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Harmonic Measure on Fractal Sets

D. Beliaev and S. Smirnov

Abstract. Many problems in complex analysis can be reduced to the evaluation
of the universal spectrum: the supremum of multifractal spectra of harmonic
measures for all planar domains. Its exact value is still unknown, with very

few estimates available. We start with a brief survey of related problems and
available estimates from above. Then we discuss in more detail estimates from
below, describing the search for a fractal domain which attains the maximal
possible spectrum.

1. Introduction

It became apparent during the last decade that extremal configurations in
many important problems in classical complex analysis exhibit complicated
fractal structure. This makes such problems more difficult to approach than
similar ones where extremal objects are smooth. A striking example is given
by coefficient problem for two standard classes of univalent functions S and Σ.

1.1. Coefficient problems for univalent functions. Let D = {z : |z| < 1} be
the unit disc and D− = {|z| > 1} be its complement. The classes S and Σ are
defined by

S = {φ(z) = z + a2z
2 + a3z

3 + · · · , φ is univalent on D} ,
and

Σ = {φ(z) = z + b1z
−1 + b2z

−2 + · · · , φ is univalent on D−} .
Univalent means analytic and injective, the letters S and Σ stand for German
schlicht. Here and below we use an and bn to denote the Taylor coefficients of
functions from S (or Sb = S∩L∞) and Σ correspondingly. A complete descrip-
tion of all possible coefficient sequences (an) and (bn) is perhaps beyond reach.
So one asks what are the maximal possible values of individual coefficients,
especially when n tends to infinity. The long history behind this question goes
back to works of Koebe and Bieberbach.

Class S. It is easy to see that the Koebe function k(z) =
∑∞

n=1 nz
n is in fact

a univalent map from the unit disk to the plane with a half-line (−∞, 1/4]
removed. It was conjectured by Bieberbach [8] in 1916 that this function is
extremal in the class S, namely that for any function there one has |an| ≤ n.
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The Bieberbach conjecture was proved by de Branges [17] in 1985 with the
help of Loewner evolution [40, 39] which we discuss below. The asymptotical
behavior of max |an| was settled much earlier by Littlewood. In 1925 [35] he
showed by an elegant argument that |an| ≤ en for any function φ ∈ S.

Class Σ. The corresponding problem for class Σ appears more difficult, with
even the question of asymptotic behavior still wide open.

Bieberbach [7] showed in 1914 using his area theorem that |bn| ≤ 1/
√
n.

While it is easy to produce examples of functions belonging to Σ with |bn| �
1/n, Littlewood showed in [34] that those are not extremal. Moreover it is
unclear how to construct an extremal function.

Not just the problem of finding the sharp upper bound for |bn|, but even
determining the correct decay rate is extremely difficult. We define

γφ := lim sup
n→∞

log bn
logn

+ 1 ,

i.e., γφ is the smallest number γ such that |bn| � nγ−1. We then define γ = γΣ

as the supremum of γφ’s over all φ ∈ Σ. To find the value of γ one has to solve
two problems: prove a sharp estimate from above and construct a function
exhibiting the extremal decay rate of coefficients.

The origins of the difficulties for the class Σ were explained by Carleson
and Jones [13] in 1992. Define another constant βφ to be the growth rate of
lengths of Green’s lines Γδ = φ ({z : |z| = 1 + δ}):

βφ := lim sup
δ→0

log length (Γδ)
| log δ| ,

and let β = βΣ be the supremum of βφ’s over all φ ∈ Σ. Define γb, βb, γs, and
βs as the corresponding constants for the classes Sb = S ∩ L∞ and S.

Theorem 1.1 (Carleson & Jones, 1992). The following holds:

γ = β = γb = βb < γs = βs = 2 .

The inequalities γ ≤ β for all the three pairs are due to Littlewood [35],
who used them in the proof that |an| ≤ en. The apparent equality was quite
unexpected. Indeed, Littlewood’s argument was quite transparent and in one
place used seemingly irreversible inequality. For a function φ(z) =

∑
akz

k in
the class S he wrote

e length (Γ1/n) ≥
(

1 − 1
n

)−n ∫

|z|=1−1/n

|φ′(z)||dz|

=
∫

|z|=1−1/n

|z1−nφ′(z)|dθ ∗≥
∣
∣
∣
∣

∫

z1−nφ′(z)dθ
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

z1−n
∑

k

kakz
k−1dθ

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ ∑

k

kakz
k−ndθ

∣
∣
∣
∣
∣
= 2πn|an| .
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Essentially the same argument is valid for the other two classes, and it follows
immediately that γφ ≤ βφ. Note that to have an identity, one must attain an
approximate equality in the triangle inequality marked by (*). Thus z1−nφ′(z)
should have approximately the same argument around the circle. Carleson and
Jones achieved this by a small perturbation of φ, while preserving change in
βφ and γφ.

