HARMONIC MEASURE AND POLYNOMIAL
JULIA SETS

I. BINDER, N. MAKAROV, and S. SMIRNOV

Abstract

There is a natural conjecture that the universal bounds for the dimension spectrum
harmonic measure are the same for simply connected and for nonsimply connec
domains in the plane. Because of the close relation to conformal mapping theory, t
simply connected case is much better understood, and proving the above staten
would give new results concerning the properties of harmonic measure in the gene
case.

We establish the conjecture in the category of domains bounded by polynom
Julia sets. The idea is to consider the coefficients of the dynamical zeta function
subharmonic functions on a slice of Teidhlfar's space of the polynomial and then
to apply the maximum principle.

1. Dimension spectrum of harmonic measure

In this paper we discuss some properties of harmonic measure in the complex pla

For a domain in the Riemann spheeec Canda point € Q, letw = w4 denote the

harmonic measure @&® evaluated ah. The measure, can be defined, for instance,

as the hitting distribution of a Brownian motion startecalf e C 92, thenwa(e) is

the probability that a random Brownian path first hits the boundary at a po@t of
Much work has been devoted to describing dimensional propertieswien the

domain is as general as possible. In particular, P. Jones and T. WRgtfifdved that

no matter what the doma is, harmonic measure is concentrated on a Borel set o

Hausdorff dimension at most 1; in other words,

dimw <1 for all plane domains (1.2)

We are interested in finding similar (but stronger) universal estimates involving tr
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dimension spectrum ab.

1.1. Universal spectrum
For every positiver, we denote

f(a) =dim {aw(z) < a},
wherea,,(2) is the lower pointwise dimension af:

logwB(z, §)

%(2) = “tsn—lgf log$s

B(z, 9) is a general notation for the disc with centeand radiuss.
Theuniversal dimension spectruisithe function

® (o) = supf (@), (1.2)

where the supremum is taken over harmonic measures of all planar domains.
We would like to compareb (o) with the corresponding spectrum defined for
arbitrarysimply connectedomains in the plane:

Psc(a) = sup{ f,f(«) : Q is simply connecteld

Because of the close relation to conformal mapping theory, the simply connected c:
is much better understood and more information concerning dimension spectrum
available. The harmonic measure of a simply connected domain is the image of
Lebesgue measure under the boundary correspondence given by the Riemann r
and estimates of the Riemann map derivative control the boundary distortion.

For example, an elementary estimate of the integral means of the derivative i
plies the inequality

Pse(a) <a—cla—1)? O<a<2) (1.3)

with some positive constat(see (.14 and Lemma 3). This proves the following
statement:
dimw =1 for simply connected domains (1.4)

Indeed, from the definition of dimension spectrum, it follows that
a=dmeow = f(j'(a) = .

On the other hand, by.(3) we havef | (&) # « if « # 1. Estimate{.3) is in fact a bit
stronger than the dimension result; the relation betweeh &nd (L.4) is basically the
same as the relation between the central limit theorem and the law of large numb
in probability theory.
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Comparing statements (1) and (L.4), it is natural to ask whether estimates like
(1.3) extend to general, nonsimply connected domainscivgecturethat

Pa)<a—cla—12? (1<a<?2), (1.5)

which is of course stronger thai.(). More generally, we state the following.

CONJECTURE
For all « > 1, we have
D (o) = Pge(@). (1.6)

It is easy to see thai (6) is false ifa < 1, for the universal spectrum is then trivial:

D (a) a (x=<1),

but the spectrun®s(«) is not (see 1.3)). We refer to [L3] for further discussion of
the universal spectrum and related topics.
The goal of this work is to give some partial justification of the above conjecture

1.2. Fractal approximation
A proof of (1.5 based on traditional methods of potential theory (as, e.g.7lin [
seems to be out of reach, let alone a proof of the conjecture. We propose to ap
methods of conformal dynamics, and to this end we first restate the conjecture us
the idea of fractal approximation.

According to f] and [L3], one can replace the supremum in the definition of
the universal dimension spectruh.f) with one taken over harmonic measures on
(conformally) self-similar boundaries:

® (o) = sup{ f (@) : 9K is a conformal Cantor skt (1.7)

A setJ c C is said to be aonformal Cantor seif it is generated by some
analytic map of the form

d
F: | JDj— D. (1.8)
j=1
where{Dj} is a finite collection of open topological discs such that the closDres
are pairwise disjoint and sit inside a simply connected doraitt is also required

that the restriction of to eachD; be a bijectionDj — D.
If J = 9Q is a conformal Cantor set, then we have

fl) = sup{ fo@): o < ot},
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where

f, () = dim{z cJ: gim()% — a}.

