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Abstract
There is a natural conjecture that the universal bounds for the dimension spectrum of
harmonic measure are the same for simply connected and for nonsimply connected
domains in the plane. Because of the close relation to conformal mapping theory, the
simply connected case is much better understood, and proving the above statement
would give new results concerning the properties of harmonic measure in the general
case.

We establish the conjecture in the category of domains bounded by polynomial
Julia sets. The idea is to consider the coefficients of the dynamical zeta function as
subharmonic functions on a slice of Teichmüller’s space of the polynomial and then
to apply the maximum principle.

1. Dimension spectrum of harmonic measure
In this paper we discuss some properties of harmonic measure in the complex plane.
For a domain in the Riemann sphere� ⊂ Ĉ and a pointa ∈ �, letω = ωa denote the
harmonic measure of� evaluated ata. The measureωa can be defined, for instance,
as the hitting distribution of a Brownian motion started ata: If e ⊂ ∂�, thenωa(e) is
the probability that a random Brownian path first hits the boundary at a point ofe.

Much work has been devoted to describing dimensional properties ofω when the
domain is as general as possible. In particular, P. Jones and T. Wolff [7] proved that
no matter what the domain� is, harmonic measure is concentrated on a Borel set of
Hausdorff dimension at most 1; in other words,

dimω ≤ 1 for all plane domains. (1.1)

We are interested in finding similar (but stronger) universal estimates involving the
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dimension spectrum ofω.

1.1. Universal spectrum
For every positiveα, we denote

f +
ω (α) = dim

{
αω(z) ≤ α

}
,

whereαω(z) is the lower pointwise dimension ofω:

αω(z) = lim inf
δ→0

logωB(z, δ)

logδ
.

B(z, δ) is a general notation for the disc with centerz and radiusδ.
Theuniversal dimension spectrumis the function

8(α) = sup
ω

f +
ω (α), (1.2)

where the supremum is taken over harmonic measures of all planar domains.
We would like to compare8(α) with the corresponding spectrum defined for

arbitrarysimply connecteddomains in the plane:

8sc(α) = sup
{

f +
ω (α) : � is simply connected

}
.

Because of the close relation to conformal mapping theory, the simply connected case
is much better understood and more information concerning dimension spectrum is
available. The harmonic measure of a simply connected domain is the image of the
Lebesgue measure under the boundary correspondence given by the Riemann map,
and estimates of the Riemann map derivative control the boundary distortion.

For example, an elementary estimate of the integral means of the derivative im-
plies the inequality

8sc(α) ≤ α − c(α − 1)2 (0 < α ≤ 2) (1.3)

with some positive constantc (see (1.14) and Lemma 3). This proves the following
statement:

dimω = 1 for simply connected domains. (1.4)

Indeed, from the definition of dimension spectrum, it follows that

α = dimω ⇒ f +
ω (α) = α.

On the other hand, by (1.3) we havef +
ω (α) 6= α if α 6= 1. Estimate (1.3) is in fact a bit

stronger than the dimension result; the relation between (1.3) and (1.4) is basically the
same as the relation between the central limit theorem and the law of large numbers
in probability theory.
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Comparing statements (1.1) and (1.4), it is natural to ask whether estimates like
(1.3) extend to general, nonsimply connected domains. Weconjecturethat

8(α) ≤ α − c(α − 1)2 (1 ≤ α ≤ 2), (1.5)

which is of course stronger than (1.1). More generally, we state the following.

CONJECTURE

For all α ≥ 1, we have
8(α) = 8sc(α). (1.6)

It is easy to see that (1.6) is false ifα < 1, for the universal spectrum is then trivial:

8(α) ≡ α (α ≤ 1),

but the spectrum8sc(α) is not (see (1.3)). We refer to [13] for further discussion of
the universal spectrum and related topics.

The goal of this work is to give some partial justification of the above conjecture.

1.2. Fractal approximation
A proof of (1.5) based on traditional methods of potential theory (as, e.g., in [7])
seems to be out of reach, let alone a proof of the conjecture. We propose to apply
methods of conformal dynamics, and to this end we first restate the conjecture using
the idea of fractal approximation.

According to [4] and [13], one can replace the supremum in the definition of
the universal dimension spectrum (1.2) with one taken over harmonic measures on
(conformally) self-similar boundaries:

8(α) = sup
{

f +
ω (α) : ∂� is a conformal Cantor set

}
. (1.7)

A set J ⊂ C is said to be aconformal Cantor setif it is generated by some
analytic map of the form

F :

d⋃
j =1

D j → D, (1.8)

where{D j } is a finite collection of open topological discs such that the closuresD̄ j

are pairwise disjoint and sit inside a simply connected domainD. It is also required
that the restriction ofF to eachD j be a bijectionD j → D.

If J = ∂� is a conformal Cantor set, then we have

f +
ω (α) = sup

{
fω(α′) : α′

≤ α
}
,
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where

fω(α) = dim
{

z ∈ J : lim
δ→0

logωB(z, δ)

logδ
= α

}
.