The identity γ = β explains the nature of extremal maps φ: those maxi-
mize the length of Green’s lines Γδ . For class S the boundary ∂Ω of the image
domain Ω = φ(D) may be unbounded, so the Green’s lines can be long because
of large diameter. This is exactly what happens for the extremal Koebe func-
tion. For classes Σ and Sb the situation is different: ∂Ω is compact. So for the
length of Green’s lines to be large, they must “wiggle” a lot, and ∂Ω must be
of infinite length (even dimH ∂Ω > 1 for β > 0). This difference explains why
the problem for class S is much easier than for classes Σ and Sb. So we know
that extremal domains for the latter classes should be fractal (self-similar), but
there is no understanding of their origin or structure.

1.2. Multifractal analysis of harmonic measure. In [42] Makarov put this prob-
lem in a proper perspective, utilizing the language of multifractal analysis, an
intensively developing interdisciplinary subject on the border between mathe-
matics and physics. The concepts were introduced by Mandelbrot in 1971 in
[44, 45]. We use the definitions that appeared in 1986 in a seminal physics paper
[22] by Halsey, Jensen, Kadanoff, Procaccia, Shraiman who tried to understand
and describe scaling laws of physical measures on different fractals of physical
nature (strange attractors, stochastic fractals like DLA, etc.). Multifractal anal-
ysis studies different multifractal spectra (which quantitatively describe the sets
where certain scaling laws apply to the mass concentration), their interrelation,
and connections to other properties of the underlying measure.

There are various definitions of spectra, in our context constructions sim-
ilar to the grand ensemble in statistical mechanics lead to the integral means
spectrum which for a given function φ ∈ Σ (or the corresponding domain φ(D−))
is defined by

βφ(t) := lim sup
r→1+

log
∫ 2π

0
|φ′(reiθ)|tdθ

| log(r − 1)| , t ∈ R .

The universal integral means spectrumB(t) is defined as the supremum of βφ(t)
for all φ ∈ Σ. Clearly the constant β is equal to B(1).

Let ω be the harmonic measure, i.e., the image under the map φ of the
normalized length on the unit circle. Another useful function is the dimension
spectrum which is defined as the dimension of the set of points, where harmonic
measure satisfies a certain power law:

f(α) := dim
{
z : ω (B(z, δ)) ≈ δα , δ → 0

}
, α ≥ 1

2
.
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Here dim stands for the Hausdorff or Minkowski dimension, leading to possibly
different spectra. Of course, in the general situation there will be many points,
where measure behaves differently at different scales, so one has to add lim sup’s
and lim inf’s to the definition above – consult [42] for details. The universal
dimension spectrum F (α) is defined as the supremum of f(α)’s over all φ ∈
Σ. Note that by Beurling’s theorem the minimal possible power α for simply
connected domains is 1/2, which corresponds to points at the tips of the inward
pointing spikes.

The basic question about dimensional structure of harmonic measure on
planar domains was resolved by Makarov [41] in 1985 when he showed that
dimension of harmonic measure (i.e., minimal Hausdorff dimension of the Borel
support) on simply-connected domains is always one, and Jones and Wolff [26]
proved that for multiply connected domains it is always at most one. In the
language of spectra Makarov’s theorem corresponds to the behavior of F (α)
near α = 1 and B(t) near t = 0, see discussion in [42].

Makarov [42] developed in 1999 the general multifractal framework for
harmonic measure. Among other things he showed that Hausdorff and Min-
kowski versions of universal spectra coincide (while they might differ for in-
dividual maps), and that universal integral means and dimension spectra are
connected by a Legendre transform:

B(t) − t+ 1 = sup
α>0

(F (α) − t)/α ,

F (α) = inf
t

(t+ α(B(t) − t+ 1)) .
(1.1)

The same holds for spectra of individual maps, provided the corresponding
domains are “nice” fractals. Makarov extended Carleson-Jones fractal approx-
imation from B(1) to B(t), see below. He gave a complete characterization
of all functions which can occur as spectra: those are precisely all positive
convex functions which are majorated by the universal spectrum and satisfy
β(t) − tβ′(t±) ≥ −1. In the same paper Makarov described how the universal
spectrum is related to many other problems in the geometric function theory.
We will mention several connections later.

