Universality for SLE(4)

Jason Miller

Department of Mathematics, Stanford

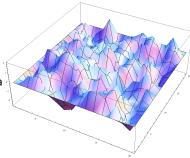
May 27, 2010

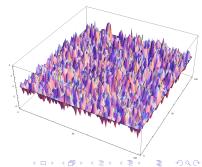
The DGFF

- ► The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- ▶ Measure on functions $h: D \to \mathbf{R}$ with density

$$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y} (h(x) - h(y))^2 \right)$$

for $D \subseteq \mathbf{Z}^2$ and $h|_{\partial D} = \psi$.





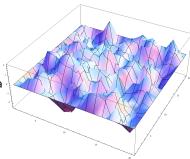
The DGFF

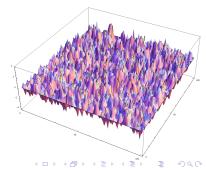
- ► The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- ▶ Measure on functions $h: D \rightarrow \mathbf{R}$ with density

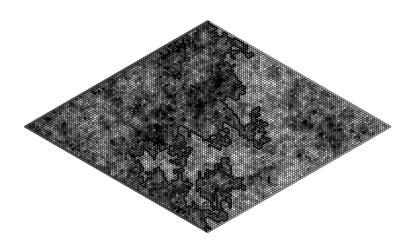
$$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y} (h(x) - h(y))^2\right)$$

for $D \subseteq \mathbf{Z}^2$ and $h|_{\partial D} = \psi$.

- ► Covariance: Green's function for SRW
- ▶ Mean Height: harmonic extension of ψ

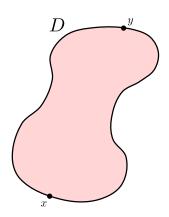




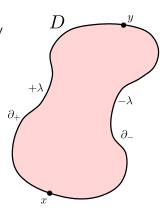


(Schramm-Sheffield, 2009)

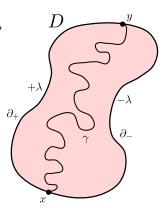
▶ $D \subseteq \mathbf{R}^2$ bounded and simply connected with smooth boundary and $x, y \in \partial D$.



- ▶ $D \subseteq \mathbb{R}^2$ bounded and simply connected with smooth boundary and $x, y \in \partial D$.
- ▶ h^n a DGFF on $D_n = (\frac{1}{n} \mathbf{Z}^2) \cap D$ with boundary conditions $+\lambda$ on ∂_+ and $-\lambda$ on ∂_- .



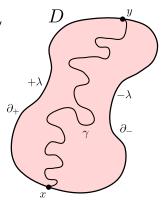
- ▶ $D \subseteq \mathbb{R}^2$ bounded and simply connected with smooth boundary and $x, y \in \partial D$.
- ▶ h^n a DGFF on $D_n = (\frac{1}{n} \mathbf{Z}^2) \cap D$ with boundary conditions $+\lambda$ on ∂_+ and $-\lambda$ on ∂_- .
- $ightharpoonup \gamma^n$ the unique **zero-height interface** of h^n connecting x to y.



- ▶ $D \subseteq \mathbb{R}^2$ bounded and simply connected with smooth boundary and $x, y \in \partial D$.
- ▶ h^n a DGFF on $D_n = (\frac{1}{n}\mathbf{Z}^2) \cap D$ with boundary conditions $+\lambda$ on ∂_+ and $-\lambda$ on ∂_- .
- γⁿ the unique zero-height interface of hⁿ connecting x to y.

Theorem (Schramm, Sheffield 2009)

There exists a choice of $\lambda > 0$ such that $\gamma^n \to SLE(4)$.



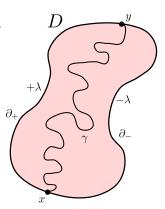
- ▶ $D \subseteq \mathbb{R}^2$ bounded and simply connected with smooth boundary and $x, y \in \partial D$.
- ▶ h^n a DGFF on $D_n = (\frac{1}{n} \mathbf{Z}^2) \cap D$ with boundary conditions $+\lambda$ on ∂_+ and $-\lambda$ on ∂_- .
- $ightharpoonup \gamma^n$ the unique **zero-height interface** of h^n connecting x to y.

Theorem (Schramm, Sheffield 2009)

There exists a choice of $\lambda > 0$ such that $\gamma^n \to SLE(4)$.