To prove the conjecture it is therefore sufficient to show that the inequality

fω(α) ≤ 8sc(α) (α ≥ 1)

holds for every conformal Cantor set.
We can now state our main result. We say thatJ is apolynomial conformal Can-

tor setif the mapF in (1.8) extends to a polynomial of degreed. In other words,J is
the usual Julia set of a polynomial such that the orbits of all critical points escape to
∞.

THEOREM A

If ω is harmonic measure on a polynomial conformal Cantor set, then

fω(α) ≤ 8sc(α) (α ≥ 1). (1.9)

We believe that a “polynomial” version of (1.7) should be true; that is, to compute the
universal spectrum, it should be enough to consider only polynomial conformal Can-
tor sets. The conjecture then follows from Theorem A. In this respect, let us mention
that the dimension results (1.4) and (1.1) were first discovered for polynomial Julia
sets (see [15]; also, cf. [12], [20]).

1.3. Pressure function
For a polynomialF , let �F denote the basin of attraction to∞:

�F = {z : Fnz → ∞},

so thatJF = ∂�F is the Julia set ofF . The harmonic measureω∞ of �F is the
measure of maximal entropy with respect toF . We apply some standard techniques
of ergodic theory to rewrite (1.9) in a more convenient form.

Thepressure functionof a polynomialF of degreed is defined by the formula

PF (t) = lim sup
n→∞

1

n
logd

∑
z∈F−nz0

|F ′
n(z)|

−t , (1.10)

whereF ′
n denotes the derivative of thenth iterate ofF , andz0 ∈ �F is some point

not in the orbit of the critical set. The limit (1.10) does not depend on the choice of
z0. The following two assertions are well known.
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LEMMA 1
If J = JF is a polynomial conformal Cantor set, then

fω(α) = inf
t≥0

[t + αPF (t)] (α ≥ 1). (1.11)

LEMMA 2
If F is a polynomial with connected Julia set, then

PF (t) = β(t) − t + 1,

whereβ(t) = β�F (t) is the integral means spectrum of�F .

By definition, the integral means spectrumβ�(t) of a simply connected domain� is
the function

β�(t) = lim sup
r →1

log
∫
|z|=r |ϕ′(z)|t |dz|

| log(1 − r )|
(t ∈ R),

whereϕ is a Riemann map taking the unit disc onto�.
We define theuniversal integral means spectrum

B(t) = Bsc(t) = sup
�

β�(t)

by taking the supremum over domains containing∞. The following fact was estab-
lished in [13].

LEMMA 3
If we denote

5(t) = B(t) − t + 1, (1.12)

then
8sc(α) = inf

t≥0
[t + α5(t)] (α ≥ 1). (1.13)

The reason (1.13) is valid is that relations similar to (1.11) hold for all domains with
self-similar boundaries, and by “fractal approximation,” the same is true on the level
of universal bounds.

Let us mention at this point that, by Lemma 3, the inequality (1.3) we discussed
earlier is a consequence of the well-known estimate

B(t) ≤ Ct2 (|t | ≤ 1). (1.14)

From Lemma 2 and (1.12), it follows that

JF is connected⇒ PF (t) ≤ 5(t). (1.15)
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We extend the latter inequality to Julia sets of polynomials with all critical points
escaping to∞ and show that ift ≥ 0, then

JF is a polynomial conformal Cantor set⇒ PF (t) ≤ 5(t). (1.16)

The following will complete the proof of Theorem A: We obtain (1.9) from Lemmas
1 and 3 by applying the Legendre transform to both sides of the inequality in (1.16).

1.4. Two results in polynomial dynamics
The verification of (1.16) follows a natural strategy. Given a polynomialF with all
critical points escaping to∞, we use a construction due to B. Branner and J. Hubbard
[2] to embedF into a holomorphic polynomial family

λ 7→ Fλ, λ ∈ D :=
{
|λ| < 1

}
,

so that the boundary values of the family exist as polynomials with connected Julia
set. Using a subharmonicity argument, one can then extend the bound (1.15) of the
pressure function from the boundary circle to the unit disc.

We recall the Branner-Hubbard construction in Section 2 (see also [16] for an
interpretation in terms of Teichm̈uller spaces). In the case of quadratic polynomials,
we can simply take

Fλ(z) = z2
+ c(λ),

whereλ 7→ c(λ) is a universal covering map of the complementC \ M of the Man-
delbrot setM .

It is important that almost all limit polynomials have “nice” ergodic properties.
For instance, it is known from [6] and [23] that almost every point on the boundary
of the Mandelbrot set is a Collet-Eckmann polynomial. The following weaker state-
ment, which goes back to A. Douady [5] in the quadratic case, is sufficient for our
argument. (The method of [23] can be extended to deduce a much stronger condition
in Theorem B, namely, the so-called topological Collet-Eckmann condition.)

THEOREM B

Let F be a polynomial with all critical points escaping to∞, and let {Fλ} be its
Branner-Hubbard family. Then the following is true for almost every pointζ ∈ ∂D.
For every z∈ C, there exists a limit

Fζ (z) = lim
r →1−

Fr ζ (z),

and Fζ is a polynomial with connected Julia set and all cycles repelling.