To prove the conjecture it is therefore sufficient to show that the inequality
fol@) < Psel@) (o > 1)

holds for every conformal Cantor set.

We can now state our main result. We say tha apolynomial conformal Can-
tor setif the mapF in (1.8) extends to a polynomial of degreeln other words,J is
the usual Julia set of a polynomial such that the orbits of all critical points escape
Q.

THEOREM A
If w is harmonic measure on a polynomial conformal Cantor set, then

fola) < Pgele) (o > 1). (1.9

We believe that a “polynomial” version of (7) should be true; that is, to compute the
universal spectrum, it should be enough to consider only polynomial conformal Ca
tor sets. The conjecture then follows from Theorem A. In this respect, let us mentic
that the dimension resultd () and (L.1) were first discovered for polynomial Julia
sets (seeld)]; also, cf. [L2], [20]).

1.3. Pressure function
For a polynomialF, let Q¢ denote the basin of attraction ¢o:

QF ={z: F"z— o0},

so thatJr = 9QF is the Julia set of. The harmonic measu®e,, of Qf is the
measure of maximal entropy with respectRoWe apply some standard techniques
of ergodic theory to rewritel(9) in a more convenient form.

Thepressure functiof a polynomialF of degredl is defined by the formula

1
Pet) =limsup=logg Y  [Fh(@I™", (1.10)
n—oco N —
zeF"zg

where F/, denotes the derivative of thh iterate ofF, andzy € Qf is some point
not in the orbit of the critical set. The limitL(10 does not depend on the choice of
Zo. The following two assertions are well known.
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LEMMA 1
If 3 = Jg is a polynomial conformal Cantor set, then

fo(@) = inf[t+aPr®)] (@=1). (1.11)

LEMMA 2
If F is a polynomial with connected Julia set, then

PE®) = B —t+1,

whereg(t) = Bq. (1) is the integral means spectrum Qg .

By definition, the integral means spectrig(t) of a simply connected domain is
the function | ol (€
A 09 [, ¢’ @' 1dZ]
r—1 [log(1 —1)]
whereg is a Riemann map taking the unit disc o120
We define theuniversal integral means spectrum

(t eR),

B(t) = Bsc(t) = Sgpﬂsz(t)

by taking the supremum over domains containig The following fact was estab-
lished in [L3].

LEMMA 3
If we denote
() = B(t) —t + 1, (1.12)
then
Dge(a) = tin(t) [t +all(t)] (x>1). (1.13)

The reasoni(.13) is valid is that relations similar tal(11) hold for all domains with
self-similar boundaries, and by “fractal approximation,” the same is true on the lev
of universal bounds.

Let us mention at this point that, by Lemma 3, the inequality)(we discussed
earlier is a consequence of the well-known estimate

Bt) <Ct* (|t|<1). (1.14)
From Lemma 2 andl(12), it follows that

Jr is connected= Pg (t) < TI(1). (1.15)
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We extend the latter inequality to Julia sets of polynomials with all critical points
escaping tao and show that if > 0, then

Jr is a polynomial conformal Cantor set> Pg(t) < I1(t). (1.16)

The following will complete the proof of Theorem A: We obtain g from Lemmas
1 and 3 by applying the Legendre transform to both sides of the inequalitylif) (

1.4. Two results in polynomial dynamics

The verification of {.16) follows a natural strategy. Given a polynomRlwith all
critical points escaping teo, we use a construction due to B. Branner and J. Hubbar
[2] to embedF into a holomorphic polynomial family

A= Fy, AED:={|A|<1},

so that the boundary values of the family exist as polynomials with connected Ju
set. Using a subharmonicity argument, one can then extend the bburijl ¢f the
pressure function from the boundary circle to the unit disc.

We recall the Branner-Hubbard construction in Section 2 (see addr an
interpretation in terms of Teichiier spaces). In the case of quadratic polynomials,
we can simply take

F(2) = 22 + c()),

wherei — c(A) is a universal covering map of the complemény .# of the Man-
delbrot set#.

It is important that almost all limit polynomials have “nice” ergodic properties.
For instance, it is known fromg] and [23] that almost every point on the boundary
of the Mandelbrot set is a Collet-Eckmann polynomial. The following weaker state
ment, which goes back to A. Douady][in the quadratic case, is sufficient for our
argument. (The method 02| can be extended to deduce a much stronger conditiol
in Theorem B, namely, the so-called topological Collet-Eckmann condition.)