On the basis of work of Brennan, Carleson, Jones, Makarov and computer
experiments Krätzer [30] in 1996 formulated the

Universal spectrum conjecture 1.
B(t) = t2/4 for |t| < 2 and B(t) = |t| − 1 for |t| ≥ 2.

which by the work of Makarov is equivalent to

Universal spectrum conjecture 2. F (α) = 2 − 1/α for α ≥ 1/2.

These conjectures are based on several others, discussed below. Unfor-
tunately, besides numerical, there is not much evidence to support them. All
known methods to obtain estimates from above seem to be essentially non-
sharp. It is unclear at the moment which approach could lead to the sharp
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estimates from above. So it becomes even more important to search for ex-
tremal configurations in the hope that they will help to understand underlying
structure and produce estimates from above as well. In this note we give an
exposition of available methods.

1.3. Survey of related problems. Before discussing the values of the universal
spectra we would like to briefly mention some of the problems which can be
reduced to its study. For an extensive discussion, see [42].

The Brennan’s conjecture. Brennan [11] conjectured that any conformal map
ψ : Ω → D satisfies for all positive ε

∫∫

Ω

|ψ′(z)|4−εdm(z) <∞ ,

where m is the planar Lebesgue measure. By considering the inverse map, it is
easy to see that this conjecture equivalent to B(−2) = 1. See the paper [14] of
Carleson and Makarov and the Ph.D. thesis [6] of Bertilsson for reformulations
and partial results. For the best known upper bounds for B(−2) see recent
papers by Shimorin [53] and Hedenmalm, Shimorin [24].

The Hölder domains conjecture. Let the map φ be Hölder continuous: φ ∈
S ∩ Höl(η). Jones and Makarov proved (see [25] and [42, Th. 4.3]) that the
Hausdorff dimension of the boundary of the image domain Ω = φ(D) satisfies

dimH ∂Ω ≤ 2 − C η ,

for some positive constant C. They conjectured that for small values of η the
constant C can be taken arbitrarily close to 1.

It turns out that the universal spectrum conjecture suggests an even
stronger statement. Indeed, a corollary of Makarov’s theory (see [42, 43] by
Makarov and Pommerenke) is that the universal spectrum Bη(t) for the class
S ∩ Höl(η) is equal to

B(t), t < tη ,

(1 − η)(t− tη) +B(tη), t ≥ tη ,

where tη is such that the tangent to B(t) at t = tη has a slope 1 − η. On the
other hand the maximal possible dimension of ∂Ω is the root of the equation

Bη(t) = t− 1 .

After combining these statements and plugging in B(t) = t2/4, an easy cal-
culation then shows that the universal spectrum conjecture for t ∈ [0, 2] is
equivalent to the Hölder domains conjecture, which states that the following
estimate holds and is sharp for η-Hölder domains:

dimH ∂Ω ≤ 2 − η .
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Multiply connected domains. One can define similar spectra for multiply con-
nected domains. Since the class of domains is larger, they are a priori different
(e.g., the integral means spectrum cannot be defined or rather is infinite for
multiply connected domains when t is negative). However a combination of re-
sults of Binder, Makarov, Smirnov [10] and Binder, Jones [9] proves that they
coincide whenever both are finite (i.e., B’s for t ≥ 0 and F ’s for α ≥ 1/2).

Value distribution of entire functions. There is yet another constant α studied
by Littlewood [36], which is the smallest α such that

sup
p∈Pn

∫

D

|p′|
1 + |p|2 dm ≤ const(ε)nα+ε, ∀ ε > 0 ,

where Pn is the collection of all polynomials of degree n. The mentioned results
together with Eremenko [20] and Beliaev, Smirnov [4] imply that α = B(1).
Since α is more difficult to estimate it greatly improves the previously known
estimates 1.11 · 10−5 < α < 1/2 − 2−264 from [1, 33].

The constant α plays role in a seemingly unrelated problem in value dis-
tribution of entire functions. Under assumption that α < 1/2 (proved only later
by Lewis and Wu [33]) Littlewood proved in [36] a surprising theorem: for any
entire function f of finite order most roots of f(z) = w for any w lie in a small
set. This can be quantified in several ways, one particular implication is that
for any entire function f of finite order ρ > 0 there is a set E such that for any
w for sufficiently large R most roots of f(z) = w inside {|z| < R} lie in E while

Area(E ∩ {|z| < R}) � R2−2ρ(1/2−α) .

See [36, 4] for an exact formulation.

Universal spectra for other classes of maps. It was shown by Makarov in [42]
that universal spectra for many other classes of univalent maps (e.g., Hölder
continuous, with bounds on the dimension of the boundary of the image do-
main, with k-fold symmetry) can be easily obtained from the universal spec-
trum B(t) for the class Σ. For example, while the universal spectrum for Sb is
the same: Bb(t) = B(t), the universal spectrum Bs(t) for the class S satisfies

Bs(t) = max (B(t), 3t− 1) .