Conjecture (Sheffield)

Zero level lines for many random surface models are described by variants of SLE(4). Important examples: dimer models, Ginzburg-Landau $\nabla \varphi$ interface model

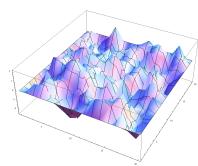


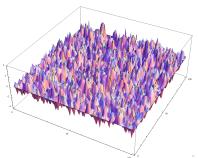
The Ginzburg-Landau $\nabla \varphi$ Model

- Non-Gaussian random surface model
- ▶ Measure on functions $h: D \to \mathbf{R}$ with density

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\sum_{x\sim y}\mathcal{V}(h(x)-h(y))\right)$$

for $D \subseteq \mathbf{Z}^2$, $h|_{\partial D} = \psi$, $\mathcal{V} \in C^2$ uniformly convex.





The Ginzburg-Landau $\nabla \varphi$ Model

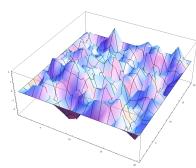
- Non-Gaussian random surface model
- ▶ Measure on functions $h: D \rightarrow \mathbf{R}$ with density

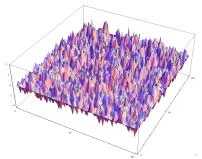
$$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y} \mathcal{V}(h(x) - h(y)) \right)$$

for $D \subseteq \mathbf{Z}^2$, $h|_{\partial D} = \psi$, $\mathcal{V} \in C^2$ uniformly convex.

$$V(x) = x^2 \text{ (DGFF)},$$

 $V(x) = 4x^2 + \cos(x) + e^{-x^2}.$





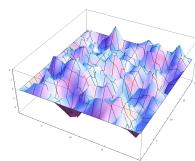
The Ginzburg-Landau $\nabla \varphi$ Model

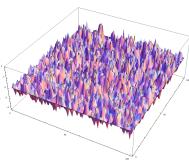
- Non-Gaussian random surface model
- ▶ Measure on functions $h: D \to \mathbf{R}$ with density

$$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y} \mathcal{V}(h(x) - h(y)) \right)$$

for $D \subseteq \mathbf{Z}^2$, $h|_{\partial D} = \psi$, $\mathcal{V} \in C^2$ uniformly convex.

- $V(x) = x^2 \text{ (DGFF)},$ $V(x) = 4x^2 + \cos(x) + e^{-x^2}.$
- Covariance: Annealed Green's function of a RWRE (HS representation)
- ► Mean Height: Annealed harmonic measure of a RWRE (HS representation)



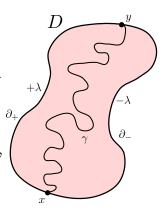


A Single Contour of the GL Model

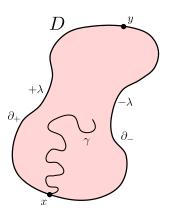
- ▶ $D \subseteq \mathbb{R}^2$ bounded and simply connected with smooth boundary and $x, y \in \partial D$.
- ▶ h^n a GL model on $D_n = (\frac{1}{n}\mathbf{Z}^2) \cap D$ with boundary conditions $+\lambda$ on ∂_+ and $-\lambda$ on ∂_- .
- $ightharpoonup \gamma^n$ the unique **zero-height interface** of h^n connecting x to y.

Theorem (M.)

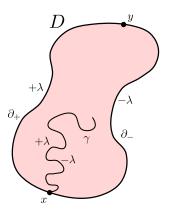
There exists a choice of $\lambda > 0$ depending only on $\mathcal V$ such that $\gamma^n \to SLE(4)$.



Let γ_t be an SLE(4) path connecting x to y at time t.

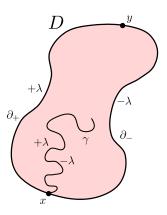


- ▶ Let γ_t be an SLE(4) path connecting x to y at time t.
- Let $g_t(z)$ be harmonic in $D \setminus \gamma[0, t]$ with boundary values
 - \blacktriangleright $+\lambda$ on ∂_+ , $-\lambda$ on ∂_-
 - \blacktriangleright $+\lambda$ to the left of γ , and
 - ▶ $-\lambda$ to the right of γ .



7 / 19

- ▶ Let γ_t be an SLE(4) path connecting x to y at time t.
- Let $g_t(z)$ be harmonic in $D \setminus \gamma[0, t]$ with boundary values
 - \blacktriangleright $+\lambda$ on ∂_+ , $-\lambda$ on ∂_-
 - \blacktriangleright + λ to the left of γ , and
 - ▶ $-\lambda$ to the right of γ .
- ▶ SLE(4) is characterized by the property that (\bigstar) $g_t(z)$ evolves as a martingale in time.