THEOREM B

Let F be a polynomial with all critical points escaping to, and let{F;} be its
Branner-Hubbard family. Then the following is true for almost every poiat 9D.
For every ze C, there exists a limit

Fe(2) = rian_ Fre (2),

and F is a polynomial with connected Julia set and all cycles repelling.

This theorem is used in combination with another technical result. If we consider
pressure as a function on the parameter space of a Branner-Hubbard family, then
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not immediately clear how to apply the maximum principle because there are pol

in the sum
Y. IR@I™
zeF—Nzg
of definition (L.10. A way out of this difficulty is to work with a version of the
pressure function that involves multipliers of periodic points. Let us denote

Zy(F.h= > |F@™
aeFix(F")

(see P1] for the connection with the dynamical zeta function). It is well known that
if F is ahyperbolicpolynomial, then we have

P(t) = lim % logy Zn(F., t). (1.17)

THEOREM C
If a polynomial F of degree d has connected Julia set and has no nonrepelling cycle
then

Pe(t) > lim supE logg Zn(F, 1).

n—oo N

1.5. Proof of Theorem A (assuming Theorems B and C)
As we mentioned, it is sufficient to show thatHf is a polynomial with all critical
points escaping too and ift > 0, then

Pe(t) < TI(t). (1.18)

Let {F,} be the Branner-Hubbard family withg = F. Consider the functions
1
S$H(A) = 0 logg Zn(Fi,t) (A e D).

Since all periodic points of each polynomig) are repelling, the functions, are
uniformly bounded(This is the only place where we use- 0.)

For everyn, the correspondence — Fix(F}') is a multivalued holomorphic
function with branching points corresponding to polynomials with parabolic cycles
There are no such polynomials in the case under consideration, and so every peric
pointa, € Fix(F") determines a single-valued function

A a,(A) € Fix(F), a,(0) =a,.

It follows that the functions,, aresubharmonidn the unit disc; we have

1 _
31 = ﬁ |Ogd2‘):huhv’
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where
h, () = [(FY (a,())]"?

are holomorphic functions, and therefore

Z |hv|22 |8hv|2 - | Zﬁvahv|2 >0
> > 0.
(X 1hy[?)
We should note that the subharmonicity of pressure-like quantities is a well-know

general principle (sedl] for a beautiful application to quasiconformal maps).
Let us also define the values

As, = const

1
$(¢) = o logg Zn(F;, 1)

for all boundary pointg € 9D satisfying the conclusion of Theorem B. The set of
such¢’s has full Lebesgue measure; the polynommlshave no nonrepelling cycles,
and their Julia sets are connected. It is clear $h&t) is a radial limit of the function
Sh(A) whereverF; is a radial limit of the polynomial familyF; ; in particular, this is
true for almost al € oID. Since the functions, (1) are bounded and subharmonic,
we have

1
50 = 5= [ s)del. (1.19)
7T JD
One the other hand, applying Theorem C ahd §), we obtain the inequalities
lim %(¢) < Pr.(t) < (D), (1.20)
where

$n(¢) = sups(¢).

k>n

Combining (.19 and (.20, we prove {.19):
. . 1 [,
Pet) = fim 510 = lim_ o [ &(o)ide]
= o [ im s@idel <
T o n—>ooSn olag] = ’

where the first equality is byl(17), and the second one follows from Lebesgue’s
convergence theorem. O

The rest of the paper contains the proofs of Theorems B and C. Both proofs depe
on the work of J. Kiwi P], [8]. We refer to B] and [17] for general facts concerning
polynomial dynamics.
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2. Branner-Hubbard families
In this section we briefly recall the Branner-Hubbard construction of wringing com
plex structures (se€]), and we then derive Theorem B from a result of Kiwi. We use
the half-plane

H={y=a+iB: a >0, B8R}

as a parameter space for Branner-Hubbard fam{ife$. The map
y—1
)\ = —
2z y+1

transforms this parameter space ifitothe case we considered in the first section.

2.1. Wringing complex structures
LetI" denote the subgroup of G2, R) formed by matrices

y:(Z 2) with « > 0,
which we identify with complex numbers
y=a+ip eH.
I" acts on the Riemann spheteas a group of quasiconformal homeomorphisms
A@=72""1 (00, 0o ). (2.1)

The Beltrami coefficient of\,, is

Z
1y (2) = )»()/)5,

and the corresponding Beltrami fiedg}) of infinitesimal ellipses is invariant with re-
spect to the transformation

Fo:z— 2.