In particular, one notices immediately that γs = Bs(1) = 2.
This ideology can be applied to an old problem about coefficients ofm-fold

symmetric univalent functions:

φ(z) = z + am+1z
m+1 + a2m+1z

2m+1 + . . . .

Szegö conjectured that |an| = O(n−1+2/m). This conjecture was proved for
m = 1 by Littlewood [35, Th. 20], for m = 2 by Littlewood and Paley [37],
for m = 3 and (with a logarithmic correction) for m = 4 by Levin [32]. On
the other hand, Littlewood [34] proved that the conjecture fails for large m.
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Makarov proved [42] that the universal spectrum B[m](t) for m-fold symmetric
functions satisfies

B[m](t) = max
{

B(t),
(

1 +
2
m

)

t− 1
}

.

Particularly the growth rate of coefficients is given by

2/m− 1, m ≤ 2/B(1) ,

B(1) − 1, m ≥ 2/B(1) .

This theorem together with Carleson and Jones conjecture suggests that Szegö
conjecture holds for k ≤ 8 and fails for k ≥ 9. The previously known estimates
for B(1) show that Szegö conjecture holds for k = 1, 2, 3, 4, and fails for k ≥ 12.
Our improved estimate B(1) > 0.23 (see Theorem 2.4 below) implies that
conjecture is indeed wrong for k ≥ 9.

1.4. Estimating universal spectra. The known results about universal spec-
tra use variety of approaches to produce estimates from above and below. At
present the estimates from above are rather far from being sharp, and it is
unclear which methods can possibly give exact results. In the hope to gain un-
derstanding we concentrate in the next sections on estimates from below, that
is on constructing (fractal) maps with large spectra. There is also hope that
eventually the universal spectrum will be evaluated exactly by showing that it
is equal to the spectrum of some particular “fractal” map, for which it can be
calculated (cf. discussion of fractal approximation below).

Before we pass to fractal examples, we sketch the situation with estimates
from above, using B(1) as an example. See also Problems 6.5, 6.7, and 6.8 from
the Hayman’s problem list [23] and the survey paper [51] and books [49, 50] by
Pommerenke.

Conjectural value of γ = γb = B(1) is 1/4, but existing estimates are
quite far. The first result in this direction is due to Bieberbach [7] who in 1914
used his area theorem to prove that γ ≤ 1/2. Littlewood, Paley, and Levin
proved aforementioned estimates on |an| for k-fold symmetric functions for
k = 1, 2, 3, 4. Clunie and Pommerenke in [16] proved that γ ≤ 1/2− 1/300 and
γb ≤ 1/2 − ε for some ε > 0. They used a differential inequality on

∫ |φ′(rξ)|δ
for a fixed small δ. Carleson and Jones [13] established that γ = γb and used
Marcinkiewicz integrals to prove γ < 0.49755. This estimate was improved
by Makarov and Pommerenke [43] to γ < 0.4886 and then by Grinshpan and
Pommerenke [21] to γ < 0.4884. The best current estimate is due to Hedenmalm
and Shimorin [24] who quite recently proved that B(1) < 0.46.

2. Searching for extremal fractals

It is clear that extremal domains should be fractal. There are several standard
classes of fractals that one can study. For most of them the fractal approxi-
mation holds. This means that the supremum of spectra over this particular
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class of fractals is equal to the universal spectrum. These results can help to
understand the nature of extremal domains, but it is not clear if one can get
any upper bound in this way. Another problem is that it is extremely diffi-
cult to work with harmonic measure on fractals because the radial behavior of
conformal map depends on arg z in a highly non-regular way. We will argue
that solution to this problem might lie in considering random fractals, when
averaging over many maps makes behavior of φ′ statistically the same for all
values of arg z. Below we give a short overview of fractals and methods that
were used in the search of lower bounds.

2.1. Lacunary series. The first estimate from below is due to Littlewood [34]
who disproved for large m the Szegö conjecture about coefficients of m-fold
symmetric functions: using lacunary series he constructed an explicit function
with |an| > A(m)n−1+a/ log m for infinitely many n, where A is a universal
constant. Much later Clunie [15] used the same technique for class Σ and con-
structed a function with |bn| > n0.002−1 for infinitely many n. Similar technique
was used by Pommerenke [47, 48], see the discussion below.