This theorem is used in combination with another technical result. If we consider the
pressure as a function on the parameter space of a Branner-Hubbard family, then it is
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not immediately clear how to apply the maximum principle because there are poles
in the sum ∑

z∈F−nz0

|F ′
n(z)|

−t

of definition (1.10). A way out of this difficulty is to work with a version of the
pressure function that involves multipliers of periodic points. Let us denote

Zn(F, t) =

∑
a∈Fix(Fn)

|F ′
n(a)|−t

(see [21] for the connection with the dynamical zeta function). It is well known that
if F is ahyperbolicpolynomial, then we have

PF (t) = lim
n→∞

1

n
logd Zn(F, t). (1.17)

THEOREM C

If a polynomial F of degree d has connected Julia set and has no nonrepelling cycles,
then

PF (t) ≥ lim sup
n→∞

1

n
logd Zn(F, t).

1.5. Proof of Theorem A (assuming Theorems B and C)
As we mentioned, it is sufficient to show that ifF is a polynomial with all critical
points escaping to∞ and if t ≥ 0, then

PF (t) ≤ 5(t). (1.18)

Let {Fλ} be the Branner-Hubbard family withF0 = F . Consider the functions

sn(λ) =
1

n
logd Zn(Fλ, t) (λ ∈ D).

Since all periodic points of each polynomialFλ are repelling, the functionssn are
uniformly bounded. (This is the only place where we uset ≥ 0.)

For everyn, the correspondenceλ → Fix(Fn
λ ) is a multivalued holomorphic

function with branching points corresponding to polynomials with parabolic cycles.
There are no such polynomials in the case under consideration, and so every periodic
pointaν ∈ Fix(Fn) determines a single-valued function

λ 7→ aν(λ) ∈ Fix(Fn
λ ), aν(0) = aν .

It follows that the functionssn aresubharmonicin the unit disc; we have

sn =
1

n
logd

∑
ν

hν h̄ν,
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where
hν(λ) =

[
(Fn

λ )′(aν(λ))
]t/2

are holomorphic functions, and therefore

1sn = const

∑
|hν |

2 ∑
|∂hν |

2
− |

∑
h̄ν∂hν |

2( ∑
|hν |

2
)2

≥ 0.

We should note that the subharmonicity of pressure-like quantities is a well-known
general principle (see [1] for a beautiful application to quasiconformal maps).

Let us also define the values

sn(ζ ) =
1

n
logd Zn(Fζ , t)

for all boundary pointsζ ∈ ∂D satisfying the conclusion of Theorem B. The set of
suchζ ’s has full Lebesgue measure; the polynomialsFζ have no nonrepelling cycles,
and their Julia sets are connected. It is clear thatsn(ζ ) is a radial limit of the function
sn(λ) whereverFζ is a radial limit of the polynomial familyFλ; in particular, this is
true for almost allζ ∈ ∂D. Since the functionssn(λ) are bounded and subharmonic,
we have

sn(0) ≤
1

2π

∫
∂D

sn(ζ )|dζ |. (1.19)

One the other hand, applying Theorem C and (1.16), we obtain the inequalities

lim
n→∞

s̃n(ζ ) ≤ PFζ (t) ≤ 5(t), (1.20)

where
s̃n(ζ ) = sup

k≥n
sk(ζ ).

Combining (1.19) and (1.20), we prove (1.18):

PF (t) = lim
n→∞

sn(0) ≤ lim
n→∞

1

2π

∫
s̃n(ζ )|dζ |

=
1

2π

∫
lim

n→∞
s̃n(ζ )|dζ | ≤ 5(t),

where the first equality is by (1.17), and the second one follows from Lebesgue’s
convergence theorem. 2

The rest of the paper contains the proofs of Theorems B and C. Both proofs depend
on the work of J. Kiwi [9], [8]. We refer to [3] and [17] for general facts concerning
polynomial dynamics.
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2. Branner-Hubbard families
In this section we briefly recall the Branner-Hubbard construction of wringing com-
plex structures (see [2]), and we then derive Theorem B from a result of Kiwi. We use
the half-plane

H = {γ = α + iβ : α > 0, β ∈ R}

as a parameter space for Branner-Hubbard families{Fγ }. The map

λ(γ ) =
γ − 1

γ + 1

transforms this parameter space intoD, the case we considered in the first section.

2.1. Wringing complex structures
Let 0 denote the subgroup of GL(2, R) formed by matrices

γ =

(
α 0
β 1

)
with α > 0,

which we identify with complex numbers

γ = α + iβ ∈ H.

0 acts on the Riemann sphereĈ as a group of quasiconformal homeomorphisms

Aγ (z) = z|z|γ−1 (0 7→ 0, ∞ 7→ ∞). (2.1)

The Beltrami coefficient ofAγ is

µγ (z) = λ(γ )
z

z̄
,

and the corresponding Beltrami fieldEγ of infinitesimal ellipses is invariant with re-
spect to the transformation

F0 : z 7→ zd.