Let & = Z4 denote the space of polynomials of degtkeand let.” denote
the subspace of? which consists of polynomials such that the orbits of all critical
points escape teo. We also use the notatia#, and.¥;, for the corresponding spaces

of monic centered polynomials. Clearly?, = C9-1, and if we identify equivalent
polynomials (two polynomials are equivalent if they are conformally conjugate), the

where Zq—1 acts according to the formulg(z) — nF(nz) with F € % and
d—1
n = il
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Given a polynomiaF € .7, there exists a conformal map, the extendétt&her

function

¢ QF — A*
satisfying

Foogp=¢oF,
whereQ* is an openF-invariant set of full area measure { and A* is an open
Fo-invariant set of full measure in the exterior unit disc= {|z| > 1}. It follows that
the Beltrami fieId@*lgy are defined almost everywhere(n and the corresponding
family of quasiconformal homeomorphisms

R(y, F): C— @, (0,1,00) — (0,1, 0),

is holomorphic iny. Itis shown in P] that the equivalence claggF] € ./~ of the
polynomial
yF:=R(y,F)oFoR(y,F)!

depends only ofiF] andy and that the map
(v, [FD — [¥F]

is a group action o’/ ~.
If & C ¥ /Z4q—1is an orbit ofl", then each polynomidf; € .7, with [F1] € &
provides a uniformization of the orbit:

yeH — [yF]eO.

This map lifts to a mafil — %, which we call theBranner-Hubbard family of £
and for which we use the notation

y—F, or {Fy}yen.
Note that because of the group action structure,
{Fyyo}yer is the Branner-Hubbard family d¥,,. (2.2)
The monic centered polynomials, depend analytically op. In fact, we have
Fy =R, oFioR?

for some holomorphic familyR, } of quasiconformal automorphisms ©f We also
have the following equation:

¢y == Ay op10 R (nearoo), (2.3)

whereg,, is the Bttcher functions of, satisfyinge, (z) ~ z atoo.
The following lemma describes the boundary behavior of the faffily.
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LEMMA 4
Consider a Branner-Hubbard family ofiFe .7

F,(2=2+a4 2122+ .. +ay) (yecH).

The functions a(y), Imy = g, have finite angular limits gi8) for almost allg
oH. The limit polynomials

Fig(2) = 28+ ag_ 208242+ .- + ag(ip)

have connected Julia sets.

Proof
For a polynomiaF, let G (-) denote the Green function of the Julia Sgtwith pole
of oo, and letm(F) be the maximaéscape rat®f the critical set:

m(F) = max{Gg(c) : ¢ € Crit(F)}.

We write G,, for the Green function oF, .
To prove the first statement, we need the following result of Branner and Hubba
[2]:
Vo >0, theset{F e 2, : m(F) < o} is compact. (2.4)

From (2.1) and @.3), it follows that
G, o R, =aGy,

wherex is the real part of. SinceR,, sends the critical set d¥, onto the critical set
of F,, we have
m(F,) = am(Fyp). (2.5)

Applying (2.4), we see that the coefficierds(y) are uniformly bounded in the strip

{0 < @ < 1}, and so the existence of angular limits follows from Fatou’s theorem.
The second statement of the lemma follows fraihb( and the well-known fact

that the functiom(F) : &2, — R is continuous. O

2.2. Proof of Theorem B
The rest of the argument follows Kiwi’'s approach ).

Let F; be a monic centered polynomial of degrkwith all critical points escap-
ing to oo, and let{F, } be the corresponding Branner-Hubbard family. For simplicity,
we will assume thaF; (and therefore every polynomial in the family) is such that the
critical points are simple and their orbits are disjoint. The proof in the general ca:
requires only minor technical modifications. We say that the polynoRjias visible
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if, for each critical pointcj (1 < j < d — 1), there are precisely two external rays
terminating ac; . In this case, let

®) ={6].6{1cS'=R/Z

be the set of the external arguments. The collection of thessgts
O(F) ={01,...,04-1},

is called thecritical portrait of F,,. Every critical portrait determines a partition ¥
into d sets of length Ad each. Consider the map: St — S,

T:6~do (mod1l)

The portrait is said to bperiodicif, with respect to this partition, th&-itinerary of
one of the point@f is periodic.
The action of the subgroup &f formed by diagonal matrices determines a flow

t— Foqig (>0 (2.6)

on the Branner-Hubbard family. This flow preserves the visibility (or invisibility) of
polynomials. The flowZ.6) also preserves the critical portraits of visible polynomials.
For 8 = 0, these assertions follow from the fact that Bylj and ¢.3), the homeo-
morphismA,, with y real throws the hedgehog &% onto the hedgehog d¥, (see
[17] regardinghedgehogsnd disconnected Julia sets). On the other hand, one ce
assume3d = 0 without loss of generality by just choosing a different uniformization
(2.2) of the Branner-Hubbard family.