The method consisted of writing a specific Taylor series convergent in D

and using argument principle to check that the resulting function is a schlicht
map. It turns out that such series describe maps to fractal domains. Since it
is much easier to construct analytic functions (rather than univalent ones) it
is interesting whether more advanced univalence criteria can be used to obtain
interesting examples.

2.2. Geometric snowflakes. Canonical geometric construction, called snow-
flake, was introduced by von Koch [28, 29] as an example of a nowhere dif-
ferentiable curve. We start with a “building block” – a polygon P = P0. The
construction proceeds in the following fashion: to obtain Pn+1, a part of each
side of Pn is replaced by a scaled copy of P . In the limit a fractal called snowflake
is obtained, which we identify with a conformal map of D− to its complement.
Carleson and Jones proved that to find the value of β it is enough to study
snowflakes.

Let Σsnowflake be the class of conformal mappings whose image domain is
a snowflake, and set βsnowflake = supβφ, where the supremum is taken over all
snowflakes φ ∈ Σsnowflake. Then

Theorem 2.1 (Fractal approximation, Carleson & Jones, 1992).

βsnowflake = β .

Makarov developed their machinery to extend the result to the multi-
fractal spectra. In [42, Th. 5.1] he gives a complete proof in the multiply con-
nected situation (when one works with Cantor sets rather than von Koch snow-
flakes), and outlines it in the simply connected case. Again, Fsnowflake(α) and
Bsnowflake(t) are defined as suprema of fφ(α) and βφ(t) over φ ∈ Σsnowflake:
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Figure 1. Julia set for z2 − 0.56 + 0.664i

Theorem 2.2 (Fractal approximation, Makarov, 1999).
Fsnowflake(α) = F (α) ,

Bsnowflake(t) = B(t) .

Fractal approximation tells us that it is enough to study harmonic measure
on snowflakes. Construction of the snowflake is geometric, so it is easy to control
dimensions, but estimating harmonic measure is much harder.

2.3. Julia sets. Harmonic measure arises in a natural way for Julia sets of poly-
nomials. If p(z) is a polynomial, we denote by F∞ its domain of attraction to
infinity, that is the set of z such that iterates p(p(. . . p(z) . . . )) tend to infin-
ity. The Julia set of p is then the boundary of F∞. It was demonstrated by
Brolin [12] that harmonic measure on F∞ is balanced (has constant Jacobian
under mapping by p) and by Lyubich [38] that it maximizes entropy. Similarly
multifractal spectra have dynamical meaning. For example the integral means
spectrum is related to the thermodynamical pressure:

β(t) − t+ 1 = sup
{

I(µ) − t

∫

log p′dµ
} /

log deg p ,

where the supremum is taken over all invariant measures µ and I(µ) denotes
entropy, see [42] and the references therein. This provides more tools to analyze
harmonic measure, for example establishing its dimension in this particular case
is easier and has more intuitive reasons, than in general case – compare [46] of
Manning to Makarov’s [41] treatment of the general situation.

Carleson and Jones [13] studied numerically β for domains of attraction
to infinity for quadratic polynomials f(z) = z2 + c, and obtained non-rigorous
estimate β ≈ 0.24 for c = −0.560 + 0.6640i. The Figure 1 shows the corre-
sponding Julia set. Based on this computer experiment and on analogy with
conformal field theory they conjectured that B(1) = 1/4.
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Recently Binder and Jones [9] proved fractal approximation by Julia sets.
Together with theorem by Binder, Makarov, and Smirnov [10] it implies that
B(t) = Bmc(t), t ≥ 0, where Bmc is the (a priori larger) universal spectrum for
multiply connected domains. It is conjectured by Jones that there is a fractal
approximation by quadratic polynomials. If true the universal spectrum will
probably be attained by the Mandelbrot set.

Despite this progress, it is still unclear whether one can employ Julia sets
to estimate the universal spectra – rigorous dimension estimates are very hard
in this class of fractals.

2.4. Conformal snowflakes. We would like to introduce a new class of random
conformal snowflakes. This class is interesting because fractal approximation
holds, while estimates of the spectra reduce to (much simpler) eigenvalue esti-
mates for integral equations. Also it appears that even simple building blocks
lead to snowflakes with rather large spectrum. We start with a deterministic
construction, which is related to those used by Littlewood and Pommerenke.

Denote by Σ′ the class of univalent maps of D− = {|z| > 1} into itself,
preserving infinity. Fix an integer k ≥ 2. We define the Koebe k-root transform
of φ ∈ Σ′ by Kkφ(z) = k

√
φ(zk) ∈ Σ′. The first generation of the snowflake

is given by some function Φ0 = φ ∈ Σ′. Let Φn(z) = Kknφ(z). The nth
approximation to the snowflake is given by fn = Φ0(Φ1(. . .Φn(z) . . . )). We
define conformal snowflake as the limit f = lim fn. Let ψ = φ−1 and gn = f−1

n .
It is easy to check that

fn+1(z) = φ

(
k

√
fn(zk)

)

,

gn+1(z) = k

√
gn (ψ(z)k) .