Let P = Pd denote the space of polynomials of degreed, and letS denote
the subspace ofP which consists of polynomials such that the orbits of all critical
points escape to∞. We also use the notationP∗ andS∗ for the corresponding spaces
of monic centered polynomials. Clearly,P∗

∼= Cd−1, and if we identify equivalent
polynomials (two polynomials are equivalent if they are conformally conjugate), then

S /∼ ∼= S∗/∼ ∼= S∗/Zd−1,

where Zd−1 acts according to the formulaF(z) 7→ η̄F(ηz) with F ∈ S∗ and
ηd−1

= 1.
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Given a polynomialF ∈ S , there exists a conformal map, the extended Böttcher
function

φ : �∗
→ 1∗

satisfying
F0 ◦ φ = φ ◦ F,

where�∗ is an openF-invariant set of full area measure in̂C and1∗ is an open
F0-invariant set of full measure in the exterior unit disc1 = {|z| > 1}. It follows that
the Beltrami fieldsφ−1Eγ are defined almost everywhere inĈ, and the corresponding
family of quasiconformal homeomorphisms

R(γ, F) : Ĉ → Ĉ, (0, 1, ∞) 7→ (0, 1, ∞),

is holomorphic inγ . It is shown in [2] that the equivalence class[γ F] ∈ S /∼ of the
polynomial

γ F := R(γ, F) ◦ F ◦ R(γ, F)−1

depends only on[F] andγ and that the map

(γ, [F]) 7→ [γ F]

is a group action onS /∼.
If O ⊂ S∗/Zd−1 is an orbit of0, then each polynomialF1 ∈ S∗ with [F1] ∈ O

provides a uniformization of the orbit:

γ ∈ H 7→ [γ F1] ∈ O.

This map lifts to a mapH → S∗, which we call theBranner-Hubbard family of F1
and for which we use the notation

γ 7→ Fγ or {Fγ }γ∈H.

Note that because of the group action structure,

{Fγ γ0}γ∈0 is the Branner-Hubbard family ofFγ0. (2.2)

The monic centered polynomialsFγ depend analytically onγ . In fact, we have

Fγ = Rγ ◦ F1 ◦ R−1
γ

for some holomorphic family{Rγ } of quasiconformal automorphisms ofĈ. We also
have the following equation:

φγ := Aγ ◦ φ1 ◦ R−1
γ (near∞), (2.3)

whereφγ is the B̈ottcher functions ofFγ satisfyingφγ (z) ∼ z at∞.
The following lemma describes the boundary behavior of the family{Fγ }.
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LEMMA 4
Consider a Branner-Hubbard family of F1 ∈ S :

Fγ (z) = zd
+ ad−2(γ )zd−2

+ · · · + a0(γ ) (γ ∈ H).

The functions aj (γ ), Im γ = β, have finite angular limits aj (iβ) for almost allβ ∈

∂H. The limit polynomials

Fiβ(z) = zd
+ ad−2(iβ)zd−2

+ · · · + a0(iβ)

have connected Julia sets.

Proof
For a polynomialF , let GF (·) denote the Green function of the Julia setJF with pole
of ∞, and letm(F) be the maximalescape rateof the critical set:

m(F) = max
{
GF (c) : c ∈ Crit(F)

}
.

We writeGγ for the Green function ofFγ .
To prove the first statement, we need the following result of Branner and Hubbard

[2]:
∀% > 0, the set

{
F ∈ P∗ : m(F) ≤ %

}
is compact. (2.4)

From (2.1) and (2.3), it follows that

Gγ ◦ Rγ = αG1,

whereα is the real part ofγ . SinceRγ sends the critical set ofF1 onto the critical set
of Fγ , we have

m(Fγ ) = αm(F1). (2.5)

Applying (2.4), we see that the coefficientsa j (γ ) are uniformly bounded in the strip
{0 < α < 1}, and so the existence of angular limits follows from Fatou’s theorem.

The second statement of the lemma follows from (2.5) and the well-known fact
that the functionm(F) : P∗ → R is continuous.

2.2. Proof of Theorem B
The rest of the argument follows Kiwi’s approach in [9].

Let F1 be a monic centered polynomial of degreed with all critical points escap-
ing to∞, and let{Fγ } be the corresponding Branner-Hubbard family. For simplicity,
we will assume thatF1 (and therefore every polynomial in the family) is such that the
critical points are simple and their orbits are disjoint. The proof in the general case
requires only minor technical modifications. We say that the polynomialFγ is visible
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if, for each critical pointc j (1 ≤ j ≤ d − 1), there are precisely two external rays
terminating atc j . In this case, let

2 j = {θ−

j , θ+

j } ⊂ S1
≡ R/Z

be the set of the external arguments. The collection of the sets2 j ,

2(Fγ ) = {21, . . . ,2d−1},

is called thecritical portrait of Fγ . Every critical portrait determines a partition ofS1

into d sets of length 1/d each. Consider the mapT : S1
→ S1,

T : θ 7→ dθ (mod 1).