Let us parametrize the orbits of the flo@.§) by real numberg. It is easy to see
that only countably many orbits contain invisible polynomials.

LEMMA 5
The critical portraits are aperiodic for almost afi’s.

Proof
Using the group action structure (seed), it is sufficient to show that ifF; is a
visible polynomial, then there is a number> 0 such that for almost everg €
(—e¢, €), the critical portrait ofF1ig is aperiodic.

Let jS e S! be the external angles, and tpt be the escape rates of the critical
points of F. It is clear from £.1) and @.3) that for smallg’s the polynomialsFyig
are visible and their external angl@ﬁ(ﬂ) satisfy the equation

0 (B) = 6" + B (2.7)



HARMONIC MEASURE AND POLYNOMIAL JULIA SETS 355

We fix j and a positive integep, and we consider the s& C (—¢, ¢) of B’s
such that the itinerary of the point

¥ =To7(B)

is periodic with periodp. Let L(8) denote the element of the partition 8t corre-
sponding toF1ig such thaty € L(B). If ¢ is small enough, we can find an interval

| c Stsuch that
| “[U L(,B)]:V).
BeE

The periodicity of the itineraries implies
vn, TPy ¢ 1. (2.8)

By Poincare’s recurrence theorem, the sei &fsatisfying £.8) has Lebesgue mea-
sure zero, and by?(7), the same is true for the sEt O

We can now complete the proof of Theorem B by referring to the following resul
of Kiwi [ 9]: “If a sequence of visible polynomials with the same aperiodic critical
portrait tends to a polynomial, then the latter has no non-repelling cycles.”

3. Periodic cycles

In this section we prove Theorem C. The proof is preceeded by a few technical lel
mas. For the rest of the section we consider only polynonfialgth connected Julia
sets andhll periodic cycles repellingWe also assume that the critical poinjsof F

are simple and nonpreperiodic. (The proof in the general case is similar.)

3.1. Multiplicity of the kneading map

A point b € Jr is acut pointif there are at least two external radii landingbat
Let G be a finite, forward invariant set that consists of cut points. For a point]
which is not in the grand orbit’(G) of G, we denote byP(z) the component of

J \ G containingz. Depending on the context, we use the same not&i@ for the
correspondinginbounded puzzle piedhat is, the component of the complement of
external rays landing & (see [L8]). Let us number the pieces of ti&partition as
P1, P2, ..., Pn. Thekneading map

kneag : J\ O(G) — {1, ..., N}%+

is the functionz + {ig(2),i1(2), ... },whereF"(z) € B (.

LEMMA 6
For anye > 0, there exists a finite, forward invariant set G such that if mg(F, ¢)



356 BINDER, MAKAROV, and SMIRNOV

and ifae Fix(F™) \ €(G), then

#{a’ e Fix(F") \ 0(G) : kneag;(a) = kneag;(@)} < e

Proof

Givene > 0, we choose a large numbar= m(¢) to be specified later. For simplicity
of notation, let us assume that the fibers of the critical points have pairwise disjoi
orbits, in which case there is a finite, forward invariant@etuch that the sets

m
U P and | J [ F¥c; are disjoint (3.1)
j | k=1

whereP(-) denote thé5-pieces. (For an explanation of this fact and for the definition
of fibers see the appendix at the end of Section 3.) Replacing each critical pie
|5(Cj ) with components of th& ~1G-partition, we obtain a new puzzle. Létdenote
the corresponding set; that is,

G=G [ J[F'GnP(p]
j

The G-partition has the following (modified) Markov property (sé®,[Section 7]):

Each critical puzzle piece maps onto the corresponding critical value
piece by a2-fold branched covering, while every noncritical piece
maps univalently onto a “union” of puzzle pieces.

A sequencdio, ..., in—1} is called aMarkov cycleif
P, CFR,, P, CFR,,....,R, CFR ;.