Therefore the limit map g = lim gn satisfies

g(z)k = g(ψ(z)k) .

So g semi-conjugates dynamical systems z 
→ zk and z 
→ ψ(z)k on D−, and
the resulting snowflake is a Julia set of ψk acting on D− (i.e., the attractor
of inverse iterates). Because construction is based on iterated conformal maps,
harmonic measure is easier to handle than in the case of geometric snowflakes,
and even polynomial Julia sets.

It turns out that there is a fractal approximation for conformal snowflakes:

Theorem 2.3 (Fractal approximation). Let Bcsf (t) be the universal integral
means spectrum for conformal snowflakes, then

Bcsf (t) = B(t) .

The proof is quite similar to the proof of fractal approximation for snow-
flakes due to Carleson and Jones. We sketch the proof for the case t = 1, the
complete proof appears in [2]. Let us choose a function φ such that it has a long
Green’s line with potential 1/k, namely length (Γ1/k(φ)) ≈ kβ , with β = B(1).
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Then for Φj = kj
√
φ(zkj ) the Green’s line with potential 1/kj has length ≈ kβ .

One can argue that the length of Green’s line for fn is the product of the
lengths of Green’s lines for Φj ’s, since those oscillate on different scales:

length (Γ1/kn(Φ0 ◦ Φ1 ◦ · · · ◦ Φn)) ≈
n∏

j=0

length (Γ1/kj (Φj)) ≈ knβ ,

and it follows that the specific snowflake we constructed almost attains the
universal β.

As we noted above Pommerenke used a similar construction in [47, 48] to
produce maps with large coefficients. Let

φk(z) = z

(
1 − λ

1 − λzmqk

)2/mqk

,

where λ and q are parameters. He studied functions fk defined recursively by
fk(z) = fk−1(φk(z)). Using this construction he first found functions from
Sb and Σ with |an|, |bn| > constn0.139−1, and then improved the estimate to
|an|, |bn| > constn0.17−1. Later Kayumov [27] used this technique to prove that
B(t) > t2/5 for 0 < t < 2/5.

2.5. Random conformal snowflakes. Conformal snowflakes are easier to work
with than Julia sets or geometric snowflakes. However they share the same
problem: behavior of f ′ depends on symbolic dynamics of the arg z. To solve
this problem we introduce a random rotation on every step:

gn+1(z) = k

√
gn (ψ(eiθnz)k) , (2.1)

where θn are independent random variables uniformly distributed in [0, 2π[.
Capacity estimates show that there exist a limiting random conformal map
g = g∞, and sending n→ ∞ we obtain the stationarity of g under the random
transformation (2.1):

g(z) = k

√
g(ψ(eiθz)k) , (2.2)

where θ is uniformly distributed in [0, 2π[, and equality should be understood
in the sense of random maps having the same distribution. Using (2.2) one
can write a similar equation for the derivative g′, and also integral equations
(depending on the building block and k) for the expectations like E|g′|t. This
reduces the determination of the spectrum of a random conformal snowflake to
the evaluation of the spectral radius of a particular integral operator (3.3) on
the half-line. While its exact value seems beyond reach for the time being, one
can obtain decent estimates. As an example, we prove in [2] the following

Theorem 2.4. There is a particular snowflake with β(1) > 0.23.

This snowflake is generated by a simple slit map. Figures 2 and 3 show
its third generation and the blow up of its boundary with three Green’s lines.
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Figure 2. Random conformal snowflake from Theorem 2.4

Figure 3. Blow up of the boundary of the random conformal snow-
flake from Theorem 2.4 with three Green’s lines

The general theory of random conformal snowflakes is developed in [2, 3].
In particular the fractal approximation Theorem 2.3 extends to the random
conformal snowflakes. Since the building blocks can be taken smooth and relate
to the spectra in a simple way, we hope that eventually one might be able to
develop some kind of a variational principle, which together with the fractal
approximation might yield estimates from above.

The random conformal snowflakes can be considered as Julia sets of ran-
dom sequences of schlicht maps. One can similarly study the spectra for more
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traditional Julia sets of random sequences of polynomials. Unfortunately, after
some technical difficulties one arrives at integral equations which are rather
hard to work with.