The portrait is said to beperiodic if, with respect to this partition, theT-itinerary of
one of the pointsθ±

j is periodic.
The action of the subgroup of0 formed by diagonal matrices determines a flow

t 7→ Ftα+iβ (t > 0) (2.6)

on the Branner-Hubbard family. This flow preserves the visibility (or invisibility) of
polynomials. The flow (2.6) also preserves the critical portraits of visible polynomials.
For β = 0, these assertions follow from the fact that by (2.1) and (2.3), the homeo-
morphismAγ with γ real throws the hedgehog ofF1 onto the hedgehog ofFγ (see
[11] regardinghedgehogsand disconnected Julia sets). On the other hand, one can
assumeβ = 0 without loss of generality by just choosing a different uniformization
(2.2) of the Branner-Hubbard family.

Let us parametrize the orbits of the flow (2.6) by real numbersβ. It is easy to see
that only countably many orbits contain invisible polynomials.

LEMMA 5
The critical portraits are aperiodic for almost allβ ’s.

Proof
Using the group action structure (see (2.2)), it is sufficient to show that ifF1 is a
visible polynomial, then there is a numberε > 0 such that for almost everyβ ∈

(−ε, ε), the critical portrait ofF1+iβ is aperiodic.
Let θ±

j ∈ S1 be the external angles, and letg j be the escape rates of the critical
points ofF1. It is clear from (2.1) and (2.3) that for smallβ ’s the polynomialsF1+iβ

are visible and their external anglesθ±

j (β) satisfy the equation

θ±

j (β) = θ±

j + βg j . (2.7)
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We fix j and a positive integerp, and we consider the setE ⊂ (−ε, ε) of β ’s
such that the itinerary of the point

ϑ = Tθ±

j (β)

is periodic with periodp. Let L(β) denote the element of the partition ofS1 corre-
sponding toF1+iβ such thatϑ ∈ L(β). If ε is small enough, we can find an interval
I ⊂ S1 such that

I ∩

[ ⋃
β∈E

L(β)
]

= ∅.

The periodicity of the itineraries implies

∀n, Tnpϑ 6∈ I . (2.8)

By Poincare’s recurrence theorem, the set ofϑ ’s satisfying (2.8) has Lebesgue mea-
sure zero, and by (2.7), the same is true for the setE.

We can now complete the proof of Theorem B by referring to the following result
of Kiwi [ 9]: “If a sequence of visible polynomials with the same aperiodic critical
portrait tends to a polynomial, then the latter has no non-repelling cycles.”

3. Periodic cycles
In this section we prove Theorem C. The proof is preceeded by a few technical lem-
mas. For the rest of the section we consider only polynomialsF with connected Julia
sets andall periodic cycles repelling. We also assume that the critical pointsc j of F
are simple and nonpreperiodic. (The proof in the general case is similar.)

3.1. Multiplicity of the kneading map
A point b ∈ JF is a cut point if there are at least two external radii landing atb.
Let G be a finite, forward invariant set that consists of cut points. For a pointz ∈ J
which is not in the grand orbitO(G) of G, we denote byP(z) the component of
J \ G containingz. Depending on the context, we use the same notationP(z) for the
correspondingunbounded puzzle piece, that is, the component of the complement of
external rays landing atG (see [18]). Let us number the pieces of theG-partition as
P1, P2, . . . , PN . Thekneading map

kneadG : J \ O(G) → {1, . . . , N}
Z+

is the functionz 7→ {i0(z), i1(z), . . . },whereFν(z) ∈ Piν(z).

LEMMA 6
For anyε > 0, there exists a finite, forward invariant set G such that if n> n0(F, ε)
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and if a ∈ Fix(Fn) \ O(G), then

#
{
a′

∈ Fix(Fn) \ O(G) : kneadG(a) = kneadG(a′)
}

≤ eεn.

Proof
Givenε > 0, we choose a large numberm = m(ε) to be specified later. For simplicity
of notation, let us assume that the fibers of the critical points have pairwise disjoint
orbits, in which case there is a finite, forward invariant setG̃ such that the sets⋃

j

P̃(c j ) and
⋃

j

m⋃
k=1

F−kc j are disjoint, (3.1)

whereP̃(·) denote theG̃-pieces. (For an explanation of this fact and for the definition
of fibers, see the appendix at the end of Section 3.) Replacing each critical piece
P̃(c j ) with components of theF−1G̃-partition, we obtain a new puzzle. LetG denote
the corresponding set; that is,

G = G̃
⋃

j

[
F−1G̃ ∩ P̃(c j )

]
.

TheG-partition has the following (modified) Markov property (see [19, Section 7]):

Each critical puzzle piece maps onto the corresponding critical value
piece by a2-fold branched covering, while every noncritical piece
maps univalently onto a “union” of puzzle pieces.

A sequence{i0, . . . , in−1} is called aMarkov cycleif

Pi1 ⊂ F Pi0, Pi2 ⊂ F Pi1, . . . , Pi0 ⊂ F Pin−1.