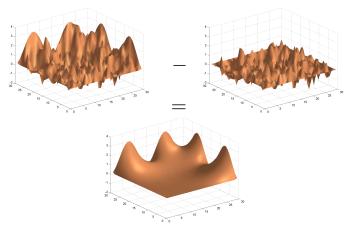
- ▶ Let γ_t be an SLE(4) path connecting x to y at time t.
- Let $g_t(z)$ be harmonic in $D \setminus \gamma[0, t]$ with boundary values
 - \blacktriangleright $+\lambda$ on ∂_+ , $-\lambda$ on ∂_-
 - \blacktriangleright + λ to the left of γ , and
 - ▶ $-\lambda$ to the right of γ .
- ▶ SLE(4) is characterized by the property that (\bigstar) $g_t(z)$ evolves as a martingale in time.
- ▶ Proof idea: show (\bigstar) asymptotically holds for the GL contour by comparing $g_t(z)$ to the conditional mean $M_t(z)$.
- Step 1 Prove approximate harmonicity of $M_t(z)$,
- Step 2 Handle the boundary behavior of $M_t(z)$.



Harmonic Coupling for the DGFF

Proposition

Let h^{ψ} , $h^{\widetilde{\psi}}$ have the law of the DGFF with boundary conditions ψ , $\widetilde{\psi}$, respectively. There exists a coupling $(h^{\psi}, h^{\widetilde{\psi}})$ such that $h^{\psi} - h^{\widetilde{\psi}}$ is harmonic.



Step 1: Approximate Harmonic Coupling for GL Model

Suppose $D \subseteq \mathbf{Z}^2$ is bounded with $R = \operatorname{diam}(D)$ and $\psi, \widetilde{\psi} \colon \partial D \to \mathbf{R}$ boundary conditions with $\|\psi\|_{\infty} + \|\widetilde{\psi}\|_{\infty} \le \overline{\Lambda} (\log R)^{\overline{\Lambda}}$ for some $\overline{\Lambda} > 0$.

Step 1: Approximate Harmonic Coupling for GL Model

Suppose $D\subseteq \mathbf{Z}^2$ is bounded with $R=\operatorname{diam}(D)$ and $\psi,\widetilde{\psi}\colon \partial D\to \mathbf{R}$ boundary conditions with $\|\psi\|_\infty+\|\widetilde{\psi}\|_\infty\leq \overline{\Lambda}(\log R)^{\overline{\Lambda}}$ for some $\overline{\Lambda}>0$.

Theorem (M.)

Let h^{ψ} , $h^{\widetilde{\psi}}$ have the law of the GL model with boundary conditions $\psi, \widetilde{\psi}$, respectively. There exists a coupling $(h^{\psi}, h^{\widetilde{\psi}})$ such that

$$\mathbf{P}[h^{\psi}-h^{\widetilde{\psi}} \ \ \text{is harmonic in } D(R^{1-\epsilon})]=1-O_{\overline{\Lambda}}(R^{-\delta})$$

for $\epsilon, \delta > 0$ depending only on $\mathcal V$ where $D(r) = \{x \in D : dist(x, \partial D) \ge r\}$.

Step 1: Approximate Harmonic Coupling for GL Model

Suppose $D\subseteq \mathbf{Z}^2$ is bounded with $R=\operatorname{diam}(D)$ and $\psi,\widetilde{\psi}\colon \partial D\to \mathbf{R}$ boundary conditions with $\|\psi\|_\infty+\|\widetilde{\psi}\|_\infty\leq \overline{\Lambda}(\log R)^{\overline{\Lambda}}$ for some $\overline{\Lambda}>0$.

Theorem (M.)

Let h^{ψ} , $h^{\widetilde{\psi}}$ have the law of the GL model with boundary conditions ψ , $\widetilde{\psi}$, respectively. There exists a coupling $(h^{\psi}, h^{\widetilde{\psi}})$ such that

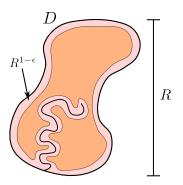
$$\mathbf{P}[h^{\psi}-h^{\widetilde{\psi}} \ \ \text{is harmonic in } D(R^{1-\epsilon})]=1-O_{\overline{\Lambda}}(R^{-\delta})$$

for $\epsilon, \delta > 0$ depending only on $\mathcal V$ where $D(r) = \{x \in D : dist(x, \partial D) \ge r\}$.