2.6. Schramm-Loewner Evolutions. A very interesting class of random “con-
formal” fractals was recently introduced by Schramm [52]. The whole plane
Schramm-Loewner Evolution with parameter κ ≥ 0 , or SLEκ, is defined as
the solution of the Loewner equation (cf. [40, 39])

∂τgτ (z) = −gτ (z)
gτ(z) + ξτ
gτ (z) − ξτ

, (2.3)

where the driving force is given by ξτ = exp(i
√
κBτ ) with Bτ being the stan-

dard one-dimensional Brownian motion. The initial condition is

lim
τ→−∞

eτgτ (z) = z .

This equation describes the evolution of random univalent maps gτ from C\Hτ

onto D−. One calls SLEκ this family of random maps, as well as the family of
random hulls Hτ and inverse maps fτ = g−1

τ . See Lawler’s book [31] for the
proof of existence and basic properties.

The traces of the Schramm-Loewner evolutions are the only possible con-
formally invariant scaling limits of cluster perimeters in critical lattice models.
As such the values of their spectra were (non-rigorously) predicted by the physi-
cist Duplantier [18, 19] by means of Conformal Field Theory and Quantum
Gravity arguments:

Theorem 2.5 (CFT prediction, Duplantier, 2000). The f(α) spectrum for the
bulk of SLEκ is equal to

f(α) = α− (25 − c)(α− 1)2

12(2α− 1)
,

where c is the central charge which is related to κ by

c =
(6 − κ)(6 − 16/κ)

4
.

The prediction should be understood as the “mean” or the “almost sure”
value of the spectra.

Below we sketch a rigorous proof of the Duplantier’s prediction, given by
us in [2, 5]. As in the case of conformal snowflakes, stationarity implies that
expressions like E|f ′(z)|t satisfy certain equations. This time the equation turns
out to be a heat equation (3.1) with variable coefficients, and asymptotics of
solutions can be evaluated exactly.

The maximal value of such spectra is attained for κ = 4:

f(α) =
3
2
− 1

4α− 2
, κ = 4 ,
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which gives for example β(1) = 3− 2
√

2 ≈ 0.17. So SLE does not have a large
spectrum, but at present it is perhaps the only fractal where the spectra can
be written exactly.

In hope of obtaining large spectrum it is natural to generalize SLE, con-
sidering other driving forces. In our derivations the Markov property plays
essential role, so the first logical choice would be to consider Lévy processes.
One can apply the same technique as in the case of SLE and reduce the prob-
lem of finding the spectrum to the analysis of a particular integro-differential
equation, but at present we do not have good rigorous estimates of its spec-
tral radius. On the other hand, numerical experiments by us and by Kim and
Meyer suggest that Loewner Evolution driven by Cauchy process has a large
spectrum. In view of Theorems 2.4 and 2.5 there is certainly no fractal approx-
imation by SLE’s, but one can argue that a fractal approximation principle
could hold in the class of “Lévy-Loewner Evolutions.”

3. Estimates of spectra for random fractals

For random fractals it is very natural to study the mean spectrum, i.e., behavior
of E|f ′(z)|t instead of |f ′(z)|t. When available, correlation estimates can be
used to show that the mean spectrum is attained by almost every realization
of the fractal. Moreover, one can show using Makarov’s fractal approximation
theorem that the universal spectrum is greater than the mean spectrum for any
class of fractals, so if we are looking for the estimates from below it suffices.

Random models that we mentioned above have some kind of stationarity.
This means that E|f ′(z)|t is invariant with respect to some random transfor-
mation which implies that it is a solution of a particular equation. Usually it
is much easier to analyze the asymptotic behavior of solutions rather than av-
erage local behavior of conformal maps. Below we describe how to apply these
ideas in the case of SLE and random conformal snowflakes.

3.1. Exact solutions for SLE. Let fτ : D− → Hτ be the whole plane SLEκ.
Then e−τfτ has the same distribution as f0 (see [31] for the proof). One can
check that F (z) = E [e−tτ |f ′τ (z)|t] is a t-covariant martingale with respect
to the filtration generated by the driving force Bs, s < τ . This implies that
F (z) = F (r, θ) solves the second-order PDE:

t

(
r4 + 4r2(1 − r cos θ) − 1

(r2 − 2r cos θ + 1)2
− 1

)

F +

+
r(r2 − 1)

r2 − 2r cos θ + 1
Fr − 2r sin θ

r2 − 2r cos θ + 1
Fθ +

κ

2
Fθθ = 0 .

(3.1)

Here the first term is contributed by t-covariance, the second and the third form
the derivative in the direction of the Loewner flow (with constant driving force),
whereas the forth term is the generator of the driving force – the Brownian
motion.
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For such an equation it appears possible to analyze exactly the behavior
of solutions as r → 1+. Applying formally Frobenius theory one can obtain the
local solution near the singular “growth” point (θ, r) = (0, 1), which, e.g., for
t ≤ t∗ = 3(4 + κ)2/(32κ) has the form

(r − 1)−β · ((r − 1)2 + θ2)γ , (3.2)

for

β = β(t, κ) = −t+
(4 + κ)2 − (4 + κ)

√
(4 + κ)2 − 8κt

4κ
,

γ = γ(t, κ) =
4 + κ− √

(4 + κ)2 − 8κt
2κ

.