By (3.1), the number of critical indices in such a sequence does not exceedn/m.
To each periodic pointz ∈ Fix(Fn) \ O(G) there corresponds the Markov cycle
{i0(z), . . . , in−1(z)}, and the Markov cycles of two periodic points are equal if and
only if the points have the sameG-kneading. Thus it remains to show that the number
of pointsz ∈ Fix(Fn) \ O(G) with the same Markov cycle{i0, . . . , in−1} does not
exceedC2n/m, whereC is a constant independent ofn. This gives an explicit formula
for m = m(ε).

To this end, let us inductively define puzzle pieces5(k) ⊂ Pik (0 ≤ k ≤ n − 1)
as follows:

5(n − 1) = Pin−1, 5(k) = F−1
ik

5(k + 1),

whereF−1
ik

denotes the preimage under the map

F : Pik → F Pik ⊃ 5(k + 1).
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It is clear that the puzzle piece5(0) contains all periodic points with the given
Markov cycle.

To bound the number ofn-periodic points in5(0), we consider the sets

π5(k) ⊂ S1

defined as the intersection of5(k) with the “circle at∞.” Each setπ5(k) consists
of finitely many open arcs. The map

T : θ → dθ (mod 1)

takesπ5(k) ontoπ5(k + 1) homeomorphically if the indexik is noncritical, and as
a two-fold cover ifik is critical. LetC be a constant such that each setπ Pj has at
mostC components. It follows that the number of arcs inπ5(0) is at mostC2n/m. It
is also clear that each arc inπ5(0) has at most oneT-periodic point of periodn.

3.2. Cycles with close orbits
We now use Lemma 6 to prove the following estimate for polynomials without indif-
ferent periodic points. We do not know if the estimate is true for general polynomials.

LEMMA 7
For anyε > 0, there exists a positive numberρ = ρ(F, ε) such that if n> n0(F, ε)

and if a ∈ Fix(Fn), then

#
{
a′

∈ Fix(Fn) : ∀i, |F i (a) − F i (a′)| ≤ ρ
}

≤ eεn.

Proof
Givenε > 0, we find a finite, invariant setG according to Lemma 6. The argument
is based on the notion of thesector mapτ associated withG. For eachb ∈ G, the
external rays atb divide the plane into sectors. Since we assumed thatb was not a
critical point, the polynomialF is a local diffeomorphism identifying sectorsS at b
with sectorsτ Sat F(b):

F(S∩ U ) ⊂ τ S,

whereU is some small neighborhood ofb. Denote byC the total number of sectors
(considering all points ofG), and fix a numberm = m(ε) � C. It follows that if
z is sufficiently close to the setG, then the initial kneading segment of lengthm is
determined up toC choices by the sector map.

Let us now chooseρ > 0 so small that if|z − z′
| < ρ, then either the points

z and z′ are in the same component ofJ \ G or they are both so close to the set
G that we have the situation described in the previous sentence. If the orbits of two
periodic pointsa anda′ areρ-close, then their kneading sequences of lengthn � m
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coincide except for at mostn/m segments of lengthm, for which we haveCn/m

choices. Combining this computation with the estimate of Lemma 6, we complete the
proof.

Lemma 7 is used in conjunction with the following statement, which is a special case
of R. Mañé’s lemma (see [14, Theorem 1]).

LEMMA 8
Givenρ > 0, there is a positive numberδ = δ(F, ρ) such that if n≥ 0 and if D is a
domain such that Fn maps D univalently onto a disk B of radius2δ, then

diam(Fn
|D)−1

(1

2
B

)
< ρ. (3.2)

Here and below, the notation(1/2)B means concentric disc of radius half the radius
of B.

3.3. Good and bad cycles
Let δ > 0. For lack of a better name, we say that a cycleA ∈ Cycle(F, n) is δ-good
if there is a periodic pointa ∈ A and a topological discD containinga such that the
restriction ofFn to D is univalent andFn(D) = B(a, δ). Otherwise, we say that the
cycle isδ-bad. The next lemma states that for polynomials with all cycles repelling,
most of the cycles are “good.”

LEMMA 9
For anyε > 0, there exists a positive numberδ = δ(F, ε) such that if n> n(F, ε),
then

#{δ-bad n-cycles} ≤ eεn.

Proof
Fix a large numberm = m(F, ε) to be specified later. For simplicity we assume
that the orbits of the critical points are pairwise disjoint, and so there is a number
ρ = ρ(F, m) such that ifc 6= c′ are two critical points, then

dist
(
c, Fk(c′)

)
> 10ρ (0 ≤ k ≤ m). (3.3)

We can takeρ small enough so that the estimate of Lemma 7 is valid for a givenε.
Finally, we chooseδ > 0 satisfying the following two conditions.
• For all x ∈ J and k ∈ [0, m], each component of the setF−k B(x, δ) has

diameter less thanρ.
• The conclusion (3.2) of Mañe’s lemma holds.
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Let us estimate the number ofδ-bad cycles.
Fix a coverB of the Julia set with discs of radius 2δ. Clearly, we can assume that

the concentric discs of radiusδ still cover J and that the multiplicity of the covering
is bounded by some absolute constantM . Let n � m. For each periodic pointa ∈

Fix(Fn), we select a discB(a) ∈ B with a ∈ (1/2)B(a). For i > 0, let B−i (a)

denote the component of theF−i B(a) containing the pointFn−i (a), and definej (a)

to be the smallest positive integer such thatB− j (a) contains a critical point, which
we denote byc(a). Note that if j (a) > n, then the cycle ofa is δ-good.