By (3.1), the number of critical indices in such a sequence does not exgaed
To each periodic poing € Fix(F™) \ ¢(G) there corresponds the Markov cycle
{io(2),...,in—1(2)}, and the Markov cycles of two periodic points are equal if and
only if the points have the san@-kneading. Thus it remains to show that the number
of pointsz € Fix(F™) \ 0(G) with the same Markov cyclig, ..., in_1} does not
exceedC2"/™ whereC is a constant independentmfThis gives an explicit formula
form = m(e).

To this end, let us inductively define puzzle piete&k) c P, (0 <k <n-—1)
as follows:

Nn-1) =~ (k) = F, Tk + 1),

n-1°

WhereFi;l denotes the preimage under the map

F:R,— FR, D II(k+1).
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It is clear that the puzzle piecH(0) contains all periodic points with the given
Markov cycle.
To bound the number af-periodic points inl1(0), we consider the sets

xI(k) c St

defined as the intersection bf(k) with the “circle atoo.” Each setr IT1(k) consists
of finitely many open arcs. The map

T:60—>d6 (mod1l)

takesr IT1(k) ontor IT(k + 1) homeomorphically if the indei is noncritical, and as
a two-fold cover ifiy is critical. LetC be a constant such that each sd&?j has at
mostC components. It follows that the number of arcsrifi (0) is at mosiC2"/™M. It
is also clear that each arc#11(0) has at most on& -periodic point of periodh. ©

3.2. Cycles with close orbits
We now use Lemma 6 to prove the following estimate for polynomials without indif:
ferent periodic points. We do not know if the estimate is true for general polynomial

LEMMA 7
For anye > 0, there exists a positive number= o (F, ¢) such that if n> ng(F, ¢)
and if a e Fix(F™M), then

#{a' e Fix(F") : Vi, |[F'(@ - F'(@)| < p} <&M

Proof
Givene > 0, we find a finite, invariant sés according to Lemma 6. The argument
is based on the notion of tteector mapr associated witlG. For eachb € G, the
external rays ab divide the plane into sectors. Since we assumedlihaas not a
critical point, the polynomiaF is a local diffeomorphism identifying secto&at b
with sectorsr Sat F (b):

F(SNU) cS,

whereU is some small neighborhood bf Denote byC the total number of sectors
(considering all points 06G), and fix a numbem = m(e) > C. It follows that if
z is sufficiently close to the sé&b, then the initial kneading segment of lengthis
determined up t& choices by the sector map.

Let us now choos@ > 0 so small that ifz — Z| < p, then either the points
z andZ are in the same component df\ G or they are both so close to the set
G that we have the situation described in the previous sentence. If the orbits of tv
periodic pointsa anda’ are p-close, then their kneading sequences of lemgts m
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coincide except for at most/m segments of lengtim, for which we haveC™'™
choices. Combining this computation with the estimate of Lemma 6, we complete tl
proof. O

Lemma 7 is used in conjunction with the following statement, which is a special ca:
of R. Mané’s lemma (seel4, Theorem 1]).

LEMMA 8
Givenp > 0, there is a positive numbér= §(F, p) such thatif n> Oand if D is a
domain such that Fmaps D univalently onto a disk B of radi@s, then

1
diam(F”|D)—1(é B) <p. (3.2)

Here and below, the notatiqrd/2) B means concentric disc of radius half the radius
of B.

3.3. Good and bad cycles

Lets > 0. For lack of a better name, we say that a cysle Cycle(F, n) is §-good

if there is a periodic poind € A and a topological dis® containinga such that the
restriction of F" to D is univalent and="(D) = B(a, §). Otherwise, we say that the
cycle isé-bad The next lemma states that for polynomials with all cycles repelling
most of the cycles are “good.”

LEMMA 9
For anye > 0, there exists a positive numbé&r= §(F, ¢) such that if n> n(F, ¢),
then

#{8-bad n-cycles < €.

Proof

Fix a large numbem = m(F, ¢) to be specified later. For simplicity we assume
that the orbits of the critical points are pairwise disjoint, and so there is a numb
o = p(F, m) such that ifc # ¢’ are two critical points, then

dist(c, F(¢)) > 100 (0 <k < m). (3.3)

We can takeo small enough so that the estimate of Lemma 7 is valid for a given

Finally, we choosé > 0 satisfying the following two conditions.

. For all x € J andk € [0, m], each component of the sérkB(x, 8) has
diameter less thap.