Tweaking the formula (3.2) one constructs global sub- and super-solutions of
the PDE (3.1) which behave as (r − 1)−β when r → 1+. So by the maximum
principle any solution has such asymptotics. So for t ≤ t∗ the mean spectrum
β∗(t) is equal to β(t). It is easy to see that mean spectrum is a convex function
bounded by the universal spectrum. The latter is equal to t − 1 for t ≥ 2 and
since β′

∗(t∗−) = 1, one easily infers that β∗(t) = β(t∗) + t − t∗ for t > t∗.
The derived spectrum β∗(t) is the Legendre transform (1.1) of the Duplantier’s
prediction for f(α). Details of the proof appear in [2, 5].

Our reasoning applies to the case of Loewner Evolution driven by a Lévy
process with generator A. The function F (z) satisfies the same equation (3.1),
with the term κ

2Fθθ substituted by AF . We are not able to perform a rigorous
analysis of the resulting equations yet, but this direction of investigations seems
rather promising.

3.2. Estimates for snowflakes. Let f be a random conformal snowflake as de-
fined in Section 2.5. Construction of fn is such that it seems impossible to
deduce an equation for E|f ′|t, which seems to be the main obstacle to the
exact determination of the corresponding spectra.

We work with the inverse function g instead. The spectrum β(t) of the
snowflake is roughly speaking the smallest b such that

∫

1

(r − 1)b−1

∫ 2π

0

|f ′(reiθ)|tdθdr < ∞ .

In terms of the inverse function g it means that we should study the in-
tegrability of |g′|2−t(|g| − 1)b−1 near r = 1+. The latter is comparable to
|g′/g|2−t logb−1 |g|, for whose expectations we can derive an integral equation.
Set

F (z) = F (|z|) = E

[
|g′(z)/g(z)|2−t logb−1 |g(z)|

]
,

by the presence of rotation in (2.2) the function F depends on |z| only.
The mean spectrum of a snowflake is the minimal b such that F is inte-

grable near 1+. Using stationarity of g, namely plugging in instead of g the
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right-hand side of (2.2), we write

F (r) = E

[
|g′(r)/g(r)|2−t logb−1 |g(r)|

]

= E

[∣
∣
∣
∣
g′(ψ(reiθ)k)ψ′(reiθ)ψ(reiθ)k−1

g(ψ(reiθ)k)

∣
∣
∣
∣

2−t (
log |g(ψ(reiθ)k)|

k

)b−1
]

,

where θ has a uniform distribution in [0, 2π[. The right-hand side can be rewrit-
ten as to separate the expectation with respect to the (independent) distribu-
tions of g and θ:
∫ 2π

0

Eg

[∣
∣
∣
∣
g′(ψ(reiθ)k)
g(ψ(reiθ)k)

∣
∣
∣
∣

2−t

logb−1 |g(ψ(reiθ)k)|
]
|ψ′(reiθ)ψ(reiθ)k−1|2−t

kb−1

dθ

2π
.

By the definition of F the expectation under the integral is equal to F (ψ(reiθ)k),
hence F satisfies the integral equation

F (r) = k1−b

∫ 2π

0

F (ψ(reiθ)k) · |ψ(reiθ)k−1ψ′(reiθ)|2−t dθ

2π
,

and we are searching for the value of b when it ceases to be integrable near
1+. Thus finding β is reduced to evaluation of the spectral radius in L1 of the
integral operator Q:

(Qf)(r) :=
∫ 2π

0

f(|ψ(reiθ)|k) · |ψ(reiθ)k−1ψ′(reiθ)|2−t dθ

2π
. (3.3)

It does not seem possible to find the spectral radius exactly in terms of φ and k,
but one can write good estimates by majoration or approximation. In this way
we prove Theorem 2.4 by showing that β(1) > 0.23 for a snowflake generated
by a simple slit map (it maps D− onto D− with a straight slit of length 73)
and k = 13, see Figures 2 and 3.
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