We need some further notation. Givena ∈ Fix(Fn), we define inductively a
sequence of positive integersj1, j2, . . . and a sequence of pointsa1 = a, a2, . . . in
the orbit ofa as follows:

jk = j (ak), ak+1 = Fn− jkak.

The main observation is that
jk + jk+1 > m. (3.4)

Indeed, if jk + jk+1 ≤ m, then both jk and jk+1 are less than or equal tom. By
construction, we have diamB− jk(ak) < ρ, and so

|ak+1 − c(ak)| < ρ.

On the other hand, the discB(ak+1) contains thejk+1th iterate of the critical point
c(ak+1), and therefore

|ak+1 − F jk+1c(ak+1)| < 4δ < 8ρ.

Combining the two inequalities, we get a contradiction with (3.3).
Define thescheduleof a to be a finite sequence

Sch(a) =
{

j1(a), j2(a), . . . , jl (a)
}
,

wherel is the minimal number such that

j1 + · · · + jl > n.

By (3.4), we have
l ≤ 3n/m. (3.5)

We also consider the corresponding sequence of discs in the coverB and the corre-
sponding sequence of critical points

B(a) =
{
B(a1), . . . , B(al )

}
, C (a) =

{
c(a1), . . . , c(al )

}
.
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As we mentioned, forδ-bad cycles we have alljk ≤ n, and therefore

n ≤

l∑
k=1

jk ≤ 2n. (3.6)

The lemma now follows from the three observations below.
(i) The number of sequences{ j1, . . . , jl } satisfying (3.4) and (3.6) is less than

constm4n/m.

Indeed, consider the numbersj1, ( j1 + j2), . . . as points of the interval[1, 2n].
Subdivide the interval into(2n)/m segments of lengthm. Clearly, there are at most
two points in each segment, and there are less thanm2 choices to select at most two
points in any particular segment.

(ii) Consider all periodic points a∈ Fix(Fn) with a given schedule. Then the
number of distinct sequencesB(a) andC (a) does not exceed(d M)3n/m and d3n/m,
respectively. Here d= degF. This follows from (3.5) and the fact that the discB(ak)

must contain thejkth iterate of a critical point, so the number of such discs is less
thand M.

(iii) If two periodic points a and a′ have identical schedules and identical se-
quencesB(a) = B(a′) andC (a) = C (a′), then the orbits of a and a′ areρ-close:

∀i, |F i (a1) − F i (a′

1)| ≤ ρ.

To see this, let{ j1, . . . , jl } be the schedule, and letB = B(a1) = B(a′

1). By
construction, the components ofF− j1 B containing the pointsFn− j1a1 andFn− j1a′

1
must coincide because both contain the critical pointc(a1) = c(a′

1). It follows that if
n − j1 < i ≤ n, then thei th iterates ofa1 anda′

1 belong to the same component of
the corresponding preimage ofB, and this component is mapped univalenly ontoB.
Sincea1 anda′

1 are in(1/2)B, we can apply Lemma 3 to conclude that the iterates of
a1 anda′

1 areρ-close. Repeat this argument for all discsB(ak), k ≤ l .
From (iii) and Lemma 7, it now follows that the number ofn-periodic points with

a given schedule and givenB- andC -sequences is less than consteεn. On the other
hand, by (i) and (ii), the number of possible sequences and schedules satisfying (3.6)
is also less than consteεn, provided thatm = m(ε) is so large thatm−1 logm � ε.
Thus the number of bad cycles is less than conste2εn.

3.4. Proof of Theorem C
Let F be a polynomial with all cycles repelling. Given smallε, we chooseρ =

ρ(F, ε) according to Lemma 6, so that the number ofρ-closen-cycles is less than
consteεn. Then we choose a positive numberδ such that
• all buteεn n-cycles are 4δ-good (see Lemma 9);
• the conclusion (3.2) of Mañé’s lemma holds.
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Fix n � 1. In each goodn-cycle, we pick a pointa such thatFn maps some
domainDa 3 a onto B(a, 4δ) univalently. LetI denote the set of the points that we
have picked, and letI I denote the set of all periodic points in the bad cycles. Then
we have

Zn(F, t) =

∑
a∈Fix(Fn)

|F ′
n(a)|−t

= n
∑
a∈I

|F ′
n(a)|−t

+

∑
a∈I I

|F ′
n(a)|−t

≤ n
∑
a∈I

|F ′
n(a)|−t

+ neεn.