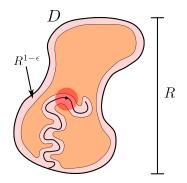
Taking $\widetilde{\psi}=0$ gives the approximate harmonicity of the mean height since $\mathbf{E}[h^{\psi}(x)]=\mathbf{E}[h^{\psi}(x)-h^{0}(x)].$

We make no hypotheses on the regularity of ∂D nor $\psi, \widetilde{\psi}$.

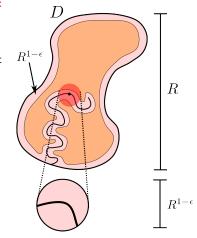
- $D_t(s) = \{z \in D : \mathsf{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ $M_t(z)$ is approx. harmonic in $D_t(R^{1-\epsilon})$ (harmonic coupling).



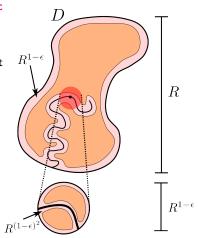
- $D_t(s) = \{z \in D : \mathsf{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ $M_t(z)$ is approx. harmonic in $D_t(R^{1-\epsilon})$ (harmonic coupling).
- Fix $x_0 \in \gamma$ and let $B = B(x_0, 2R^{1-\epsilon})$.



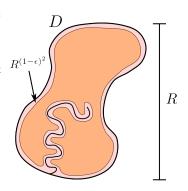
- $D_t(s) = \{z \in D : \mathsf{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ $M_t(z)$ is approx. harmonic in $D_t(R^{1-\epsilon})$ (harmonic coupling).
- Fix $x_0 \in \gamma$ and let $B = B(x_0, 2R^{1-\epsilon})$.
- ▶ Couple $h|_B$ with a **zero-boundary** field \widetilde{h} on B but conditioned to have $\gamma \cap B$ as an interface so that $h|_B$, \widetilde{h} are close away from ∂B .



- $D_t(s) = \{z \in D : \operatorname{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ $M_t(z)$ is approx. harmonic in $D_t(R^{1-\epsilon})$ (harmonic coupling).
- Fix $x_0 \in \gamma$ and let $B = B(x_0, 2R^{1-\epsilon})$.
- ▶ Couple $h|_B$ with a **zero-boundary** field \widetilde{h} on B but conditioned to have $\gamma \cap B$ as an interface so that $h|_B$, \widetilde{h} are close away from ∂B .
- ▶ Apply harmonic coupling to \tilde{h} in B. Holds with distance $R^{(1-\epsilon)^2}$ from ∂B and $\gamma \cap B$



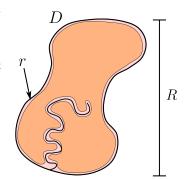
- $D_t(s) = \{z \in D : \operatorname{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ $M_t(z)$ is approx. harmonic in $D_t(R^{1-\epsilon})$ (harmonic coupling).
- Fix $x_0 \in \gamma$ and let $B = B(x_0, 2R^{1-\epsilon})$.
- ▶ Couple $h|_B$ with a **zero-boundary** field \widetilde{h} on B but conditioned to have $\gamma \cap B$ as an interface so that $h|_B$, \widetilde{h} are close away from ∂B .
- ▶ Apply harmonic coupling to \widetilde{h} in B. Holds with distance $R^{(1-\epsilon)^2}$ from ∂B and $\gamma \cap B$
- ▶ Compare $M_t|_B$ to $\mathbf{E}\widetilde{h}$, get approx. harmonicity of $M_t(z)$ in $D_t(R^{(1-\epsilon)^2})$.



- $D_t(s) = \{z \in D : \operatorname{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ $M_t(z)$ is approx. harmonic in $D_t(R^{1-\epsilon})$ (harmonic coupling).
- Fix $x_0 \in \gamma$ and let $B = B(x_0, 2R^{1-\epsilon})$.
- ▶ Couple $h|_B$ with a **zero-boundary** field \widetilde{h} on B but conditioned to have $\gamma \cap B$ as an interface so that $h|_B$, \widetilde{h} are close away from ∂B .
- ▶ Apply harmonic coupling to \tilde{h} in B. Holds with distance $R^{(1-\epsilon)^2}$ from ∂B and $\gamma \cap B$
- ▶ Compare $M_t|_B$ to $\mathbf{E}\widetilde{h}$, get approx. harmonicity of $M_t(z)$ in $D_t(R^{(1-\epsilon)^2})$.
- ▶ Iterate. Arrive at

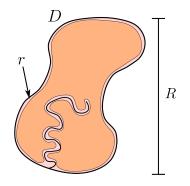
$$\sup_{z\in D_t(r)}|M_t(z)-f_t(z)|=O(r^{-\delta})$$

where $f_t(z)$ is harmonic in $D_t(r)$ with $f_t|_{\partial D_t(r)} = M_t$; δ depends only on \mathcal{V} .