. The conclusiond.2) of Mafe’s lemma holds.
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Let us estimate the number &bad cycles.

Fix a cover# of the Julia set with discs of radiug Zlearly, we can assume that
the concentric discs of radidsstill cover J and that the multiplicity of the covering
is bounded by some absolute constihtLet n 3> m. For each periodic poird €
Fix(FM), we select a disB(a) € % with a € (1/2)B(a). Fori > 0, let B_j(a)
denote the component of tie B(a) containing the poinE"~ (a), and definej (a)
to be the smallest positive integer such tBatj(a) contains a critical point, which
we denote by(a). Note that ifj (a) > n, then the cycle o& is §-good.

We need some further notation. Givane Fix(F"), we define inductively a
sequence of positive integejs, j2, ... and a sequence of poinis = a, ap, ... in
the orbit ofa as follows:

jk=j@),  a1=F"lka

The main observation is that
Jk + Jk1 > m. (3.4)

Indeed, if jx + jk+1 < m, then bothjkx and jx+1 are less than or equal to. By
construction, we have diaB. j, (ax) < p, and so

lak+1 — c(an| < p.

On the other hand, the did8(ax,1) contains thejk,1th iterate of the critical point
c(ak+1), and therefore

a1 — Flic(agy1)| < 48 < 8p.

Combining the two inequalities, we get a contradiction witts).
Define thescheduleof a to be a finite sequence

Scha) = {j1(@), j2(@). ..., i@},
wherel is the minimal number such that
i+ +ji>n

By (3.4), we have
I < 3n/m. (3.5)

We also consider the corresponding sequence of discs in the gbwed the corre-
sponding sequence of critical points

@) = {B(a), ..., B@)}, €@ = {c@),....c@)}.
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As we mentioned, fos-bad cycles we have ajk < n, and therefore

|
n<) jk<2n (3.6)
k=1

The lemma now follows from the three observations below.

(i) The number of sequencépg, ..., j} satisfying 8.4) and (3.6) is less than
constm*/m,

Indeed, consider the numbeys (j1 + j2), ... as points of the intervdll, 2n].
Subdivide the interval intg2n)/m segments of lengtm. Clearly, there are at most
two points in each segment, and there are less tifachoices to select at most two
points in any particular segment.

(i) Consider all periodic points a= Fix(F") with a given schedule. Then the
number of distinct sequence®(a) and ¢ (a) does not excee@ M)3"/™M and of"/™,
respectively. Here & degF. This follows from 3.5) and the fact that the di€B(ax)
must contain thekth iterate of a critical point, so the number of such discs is less
thand M.

(iii) If two periodic points a and ‘ahave identical schedules and identical se-
quences#(a) = #(@') and¥(a) = ¥ (a'), then the orbits of a and’'are p-close:

Vi, |Fl'(a) - F'(@)l < p.

To see this, letjs, ..., ji} be the schedule, and I& = B(a;) = B(a)). By
construction, the components Bf /1B containing the point§&"~Ia; and F"~lia;
must coincide because both contain the critical poiat) = c(a)). It follows that if
n— j1 <i < n, then theith iterates ofa; anda; belong to the same component of
the corresponding preimage Bf and this component is mapped univalenly oBto
Sincea; anda; are in(1/2)B, we can apply Lemma 3 to conclude that the iterates of
a1 anda; arep-close. Repeat this argument for all dig&ay), k < I.

From (iii) and Lemma 7, it now follows that the numbensperiodic points with
a given schedule and gives- and%¢-sequences is less than coef§t On the other
hand, by (i) and (ii), the number of possible sequences and schedules satisf{ng (
is also less than const”, provided tham = m(e) is so large tham=1logm « «.
Thus the number of bad cycles is less than cefist O

3.4. Proof of Theorem C

Let F be a polynomial with all cycles repelling. Given small we chooseo =
o (F, ¢) according to Lemma 6, so that the numberoe€losen-cycles is less than
conste’". Then we choose a positive numidesuch that

. all bute" n-cycles are 8-good (see Lemma 9);

. the conclusiond.2) of Mafé’s lemma holds.
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Fix n > 1. In each good-cycle, we pick a poinf such thatF" maps some
domainD4 > a onto B(a, 45) univalently. Letl denote the set of the points that we
have picked, and leitl denote the set of all periodic points in the bad cycles. Ther
we have

Zy(F.y= Y [F@I™

acFix(F")
=n) [F@"+ Y IF@|™
ael aell

< nZ |Fi@)|t 4 neM.

ael

To estimate the sum over, cover the Julia set with less than cofist discs B of
radius 3. In eachB, fix a pointzg ¢ J so that the pointgg are distinct. Finally, to
eacha € |, assign one of the disd®® = B(a) such thata € (1/2)B(a). Note that
B(a) C B(a, 35).