To estimate the sum overI , cover the Julia set with less than constδ−2 discsB of
radius 2δ. In eachB, fix a pointzB 6∈ J so that the pointszB are distinct. Finally, to
eacha ∈ I , assign one of the discsB = B(a) such thata ∈ (1/2)B(a). Note that
B(a) ⊂ B(a, 3δ).

Let za denote the preimage ofzB(a) under the map

Fn
: Da → B(a, 4δ) ⊃ B(a).

SinceFn takes botha andza insideB(a, 3δ), by Koebe’s lemma we have

|F ′
n(a)| � |F ′

n(za)|.

Note that if za = za′ for somea, a′
∈ I , then the orbits ofa anda′ areρ-close.

Indeed, forB = B(a) = B(a′), we have

B ⊂ B(a, 4δ) ∩ B(a′, 4δ),

and thereforeFn maps some domain univalently ontoB with both a anda′ in the
preimage of(1/2)B, and so we can apply (3.2).

It follows that the number of pointsa such thatza is a given point ofF−nzB is at
mosteεn. We have∑

a∈I

|F ′
n(a)|−t . eεn

∑
B

∑
z∈F−n(zB)

|F ′
n(a)|−t .

Since for eachzB we have

PF (t) = lim sup
n→∞

1

n
logd

∑
z∈F−n(zB)

|F ′
n(z)|

−t ,

the theorem follows.



362 BINDER, MAKAROV, and SMIRNOV

A. Appendix. Fibers
Let F be a polynomial with all cycles repelling, and letz ∈ JF . Following Kiwi [9],
consider a sequence of partitions corresponding to the sets

Gl (F, z) :=
{
b ∈ J \ O(z) : b is a cut point,

F l b is periodic of period less than or equal tol
}
.

Let Pl (·) denote theGl (F, z)-pieces. The connected compact set

X(z) =

⋂
l

P̄l (z) ⊂ J

is called thefiber of z. (We use the term from a paper of D. Schleicher [22]; see also
[10].) The fibers satisfy the equation

F X(z) = X(Fz).

It is also clear that if two pointsz1 andz2 have infinite orbits, or if they land on the
same cycle, then the fibersX(z1) andX(z2) are disjoint or coincide.

Our proof of Lemma 6 was based on the following fact mentioned in Kiwi’s
thesis [9, proof of Lemma 13.3]. To make this section self-contained, we reproduce
his argument. We denote byP′

l (·) the puzzle pieces corresponding toF−1Gl .

LEMMA 10
If z has an infinite orbit, then the fiber of z is wandering.

Proof
(i) Let us first show that ifz is a periodic point, thenX(z) = {z}. SinceGl (F p, z) ⊂

Glp(F, z), then fibers ofF p contain fibers ofF , and so by replacingF with an iterate,
we can assume thatz is fixed. For the same reason we can assume that the landing
rays atz are all fixed. The latter implies

b ∈ Fix(F) ∩ P̄2(z) ⇒ the rays landing atb are fixed. (A.1)

Indeed, supposeb is not a landing point of some fixed ray. Thenb ∈ G1, andP1(z)
is contained in some sectorSatb. We haveF P2(z) ⊂ P1(z) ⊂ S. Taking some point
in P2(z) close tob, we see thatτ S = S, whereτ is the sector map, and so the rays at
b have to be fixed.

Let k − 1 be the number of critical points in the fiberX(z). For l � 1, the
map Pl (z) → P′

l (z) extends to a polynomial-like mapg of degreek. Observe that
X(z) ⊂ Jg; and since the critical points ofg belong toX(z) = gX(z), the Julia set
Jg of g is connected. It remains to show thatk = 1. (This givesX(z) ⊂ Jg = {z}.)
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The fixed points ofg belong to the set Fix(F) ∩ P̄2(z). By (A.1), for each fixed point
of g there is anF-invariant (and thereforeg-invariant) arc inJc

⊂ Jc
g tending to the

fixed point.
Let Q be a degreek polynomial that is conjugate tog. It follows that there areQ-

invariant arcs inC \ JQ tending to each ofk fixed points ofQ. Applying the Riemann
map, we getk arcs tending tok distinct points on the unit circle invariant with respect
to the mapζ 7→ ζ k, a contradiction.

(ii) Suppose now thatz is not preperiodic. ReplacingF with some iterate, we can
reduce the problem to showing that

X(Fz) = X(z) ⇒ z ∈ Fix(F).

SupposeX(Fz) = X(z). Then for everyl , we have a mapF : Pl (z) → P′

l (z) which
extends to a polynomial-like map with Julia set contained inP̄l (z). It follows that

∀l , P̄l (z) ∩ Fix(F) 6= ∅,

and thereforeX(z) contains at least one fixed pointb. Since the partitionGl (z, F) is
finer thanGl (b, F), by (i) we haveX(z) ⊂ X(b) = {b}.

If the fibers of the critical points have pairwise disjoint orbits, then from Lemma 10 it
follows that statement (3.1) holds for puzzle pieces̃P(c j ) = Pl (c j ) with l sufficiently
large. This is precisely the fact that we used earlier.
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