- $D_t(s) = \{z \in D : \mathsf{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ The conditional mean $M_t(z)$ of h given $\gamma[0, t]$ satisfies

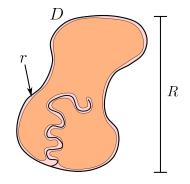
$$\sup_{z\in D_t(r)}|M_t(z)-f_t(z)|=O(r^{-\delta})$$



- $D_t(s) = \{z \in D : \mathsf{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ The conditional mean $M_t(z)$ of h given $\gamma[0, t]$ satisfies

$$\sup_{z\in D_t(r)}|M_t(z)-f_t(z)|=O(r^{-\delta})$$

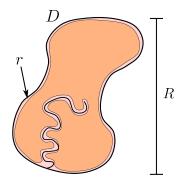
- ▶ Easy: $f_t \sim \pm \lambda$ near ∂_{\pm} .
- ▶ Hard: γ is rough, M_t is very irregular near γ



- $D_t(s) = \{z \in D : \operatorname{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ The conditional mean $M_t(z)$ of h given $\gamma[0, t]$ satisfies

$$\sup_{z\in D_t(r)}|M_t(z)-f_t(z)|=O(r^{-\delta})$$

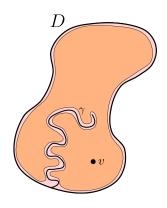
- **Easy**: $f_t \sim \pm \lambda$ near ∂_{\pm} .
- ▶ Hard: γ is rough, M_t is very irregular near γ
- Idea: understand boundary behavior of M_t through the geometry of γ averaged according to harmonic measure



- $D_t(s) = \{z \in D : \operatorname{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ The conditional mean $M_t(z)$ of h given $\gamma[0, t]$ satisfies

$$\sup_{z\in D_t(r)}|M_t(z)-f_t(z)|=O(r^{-\delta})$$

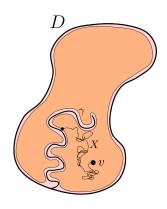
- **Easy**: $f_t \sim \pm \lambda$ near ∂_{\pm} .
- ▶ Hard: γ is rough, M_t is very irregular near γ
- Idea: understand boundary behavior of M_t through the geometry of γ averaged according to harmonic measure
 - Fix v far from γ .



- $D_t(s) = \{z \in D : \mathsf{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ The conditional mean $M_t(z)$ of h given $\gamma[0, t]$ satisfies

$$\sup_{z\in D_t(r)}|M_t(z)-f_t(z)|=O(r^{-\delta})$$

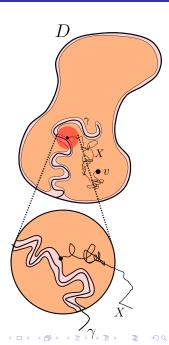
- **Easy**: $f_t \sim \pm \lambda$ near ∂_{\pm} .
- ▶ Hard: γ is rough, M_t is very irregular near γ
- Idea: understand boundary behavior of M_t through the geometry of γ averaged according to harmonic measure
 - Fix v far from γ. Sample x₀ with distance r from γ according to harmonic measure.



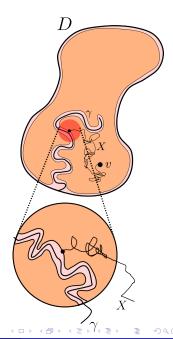
- $D_t(s) = \{z \in D : \operatorname{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ The conditional mean $M_t(z)$ of h given $\gamma[0, t]$ satisfies

$$\sup_{z\in D_t(r)}|M_t(z)-f_t(z)|=O(r^{-\delta})$$

- Easy: $f_t \sim \pm \lambda$ near ∂_{\pm} .
- ▶ Hard: γ is rough, M_t is very irregular near γ
- Idea: understand boundary behavior of M_t through the geometry of γ averaged according to harmonic measure
 - Fix v far from γ. Sample x₀ with distance r from γ according to harmonic measure.
 - ▶ Geometry of γ and height field h near x_0 have scaling limits γ_r , h_r .