Let z, denote the preimage @B,y under the map

F": Dy — B(a, 45) D B(a).
SinceF" takes botha andz, inside B(a, 35), by Koebe's lemma we have
IFn(@)] =< |Fr(za)l.

Note that ifz; = z5 for somea, a’ € |, then the orbits o anda’ are p-close.
Indeed, forB = B(a) = B(a’), we have

B C B(a, 46) N B(@, 49),

and therefore=" maps some domain univalently onBwith botha anda’ in the
preimage of1/2) B, and so we can apph3(2).

It follows that the number of points such thatz, is a given point ofF "zg is at
moste". We have

YIR@ITTSENY Y IR@T
ael B zeF~"(zp)

Since for eaclzg we have

1
Pe(t) = limsup= logy Z IFn@1

n
n—0co zeF—"(zp)

the theorem follows. |
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A. Appendix. Fibers
Let F be a polynomial with all cycles repelling, and le€ Je. Following Kiwi [9],
consider a sequence of partitions corresponding to the sets

Gi(F,2) :={be J\ (2 :bisacutpoint,

F'bis periodic of period less than or equalll}o

Let B () denote thes, (F, z)-pieces. The connected compact set

X@=(\R@cJ
|

is called thefiber of z. (We use the term from a paper of D. Schleichi&i]] see also
[10].) The fibers satisfy the equation

FX(2) = X(F2).

It is also clear that if two pointg; andz, have infinite orbits, or if they land on the
same cycle, then the fibeks(z1) and X (z2) are disjoint or coincide.

Our proof of Lemma 6 was based on the following fact mentioned in Kiwi's
thesis P, proof of Lemma 13.3]. To make this section self-contained, we reproduc
his argument. We denote B/ (-) the puzzle pieces correspondingRo1G;.

LEMMA 10
If z has an infinite orbit, then the fiber of z is wandering.

Proof

(i) Let us first show that iz is a periodic point, theiX(z) = {z}. SinceG,(FP, z) C
Gip(F, 2), then fibers of P contain fibers of, and so by replacing with an iterate,

we can assume thatis fixed. For the same reason we can assume that the landir
rays atz are all fixed. The latter implies

b € Fix(F) N P2(z2) = the rays landing ab are fixed (A1)

Indeed, supposk is not a landing point of some fixed ray. There G1, andP1(2)

is contained in some sect8ratb. We haveF P(z) ¢ P1(2) C S. Taking some point

in P2(2) close tob, we see that S = S, wherer is the sector map, and so the rays at
b have to be fixed.

Let k — 1 be the number of critical points in the fib&r(z). Forl > 1, the
map R (2 — PB/(2) extends to a polynomial-like map of degreek. Observe that
X(z) C Jg; and since the critical points @ belong toX(z) = gX(z), the Julia set
Jg of g is connected. It remains to show that= 1. (This givesX(z) C Jg = {z}.)
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The fixed points ofy belong to the set FiF) N P2(z). By (A.1), for each fixed point
of g there is arF-invariant (and thereforg-invariant) arc inJ® C J¢ tending to the
fixed point.

Let Q be a degre& polynomial that is conjugate . It follows that there ar&)-
invariant arcs irC \ Jg tending to each dk fixed points ofQ. Applying the Riemann
map, we gek arcs tending td distinct points on the unit circle invariant with respect
to the map; — ¢X, a contradiction.

(i) Suppose now that is not preperiodic. Replacinig with some iterate, we can
reduce the problem to showing that

X(F2) = X(z2) = z e Fix(F).

SupposeX(Fz) = X(2). Then for every, we have a majg : B (z2) — P/(2) which
extends to a polynomial-like map with Julia set containe® ). It follows that

vl, B (2) NFix(F) # 9,

and thereforeX (z) contains at least one fixed pointSince the partitiors| (z, F) is
finer thanG (b, F), by (i) we haveX(z) ¢ X(b) = {b}. O

If the fibers of the critical points have pairwise disjoint orbits, then from Lemma 10 i
follows that statemen®(1) holds for puzzle pieceé(cj) = R (cj) with | sufficiently
large. This is precisely the fact that we used earlier.
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