in terms of OPE:

$$\Phi_n(w)\Phi_n(z) = \log \frac{1}{|w-z|} + \Phi_n^{*2}(z) + o(1)$$

as $w \to z$ and $n^{-1/2} \ll |w - z|$ (in correlations)

True with

$$\Phi_n^{*2} = \Phi_n^2 - \log \sqrt{n} - \frac{1}{2} - \frac{\gamma}{2} + 2c.$$

[Euler's constant and conformal log-radius]

cont'd

- Similarly, we define Φ_n^{*3} , Φ_n^{*4} , ... so that OPE exponentials $e^{*\sigma\Phi_n}$ are non-random modifications of $e^{\sigma\Phi_n}$.
- Claim:

$$e^{*\sigma\Phi_n} \to e^{*\sigma\Phi}$$

- in correlations (for all σ 's)
- lacktriangleright as random distributions (if $|\sigma| < 1$)

Ramified fields

• $\tilde{\Phi}_n$ (harmonic conjugation) [like $\sum \arg(z - \lambda_i)$]

- modifications of $e^{\sigma \hat{\Phi}_n}$
- Claim:

$$\tilde{\Phi}_n \to \int *d\Phi$$

in correlations with $\Phi_n(z_1) \dots \Phi_n(z_m)$

[monodromy group is $\pi_1(D\setminus\{z_1,\ldots,z_m\})]$

etc (Ameur, Kang, M)

Sheffield's interpretation of SLE: flow lines of $e^{*i\sigma\Phi}$ (with boundary conditions and central charge modifications)

```
[\sigma = \sigma(\kappa) \text{ from equation spin=-1}]
```

- Q: Is this true (in the limit) for flow lines of $e^{*i\sigma\Phi_n}$?
- Equivalent reformulation: ... for geodesics of $e^{*\sigma^{\tilde{\Phi}_n}}$ (with corresponding modifications)?

[metric is not well-defined but the geodesics are]

▶ Classical limit ($\kappa = 0$): SLE is a hyperbolic geodesic



Stress tensor

▶ S.E.T. is a map

$$v\mapsto W_v$$

from vector fields in \mathbb{C} to random variables

▶ in terms of Hamiltonian $H = H(\lambda_1, ..., \lambda_n)$,

$$W_{v}^{+} = -\nabla_{v}H + Tr(\partial v)$$

- in RNM model

$$W_{v}^{+} = \sum_{j < k} \frac{v(\lambda_{j}) - v(\lambda_{k})}{\lambda_{j} - \lambda_{k}} - 2nTr[v\partial Q] + Tr[\partial v].$$

Ward's identities

• for all $F = F(\lambda_1, \ldots, \lambda_n)$,

$$\mathbb{E}[\nabla_{v}F] + \mathbb{E}[W_{v}F] = 0$$

• equivalently, W is stress tensor for the density field $\rho(z) = \sum \delta(z - \lambda_i)$:

$$\mathbb{E}[\mathcal{L}_{\nu}\rho(z_1)\ldots\rho(z_m)]=\mathbb{E}[W_{\nu}\rho(z_1)\ldots\rho(z_m)]$$

[Here \mathcal{L}_{V} is Lie derivative: $\mathcal{L}_{V}\rho(z) = \frac{d}{dt}\Big|_{t=0} (\rho||\psi_{-t})(z)$, where ψ_{t} is the flow of V, and $(\rho||\psi_{-t})$ is the expression for ρ in local coordinates ψ_{-t}]

The magic of Ward's identities

An example of (infinitely many) exact computations:

$$Var(W_v^+) = 2n \mathbb{E} Tr(|v|^2 \Delta Q) + \mathbb{E} Tr|\bar{\partial} v|^2$$

Cor:

$$Var\left(\frac{1}{n}W_v^+\right) \rightarrow 2\int_S |v|^2 (\Delta Q)^2$$

E.g.,

v=1 gives Main Thm for $f=\partial Q$,

v(z) = z for $f = z \partial Q$, ...

Cauchy kernels, etc