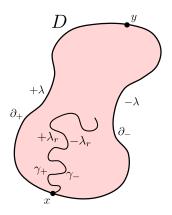
- $D_t(s) = \{z \in D : \operatorname{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ Geometry of γ and height field h near x_0 have scaling limits γ_r , h_r . Let $\lambda_r = \mathbf{E}[h_r(0)]$.



- $D_t(s) = \{z \in D : \mathsf{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ Geometry of γ and height field h near x_0 have scaling limits γ_r , h_r . Let $\lambda_r = \mathbf{E}[h_r(0)]$.
- The conditional mean M_t(z) of h given γ[0, t] satisfies

$$\sup_{z\in D_t(s)}|M_t(z)-\widetilde{f}^r_t(z)|=o(1) ext{ as } r o\infty$$

where $\widetilde{f}_t^r(z)$ is harmonic in D_t with $\widetilde{f}_t^r|_{\gamma_\pm}=\pm\lambda_r$ and $\widetilde{f}_t^r|_{\partial_+}=\pm\lambda$ for $s\gg r$.



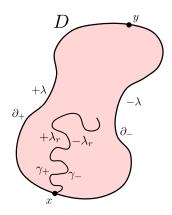
12 / 19

- $D_t(s) = \{z \in D : \mathsf{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ Geometry of γ and height field h near x_0 have scaling limits γ_r , h_r . Let $\lambda_r = \mathbf{E}[h_r(0)]$.
- ▶ The conditional mean $M_t(z)$ of h given $\gamma[0, t]$ satisfies

$$(igstar{igstar}) \sup_{z \in D_t(s)} |M_t(z) - \widetilde{f}_t^{\, r}(z)| = o(1) ext{ as } r o \infty$$

where $\widetilde{f}_t^r(z)$ is harmonic in D_t with $\widetilde{f}_t^r|_{\gamma_\pm}=\pm\lambda_r$ and $\widetilde{f}_t^r|_{\partial_+}=\pm\lambda$ for $s\gg r$.

- Key points:
 - ▶ (λ_r) is Cauchy since (\bigstar) holds for many r



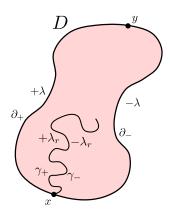
Step 2: The Boundary Values

- $D_t(s) = \{z \in D : \mathsf{dist}(z, \partial D \cup \gamma[0, t]) \geq s\}$
- ▶ Geometry of γ and height field h near x_0 have scaling limits γ_r , h_r . Let $\lambda_r = \mathbf{E}[h_r(0)]$.
- The conditional mean M_t(z) of h given γ[0, t] satisfies

$$(igstar{igstar}) \sup_{z \in D_t(s)} |M_t(z) - \widetilde{f}_t^r(z)| = o(1) ext{ as } r o \infty$$

where $\widetilde{f}_t^r(z)$ is harmonic in D_t with $\widetilde{f}_t^r|_{\gamma_\pm}=\pm\lambda_r$ and $\widetilde{f}_t^r|_{\partial_+}=\pm\lambda$ for $s\gg r$.

- Key points:
 - (λ_r) is Cauchy since (\bigstar) holds for many r
 - $\lambda := \lim_{r \to \infty} \lambda_r$ is **positive**.



Step 2: The Boundary Values

$$D_t(s) = \{z \in D : \operatorname{dist}(z, \partial D \cup \gamma[0, t]) \ge s\}$$

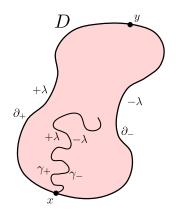
 $\lambda := \lim_{r \to \infty} \lambda_r \text{ is positive.}$

Theorem (M.)

The conditional mean $M_t(z)$ of h given $\gamma[0,t]$ satisfies

$$\sup_{z\in D_t(s)} |M_t(z)-\widetilde{f}_t(z)| = o(1) \ \textit{as} \ s o \infty$$

where $\widetilde{f}_t(z)$ is harmonic in D_t with $\widetilde{f}_t|_{\gamma_\pm}=\pm\lambda$ and $\widetilde{f}_t|_{\partial_\pm}=\pm\lambda$.



CLT for Linear Functionals on Bounded Domains

Theorem (M.)

- ▶ $D \subseteq \mathbb{R}^2$ bounded, smooth and $D_n = D \cap (\frac{1}{n}\mathbb{Z}^2)$.
- \blacktriangleright h^n zero-boundary GL on D_n
- ► Let

$$\xi^{n,D}_{\nabla}(g) = \sum_{b \in D_n^*} \nabla h^n(b) \nabla g(b).$$

Then $\xi_{\nabla}^{n,D}$ converges weakly to a GFF on D in H^{-s}, s > 4.

CLT for Linear Functionals on Bounded Domains

Theorem (M.)

- ▶ $D \subseteq \mathbb{R}^2$ bounded, smooth and $D_n = D \cap (\frac{1}{n}\mathbb{Z}^2)$.
- \blacktriangleright h^n zero-boundary GL on D_n
- ► Let

$$\xi_{\nabla}^{n,D}(g) = \sum_{b \in D_n^*} \nabla h^n(b) \nabla g(b).$$

Then $\xi_{\nabla}^{n,D}$ converges weakly to a GFF on D in H^{-s}, s > 4.

Previous works (Naddaf, Spencer 1997 and Giacomin, Olla, Spohn 2001) are restricted to Gibbs (Funaki-Spohn) states.

CLT for Linear Functionals on Bounded Domains

Theorem (M.)

- ▶ $D \subseteq \mathbb{R}^2$ bounded, smooth and $D_n = D \cap (\frac{1}{n}\mathbb{Z}^2)$.
- \blacktriangleright h^n zero-boundary GL on D_n
- ► Let

$$\xi_{\nabla}^{n,D}(g) = \sum_{b \in D_n^*} \nabla h^n(b) \nabla g(b).$$

Then $\xi_{\nabla}^{n,D}$ converges weakly to a GFF on D in H^{-s}, s > 4.

- Previous works (Naddaf, Spencer 1997 and Giacomin, Olla, Spohn 2001) are restricted to Gibbs (Funaki-Spohn) states.
- ▶ G.O.S. proof based on the Kipnis-Varadhan approach; shift-ergodicity is an important ingredient.

 $ightharpoonup \eta^n$ zero-tilt shift-ergodic Gibbs (Funaki-Spohn) state on $\frac{1}{n}\mathbf{Z}^2$

- $\triangleright \eta^n$ zero-tilt shift-ergodic Gibbs (Funaki-Spohn) state on $\frac{1}{n}\mathbf{Z}^2$
- h^n zero-boundary GL on $D_n = (\frac{1}{n}\mathbf{Z}^2) \cap D$

- $\triangleright \eta^n$ zero-tilt shift-ergodic Gibbs (Funaki-Spohn) state on $\frac{1}{n}\mathbf{Z}^2$
- ▶ h^n zero-boundary GL on $D_n = (\frac{1}{n}\mathbf{Z}^2) \cap D$
- ► Couple η^n and h^n so that $\nabla \overline{h}^n \equiv \eta^n \nabla h^n$ is whp the gradient of a harmonic function (from Step 1, harmonic coupling).

- $\triangleright \eta^n$ zero-tilt shift-ergodic Gibbs (Funaki-Spohn) state on $\frac{1}{n}\mathbf{Z}^2$
- ▶ h^n zero-boundary GL on $D_n = (\frac{1}{n}\mathbf{Z}^2) \cap D$
- ► Couple η^n and h^n so that $\nabla \overline{h}^n \equiv \eta^n \nabla h^n$ is whp the gradient of a harmonic function (from Step 1, harmonic coupling).

Then whp,

$$\xi^{n,D}_{
abla}(g) \equiv \sum_{b \in D_n^*}
abla h^n(b)
abla g(b)$$

- $ightharpoonup \eta^n$ zero-tilt shift-ergodic Gibbs (Funaki-Spohn) state on $\frac{1}{n}\mathbf{Z}^2$
- ▶ h^n zero-boundary GL on $D_n = (\frac{1}{n}\mathbf{Z}^2) \cap D$
- ► Couple η^n and h^n so that $\nabla \overline{h}^n \equiv \eta^n \nabla h^n$ is whp the gradient of a harmonic function (from Step 1, harmonic coupling).

Then whp,

$$egin{aligned} \xi^{n,D}_{
abla}(g) &\equiv \sum_{b \in D^*_n}
abla h^n(b)
abla g(b) \ &= \xi^n_{
abla}(g) + \sum_{b \in D^*_n}
abla \overline{h}^n(b)
abla g(b) \end{aligned}$$

- $ightharpoonup \eta^n$ zero-tilt shift-ergodic Gibbs (Funaki-Spohn) state on $\frac{1}{n}\mathbf{Z}^2$
- ▶ h^n zero-boundary GL on $D_n = (\frac{1}{n}\mathbf{Z}^2) \cap D$
- ► Couple η^n and h^n so that $\nabla \overline{h}^n \equiv \eta^n \nabla h^n$ is whp the gradient of a harmonic function (from Step 1, harmonic coupling).

Then whp,

$$egin{aligned} \xi^{n,D}_{
abla}(g) &\equiv \sum_{b \in D^*_n}
abla h^n(b)
abla g(b) \ &= \xi^n_{
abla}(g) + \sum_{b \in D^*_n}
abla \overline{h}^n(b)
abla g(b) &= \xi^n_{
abla}(g) \end{aligned}$$

- $ightharpoonup \eta^n$ zero-tilt shift-ergodic Gibbs (Funaki-Spohn) state on $\frac{1}{n}\mathbf{Z}^2$
- ▶ h^n zero-boundary GL on $D_n = (\frac{1}{n}\mathbf{Z}^2) \cap D$
- ► Couple η^n and h^n so that $\nabla \overline{h}^n \equiv \eta^n \nabla h^n$ is whp the gradient of a harmonic function (from Step 1, harmonic coupling).

Then whp,

$$\begin{split} \xi^{n,D}_{\nabla}(g) &\equiv \sum_{b \in D_n^*} \nabla h^n(b) \nabla g(b) \\ &= \xi^n_{\nabla}(g) + \sum_{b \in D_n^*} \nabla \overline{h}^n(b) \nabla g(b) = \xi^n_{\nabla}(g) \\ &\to (h,g)_{\nabla} \text{ (by CLT of N.S. or G.O.S.)} \end{split}$$

where $(h, \cdot)_{\nabla}$ is a whole-plane GFF.

Other new results for GL models

- Gibbs states as limits of finite volume models
- CLT on bounded domains in the tilted regimes
 - Limit is a linear transformation of a GFF
- Explicit representation of the limiting covariance
 - ► G.O.S. express it in terms of a complicated variational problem.

Works in Progress [with S. Sheffield]

Full scaling limit of all of the level sets exists and is conformally invariant.

- ▶ Odd integer multiple of λ level sets converge to CLE(4)
- ► Construction of the GFF as a functional of CLE(4)
- ▶ SLE based proof of the CLT for GL

Future Directions

- Precise asymptotics of the maximum height
 - ▶ DGFF: exact results (Bolthausen, Deuschel, Giacomin '01 and Daviaud '06)
 - ▶ GL: known to be between $c_{\mathcal{V}} \log R$, $C_{\mathcal{V}} \log R$ (Deuschel, Giacomin '00). Should have $c_{\mathcal{V}} = C_{\mathcal{V}}$; proof by iterating harmonic coupling. Exact value should come from CLT.

Future Directions

- Precise asymptotics of the maximum height
 - ▶ DGFF: exact results (Bolthausen, Deuschel, Giacomin '01 and Daviaud '06)
 - ▶ GL: known to be between $c_{\mathcal{V}} \log R$, $C_{\mathcal{V}} \log R$ (Deuschel, Giacomin '00). Should have $c_{\mathcal{V}} = C_{\mathcal{V}}$; proof by iterating harmonic coupling. Exact value should come from CLT.
- Growth exponent of the discrete path
 - ▶ SLE prediction: $n^{3/2}$

Future Directions

- Precise asymptotics of the maximum height
 - ▶ DGFF: exact results (Bolthausen, Deuschel, Giacomin '01 and Daviaud '06)
 - ▶ GL: known to be between $c_{\mathcal{V}} \log R$, $C_{\mathcal{V}} \log R$ (Deuschel, Giacomin '00). Should have $c_{\mathcal{V}} = C_{\mathcal{V}}$; proof by iterating harmonic coupling. Exact value should come from CLT.
- Growth exponent of the discrete path
 - ▶ SLE prediction: $n^{3/2}$
- Non-convex models
 - Perturbations of quadratic (Cotar, Deuschel '10 and Cotar, Deuschel, Müller '08). Harmonic coupling, CLT, and SLE convergence results should hold.
 - Gaussian mixture models: non-uniqueness of Gibbs states (Biskup, Kotecky '07) but still have a CLT (Biskup, Spohn '09) for zero-tilt Gibbs states. Finite domains?

18 / 19

Thanks!